Festphase-Fügeprozesse

Techniken und Ausstattung

Techniken

Friction Spot Joining (FSpJ)

Goushegir Technique Description

Since its introduction in 2009, Friction Spot Joining (FSpJ) has shown high performance in producing polymer-metal hybrid structures. Therefore, this technique is being investigated to join lightweight alloys such as aluminium and magnesium with high performance engineering thermoplastics and composites. For this reason a friction spot welding / joining machine (RPS 100) is employed. Briefly, the metallic partner is plasticized and deformed due to the generated frictional heat and applied force. A metallic nub is created which is inserted into the composite. Simultaneously, a thin layer of polymer matrix is molten, and displaced around the joining area. The joint is formed after consolidation of the polzmeric molten layer. These are the two main phenomena responsible for joining mechanisms.

The term "joining" is used to differentiate spot joints where a sharp interface is present (minimal or absent atomic or molecular diffusion), such as in hybrid polymer-metal joints, while "welding" is used for joints without a discontinuous transition between joining partners (presence of diffusion mechanisms), such as "polymer-polymer" or "metal-metal" spot welds.

Read more about principles of Friction Spot Joining (PDF) (328 KB)

Friction Spot Welding (FSpW)

Amancio Technique Description

The Friction Spot Welding (FSpW) is a new technology for producing similar and dissimilar overlap joints in thermoplastic and thermoplastic fiber-reinforced composites. As thermoplastic fiber reinforced composites (TPC) are difficult to weld or bond by traditional joining processes, there is an open niche to be filled by the research and development of alternative joining technologies.The main improvement of FSpW over the Friction Stir Spot Welding (patented by The Welding Institute – TWI, England) is the absence of a keyhole in the spot seam; this usually leads to higher joint strengths due to reduction of the geometrical notch effect of the keyhole.

Read more about FSpW of thermoplastics and composites (PDF) (187 KB)

Friction Riveting (FricRiveting)

Blaga Technique Description

Friction Riveting (Fricriveting), is an innovative joining technique for polymer-metal hybrid structures, developed and patented by the Helmholtz Zentrum Geesthacht in Germany. In this process, polymeric parts are joined by a metallic rivet; the joining is achieved by mechanical interference and adhesion between the metallic and polymeric joining partners. During the process, a rotating cylindrical metallic rivet is inserted into a polymeric base plate. Due to the local increase of temperature, a molten polymeric layer is formed around the tip of the rotating rivet. The local temperature increases leading to the plasticizing of the tip of the rivet. While the rotation is being decelerated, the axial pressure is increased, the so called forging pressure is applied and the plasticized tip of the rivet is being deformed and anchored in the polymeric plate. The technology is adequate to produce overlap riveted joints between metal-polymer, metal-composite and composite-composite connections.

Read more about principles of Friction Riveting (PDF) (74 KB)

Injection Clinching Joining (ICJ)

Abibe Technique Description

Injection Clinching Joining (ICJ) is a new joining process for hybrid structures, composed of one thermoplastic-based partner and a metallic or thermoset partner. The principle of the process is to produce joints through heating and deformation of a thermoplastic element (such as a cylindrical stud) integrated in the polymeric partner, which is previously inserted in a through hole (cavity) of a metallic/thermoset component, therefore creating a rivet from the structure itself. Spot joints created by ICJ process are tight and with good mechanical anchoring due to the cavity profiles on the metallic partner. ICJ is a potential technology for secondary and tertiary structures in automotive and aircraft applications.

Read more information about principles of ICJ (PDF) (242 KB)

Ultrasonic Joining (U-Joining)

Eduardo Techniques

Ultrasonic joining (U-Joining) is a new direct assembly technique developed by Helmholtz-Zentrum Geesthacht (patent EP 3 078 480 A1). U-Joining uses ultrasonic energy to join fiber-reinforced thermoplastics to surface-structured metallic parts, for instance produced by metal injection molding (HZG’s patent EP 2 468 436 B1). Ultrasonic vibration and pressure create frictional heat at the materials interface, which softens the composite matrix and allows the reinforcement (structured on the surface of the metallic part) to penetrate the composite. As a result, a metal-composite hybrid joint with improved out-of-plane strength is achieved.

Read more information about principles of U-joining (PDF) (261 KB)

AddJoining

Addjoining Aa2024 Cf-pa6

The AddJoining concept (German patent application number DE 10016121267.9) uses a new and unique approach to produce complex hybrid parts, by combining the principles of joining and polymer additive layer manufacturing (ALM) to produce layered metal-polymer hybrid structures. This is an important contribution to the state-of-the-art in additive manufacturing. AddJoining has potential to overcome the main limitations of production time of state-of-the-art manual lamination techniques, allowing for the production of future composite-metal layered structures with high-specific strength (Rm/density), tight dimensional and damage tolerances.

Read more information about principles of AddJoining (PDF) (1,1 MB)

Austattung

T805 Doppelschulter (Bobbin tool) FSW Roboter System

140617 Wmp Www T805 Bbt Maschine Foto

Siemens 840D Steuerung
5 Achsen
Positionsgen. ±50µm
Wiederholgen. ±10µm
Max. Beschleunigung 2G
Max. Geschwindigkeit 90m/min
Max. Kräfte:
Vertikal : 45000 N
Horizontal: 10000 N


HZG Flexistir Doppelschulter (Bobbin tool) FSW System

140617 Wmp Www Flexistir Maschine Foto Frontal

Sechs über Motoren kontrolliert verfahrbahre Achsen
Eine manuell justierbare Achse
Zwei unabhängig kontrollierbare Spindeln

Doppelschulter-FSW-Werkzeug (Bobbin tool, BT)
-bis zu 20Nm je Spindel
0-2000 u min^-1
-bis zu 4kN Spaltkraft

Einschulter-FSW Stahlschweißkopf:
-bis zu 80Nm
-bis zu 40kN Axialkraft

Messung und Regelung
-der axialen Kraft
-der Drehzahl

Messung
-der Axialkraft
-der Kräfte in der Ebene
-des Drehmomentes an der Spindel
-Spaltkraft


HZG Portal FSW System

140701 Wmp Www Gantry Maschine Foto Iso

Axialkräfte bis 60 kN
Seitenkräfte bis 15 kN
Kräfte in Vorschubrichtung bis 20 kN
Schweißgeschwindigkeit regelbar zwischen 0,1 und 4 m/min
Drehzahlen zwischen 200 und 6000 U/min
Maximale ununterbrochene Schweißlänge 2500 mm

Messung und Regelung
-der axialen Kraft
-der Drehzahl

Messung
-der Kräfte in der Ebene
-des Drehmomentes an der Spindel


T9000 FSW Roboter System

140617 Wmp Www T900 Robgant Maschine Foto Frontal Fischauge

Elektrischer Antrieb
Drehzahl bis 6000 U/min
Axialkräfte bis 60 kN
Radialkräfte bis 20 kN
Dimension des Arbeitsraumes 6m x 2m x 0,8m

Messung und Regelung
-der axialen Kraft
-der Drehzahl

Messung
-der Kräfte in der Ebene
-des Drehmomentes an der Spindel


HZG RPS 100 Reibpunktschweiß System

140630 Rps100 Wmp Www Foto Frontal

Elektr. Antrieb
Drehzahlen zwischen 500 und 3000 U/min
Max. Punktdurchmesser 12mm
Max. Schweißtiefe 10mm

Messung und Regelung
-der axialen Kraft
-der Drehzahl
-des Vorschubweges von Stift und Hülse


HZG RPS 200 Reibpunktschweiß System

140617 Wmp Www Rps200 Maschine Foto Perspektivisch

Hub des Schweißwerkzeugs: 10 mm
Schweißkraft: 35 kN
Drehmoment: 60 Nm (90 Nm für 15 s)
Drehzahl der Werkzeugelemente: 3300 rpm
Arbeitsfläche: 1000 mm x 500 mm
Masse: 4,7 t
Hub des Schweißkopfes: 300 mm
Aufspannkraft: 40 kN

Messung und Regelung:
-Drehmoment am Stift
-Drehmoment an der Hülse
-Aufspannkraft
-Eindringkraft des Stifts
-Eindringkraft der Hülse
-Weg Stift
-Weg Hülse
-Temperatur


HZG Reibauftrag- / HFDB- Schweiß System

140617 Wmp Www Ras Maschine Foto Perspektivisch

Axialkraft: 0-60 kN
Drehzahl: 0-6000 rpm
Drehmoment: max. 200 Nm
Sehr steife und robuste Konstruktion
Arbeitsraum: 0,5 m x 1,5 m x 0,3 m
Durchmesser Bolzen: max. 30 mm
Länge Bolzen: bis zu 300 mm
Wulstschneider

Messung und Regelung
-der Kräfte in drei Raumrichtungen
-des Drehmoments an der Spindel
-der Drehzahl an der Spindel
-des Vorschubweges in x-, y- und z-Achse


HZG RSM Reibniet System (klein)

Rsm 400

Pneu./ Elektr. Antrieb
Drehzahlen zwischen 6000 und 24000 U/min
Axialkräfte bis 15 kN
Vorschubweg max. 50 mm

Messung und Regelung
-der axialen Kraft
-der Drehzahl
-des Vorschubweges (in Vorbereitung)


HZG Reibniet System (groß)

140617 Wmp Www Fricriveting Maschine Foto Perspektivisch

Automatisiertes Drei-Achs Regelungskonzept mit vier Freiheitsgraden

Spindel: RSM 410 Harms & Wende
-bis 21000 u min^-1
-Axialkraft bis 24 kN
-Drehmoment bis 20Nm

Werkzeugwechsler für 20 Niete
Arbeitsfläche 1000 x 1500 mm

Sensorik:
-3D piezoelektrische Kraftsensoren
-Messung der X, Y und Z Kräfte
-Drehmomentmessung

Integrierte Positionssensorik


FEI Quanta 650 FEG Raster Elektronen Mikroskop

140617 Wmp Www Sem Quanta 650 Foto Frontal

Hochauflösendes Schottky Feld Emissions Mikroskop

Vakuum Modi:
Hochvakuum, HiVac (10^-2 bis10^-4 Pa)
Niedrigvakuum, LoVac (10 bis 200 Pa)
Erweiterter Vakuum Modus, ESEM (10 bis 4000 Pa)

Beschleunigungsspannung : 200 V bis 30 kV

Steuerstufe: euzentrische Position

Analytische Systeme: Simultanes electron backscatter diffraction (EBSD) und energiedispersiver Röntgenspektroskopie (EDS) Spektrometer

Hilfssysteme: Steuerungskamera, Schnellbeladung

Externe Systeme: 24h Notstromversorgung, antimagnetischer Rahmen, schwingungsdämpfender Tisch

Verschiedenes: Strahlverlangsamung, konzentrischer Rückstreu-Elektronen Detektor (concentric solid-state backscatter detector; CBS)