In-situ Measuring Systems
Willi Und Martina 680x383

Scientist calibrate a FerryBox in the laboratory.-image: HZG-

Research Focus & Projects

Research Focus

Continuous long-term observations of the marine ecosystem

FerryBox systems operated at Helmholtz-Zentrum Geesthacht. -Image: HZG-

Most of our understanding of the processes in the marine environment is restricted to observations from single measurement campaigns (e.g. research cruises) during a certain period of time, or time series collected at a certain position (e.g. buoys). Comprehensive research and analysis of marine biogeochemical processes is only possible when observations from research vessels, remote sensing (radar, satellite) and fixed stations (buoys, poles) narios (e.g. extreme events or climate induced changes) on the marine ecosystem can be better predicted.


Installation of a FerryBox system onboard cargo vessel Hafnia Seaways. -Image: HZG-

The Department of In-situ Measurement Systems uses FerryBoxes to carry out long-term water quality measurements along the entire Southern North Sea, with a focus to the carbon cycle.
In order to ensure their reliability, the observations are first subjected to automated quality control before they are transferred to a database in real-time or near real time. Bottle samples for some parameters (e.g. dissolved oxygen, salinity, etc.), collected along the FerryBox routes, are analyzed in the lab, and then compared to the FerryBox measurements providing additional quality control.
Statistical methods like time series analysis, in combination with numerical models (including eco-system models), are applied to the long-term observations to study seasonal and regional patterns in the North Sea.


Time-series of pCO2 measurements along the transect from Halden (NO) to Zeebrugge (BE). -Image: HZG-

Furthermore, a comparison of the FerryBox data to satellite data can be used to understand the larger spatial variations certain variables, such as chlorophyll-a.
Subtle changes in coastal waters, which can only be captured by continuous monitoring of marine processes over several years, can then be unraveled and assessed. Furthermore, these high-resolution long-term observations can provide the background to study in detail the impact of different scenarios (e.g. extreme events or climate induced changes) in marine ecosystems.

The Carbon Cycle
Developing New Measurement Instruments for In Situ Methods


Logo JericoNext.jpg

(Joint European Research Infrastructure network for Coastal Observatory – Novel European eXpertise for coastal observaTories)

The coastal area is the most productive and dynamic environment of the world ocean with significant resources and services for mankind. JERICO-NEXT (33 organizations from 15 countries) emphasizes that the complexity of the coastal ocean cannot be well understood if interconnection between physics, biogeochemistry and biology is not guaranteed. Such an integration requires new technological developments allowing continuous monitoring of a larger set of parameters. In the continuity of JERICO (FP7), the objective of JERICO-NEXT consists in strengthening and enlarging a solid and transparent European network in providing operational services for the timely, continuous and sustainable delivery of high quality environmental data and information products related to marine environment in European coastal seas.

The main objectives of JERICO-NEXT are to support European coastal research communities, enable free and open access to data, enhance the readiness of new observing platform networks by increasing the performance of sensors, showcase of the adequacy of the so-developed observing technologies and strategies, and to propose a medium-term roadmap for coastal observatories through a permanent dialogue with stakeholders. JERICO-NEXT is based on a set of technological and methodological innovations. One main innovation potential is to provide a simple access to a large set of validated crucial information to understand the global change in coastal areas.

Furthermore, JERICO-NEXT provides coordinated ‘free of charge’ trans-national access to researchers or research teams from academy and industry to original coastal infrastructures operated by the projects consortium. This access opportunity is expected to help building long-term collaborations between users and to promote innovation and transfer of know-how in the coastal marine sector. Within this approach HZG offers different research platforms including FerryBoxes, Gliders and cabled observatories (in cooperating with the Alfred Wegner Institute (AWI)).

Further information can be found on the JERICOnext website.


(Next Generation Web-Enabled Sensors for the Monitoring of a Changing Ocean)

The NeXOS project aimed to improve the temporal and spatial coverage, resolution and quality of marine observations through the development of cost-efficient innovative and interoperable in-situ sensors deployable from multiple platforms. This was achieved through the development of new, low-cost, compact and integrated sensors with multiple functionalities including the measurement of key parameters useful to a number of objectives, ranging from more precise monitoring and modelling of the marine environment to an improved assessment of fisheries.
These sensors are based on optical and acoustics technologies, addressing a majority of descriptors identified by the Marine Strategy Framework Directive for Good Environmental Status. All new sensors respond to multiplatform integration, sensor and data interoperability, quality assurance and reliability requirements. The sensors were calibrated, integrated on several types of platforms, scientifically validated and demonstrated.

Within the framework of NeXOS the Department of In-situ Measurement Systems has developed a Hyper Spectral Absorptions Sensor (HyAbS) optimized for an automated operation within flow-through systems such as the FerryBox, providing proxies of phytoplankton biomass, suspended particles in the water column and phytoplankton species composition. Additionally, a sensor for measuring parameters of the carbon cycle (pH, alkalinity and CO2) is under further optimisation in cooperation with Norwegian

Further information can be found on the NeXOS website.


EnviGuard is a response to the growing need for accurate real time monitoring of the seas/ocean and the aquaculture industries need for a reliable and cost-effective risk management tool. The implementation of the EnviGuard system will allow for early detection of harmful algae blooms (HAB), chemical contaminants, viruses and toxins thus preventing economic losses. The modular EnviGuard system will be made up of three different sensor modules (microalgae / pathogens, i.e. viruses & bacteria / toxins & chemicals), that are connected to the common interface ‘EnviGuard Port’ which collects and sends the information to a server. The data will be accessible through a website in real-time. The biosensors to be developed in the project go far beyond the current state-of-the art in terms of accuracy, reliability and simplicity in operation by combining innovations in nanotechnology and molecular science leading to the development of cutting-edge sensor technology.

Within the framework of the EU project EnviGuard, the Alfred Wegner Institute (AWI) is further developing a biosensor for detecting different phytoplankton species for use in FerryBox systems. The biosensor will include automated sampling and sample processing. The Department of In-situ Measurements is contributing to the development of this biosensor by testing and optimizing the sensor for the autonomous use in connection to FerryBox systems and real time data transmission.

Further information can be found on the EnviGuard website.

Bilateral project China – Germany:
Cost-Effective Monitoring of Water Quality in the Northern Yellow Sea

The environment in the Yellow Sea, between China and the Korean Peninsula, has been dramatically impacted in the last few decades. These environmental changes are now to be continuously observed. To this end, the project “Economical Methods for Observing Water Quality in the Northern Yellow Sea" was founded and is supported by the Federal Ministry of Education and Research.

The Department of In Situ Measurements possesses an automated, economical measurement system for large-scale observation with their FerryBox system.
Together with the Institute of Coastal Research in Yantai, China, a ferry line in the Bohai Bay demonstrates the applicability of the FerryBox for observing water quality in the Yellow Sea.

Chinese scientists visit the HZG for exchanging knowledge and for training in use of the FerryBox, whereas the Department of In Situ Measurements, with the aid of a portable FerryBox, operates various measurement campaigns on board a ferry in the Bohai Bay during different seasons.

The aim is to establish economical and continuous large-scale water quality observations in the Yellow Sea with the aid of FerryBoxes and other observational methods.