Metallic Biomaterials Research networks

The Institute for Metallic Biomaterials is involved in various research networks. The scope ranges from the lead of a Helmholtz Virtual Institute and a cooperation within the framework of the Röntgen-Ångström Cluster (RÅC) to the participation as a partner in a BMBF collaborative project ('Verbundforschungsprojekt') and the Graduate School M4B - Materials for Brain.

HGF-RSF Joint Research Group RÅC - SynchroLoad MgBone Graduate School M4B - Materials for Brain Helmholtz Virtual Institute MetBioMat

Helmholtz-RSF Joint Research Group


Materials based on magnesium alloys for bioresorbable implants with anti-tumour activity

A Russian-German research collaboration in the fields of resorbable metallic implants as anti-tumour agents. Our Russian project partners are the National University of Science and Technology MISIS, NUST MISIS and the N.N. Blokhin Russian Cancer Research Center.

The project addresses a core problem in modern oncology: the application of local chemotherapy that aims to achieve an efficient concentration of anti-tumor agents in the intra- or peritumoral regions. The chosen approach based on degradable Mg-based implants is expected to result in a cytoreduction of unresectable and chemo-resistant tumors, while at the same time reducing the side effects for the patients.

HZG News 11.09.2017 | Six German-Russian Research Groups Receive Three Years of Funding press release HGF 11.09.2017 | Six German-Russian Research Groups Receive Three Years of Funding

RÅC - SynchroLoad

Synchroload Kp

push out testing of a mini screw (Mg-alloy) in bone tissue

SynchroLoad - Failure in biodegradable metal implants

A Swedish-German research collaboration in the fields of materials science and structural biology (Röntgen-Ångström-Cluster).

In this project, we aim to understand how implant degradation and failure mechanisms work for a biodegradable Mg implant where corrosion processes and (bio)chemistry form a complex network of interactions in the living system. The tissue-to-implant interface will be fully characterized biomechanically, morphologically, biologically and chemically. Finally, a comparison of the bone structure around different implant materials will be performed.

website SynchroLoad Röntgen-Ångström-Cluster


MgBone graphical abstract

MgBone - Multimodal imaging for structural analysis of bone modeling induced by degraded magnesium implants

Cooperation in the context of the funding sheme research on condensed matter on large devices. There are three partners: The Molecular Imaging North Competence Ceter (MOIN CC) in Kiel, the Helmholtz Center Geesthacht (HZG) and the Department of Prosthodontics of the University of Malmö (MAH).

Together, a measurement and evaluation environment and a network of competences are to be created, with the help of which the biomechanical, biomedical, biochemical and physical suitability of innovative implants can be evaluated.

website MgBone

Graduate School M4B - Materials for brain

Logo M4b

Materials for Brain: Thin film functional materials for minimally invasive therapy of brain diseases

Cooperation between the Christian-Albrechts-University of Kiel (CAU), the University Clinic of Schleswig-Holstein (UKSH) and the Helmholtz Center-Geesthacht (HZG).

Within the framework of the Graduate School, minimally invasive treatment strategies for diseases of the brain based on novel thin-film material compounds are to be explored in a complexity and functionality that goes far beyond previous approaches. The realisation of such treatment strategies in clinical medicine will be a milestone in the therapy of these diseases.

The development of such cutting-edge localized therapies and suitable functional materials requires substantial collaboration between materials science and medicine, as well as new approaches to solutions and creative openness to the view of the respective other subject.

website M4B Press release M4B Kiel University (CAU) Press release Research Training Groups German Research Foundation (DFG)

Helmholtz Virtual Institute MetBioMat

Vi Logo

VI MetBioMat - In vivo studies of biodegradable magnesium based implant materials

In collaboration with the university hospitals of Hamburg, Hannover and Graz as well as further partners, the Helmholtz-Zentrum Geesthacht had established a Virtual Institute, whose focus was on degradable magnesium implants. One aim of the research association coordinated from Geesthacht was to develop first prototypes of orthopaedic implants.

The Virtual Institute MetBioMat was one of the Helmholtz Virtual Institutes and lead by Prof. Regine Willumeit-Römer of the Helmholtz-Zentrum Geesthacht. By establishing new research partnerships, Helmholtz Virtual Institutes provided a distinct benefit in preparing the way for larger strategic research projects. With this funding the Helmholtz Association wanted to strengthen the position of universities in the German scientific system. A further aim of the funding programme was to generate new collaboration with leading international partner institutions and the industry.

website VI MetBioMat Helmholtz Virtual Institutes