Final Draft
of the original manuscript:

Mameka, N.; Markmann, J.; Jin, H.-J.; Weissmueller, J.:
Electrical stiffness modulation—confirming the impact of surface excess elasticity on the mechanics of nanomaterials

DOI: 10.1016/j.actamat.2014.04.067
Electrical stiffness modulation – confirming the impact of surface excess elasticity on the mechanics of nanomaterials

Nadiia Mamekaa,*, Jürgen Markmanna,b, Hai-Jun Jinc, Jörg Weissmüllera,b

aHelmholtz-Zentrum Geesthacht, Institut für Werkstoffforschung, Werkstoffmechanik, 21502 Geesthacht, Germany
bTechnische Universität Hamburg-Harburg, Institut für Werkstoffphysik und -technologie, 21073 Hamburg, Germany
cShenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 110016 Shenyang, People’s Republic of China

Abstract

Local variations of the stiffness at surfaces may affect the elastic response of nanostructures, yet experiments disagree on magnitude and even sign of the surface excess elastic constants. The present study reports the variation in the effective macroscopic stiffness of bulk samples of nanoporous gold when the surface state is modulated under potential control in an electrochemical environment. Using \textit{in situ} experiments in a dynamic mechanical analyzer to measure the storage and loss moduli, we show that adsorption of \leq 1 atomic monolayer of oxygen species as well as a capacitively controlled excess of electrons at the surface stiffen the material while oxygen desorption/electron depletion enhance the compliance. Relative changes in the effective stiffness of up to 8\% imply the variation of a surface excess elastic constant in the order of 60 N/m, much larger than the absolute value of that constant deduced from previous atomistic simulation studies of clean surfaces. Since the electrode potential affects exclusively the surface, our observations provide conclusive evidence for the impact of local stiffness variation at surfaces on the effective elastic response of nanostructures.

Keywords: Surface excess elasticity, Surface stress, Nanoporous, Dynamic mechanical analysis, Nanostructures

1. Introduction

Solid surfaces interact with the underlying bulk via a capillary force, the surface stress, which takes on a finite value in the strain-free state of the surface [1]. The surface-stress variation with strain defines surface excess elastic moduli [2] which, for nanoscale objects or nanomaterials, entail a size-dependent effective elastic response of the entire structure. This is of interest whenever nanoscale objects undergo controlled elastic deformation, as in interpenetrating phase nanocomposites [3] or high-frequency microelectromechanical resonators [4], or when capillary forces define the materials function, as in cantilever-based sensors [5] or nanoporous metal actuators [6]. In spite of the considerable impact of surface excess elasticity, there is as yet no confirmed experimental picture of magnitude or even sign – stiffening or softening – of the effect. Here, we report experiments on the effective elastic response of nanoporous gold, a material with an extremely large specific surface area. Rather than seeking absolute values of the surface excess elastic modulus, our study focuses on reversible changes of the material’s effective elastic response when the state of the surfaces is reversibly tuned. As we find large changes in the materials behavior, our experiments conclusively demonstrate the impact of surface excess elasticity on the elastic response of nanomaterials. We also point out that our approach yields a material with electrically tunable stiffness and with, thereby, a novel type of functionality.

Continuum theory relates the elastic response of the surface to the various deformation measures, such as the projection of the bulk strain onto the local tangent plane at the surface [2, 7]. Atomistic computation using embedded atom method (EAM) potentials generally indicates an enhanced compliance of transition metal surfaces [8, 9], while density functional theory (DFT) also allows for local stiffening, depending on the electronic structure of the surface [10]. Studies in continuum mechanics, as reviewed in [11], have adopted the EAM results in predicting the size-dependent effective elastic response for nanoscale objects. Yet, the applicability of EAM potentials for the problem has not been confirmed, and experimental verification is required. So far, the results of experiments with nanobeams and nanowires remain contradictory. With decreasing size, both stiffening (Pb, Ag, Pd, ZnO) [12–15] and softening (Si, Cr) [16, 17] have been reported in different materials. There are also experiments showing no size-dependence [15]. However, the implications for the surface elasticity may often be questioned, since either the materials investigated were relatively large (\geq 50 \text{ nm} in size) [18–20] and hence poorly suited to probe surface behavior, or the accuracies of modulus and/or geometry measurements were low [21]. Furthermore, it has been
demonstrated that higher order elasticity in the bulk of nanoporous gold can be made to undergo self-similar structural coarsening while solid fraction and structural topology remain invariant [22]. This provides a meaningful way of analyzing the size-dependent elastic response. Relevant experimental data, as compiled in Refs. [24, 26, 28], typically find little or no systematic dependence on structural coarsening while solid fraction and structural topology remain invariant [22]. This provides a meaningful way of analyzing the size-dependent elastic response. Relevant experimental data, as compiled in Refs. [24, 26, 28], typically find little or no systematic dependence on structure, size, yet two studies report a rise of the stiffness when the ligament diameter drops to < 10 nm [28, 30]. This latter observation would indicate a positive excess elastic constant, in contrast to the often cited simulation results [8]. In view of the considerable uncertainties in such studies, our approach works with one and the same, stationary microstructure and explores the reversible variation of the elastic response as the surface state is cyclically varied. This has parallels to studies of the surface stress, where experiments on absolute values are scarce but where the variation during adsorption from gas and during electroadsorption or capacitive charging in electrolyte has been accurately measured [31–33]. Specifically, we exploit the precise control of the surface states through electric potentials that can be achieved at the metal-electrolyte interface.

2. Phenomenological description of excess elasticity

As a background for discussing the mechanics of the solid/electrolyte interface we briefly expose the phenomenological approach, basing the notation on Ref. [34]. The impact of the surface on the energetics of elastic deformation is described by the surface free energy function \(\psi(q, e) \) with the state variables \(e \), the relative change in area by elastic strain, and \(q \), the superficial charge density.

The energy-conjugate variables to \(e \) and \(q \) are the scalar surface stress, \(f \), and the electrode potential, \(E \), so that \(d\psi = Edq + fde \). The restriction to the scalar variables \(e \) and \(f \) is appropriate for surfaces with at least threefold rotational symmetry [1], such as the dense-packed surfaces of face-centered cubic metals in the limit of small strain.

The associated surface excess elastic constant is then

\[
C = \frac{\partial^2 \psi}{\partial e \partial q} = \frac{df}{d\psi} \bigg|_q.
\] (1)

Even isotropic surfaces require an additional excess elastic constant that describes the development of surface stress anisotropy in response to in-plane shear. Yet, the documented experimental signatures of surface stress relate practically exclusively to the scalar parameter \(f \), while information on surface stress anisotropy has been resolved only in few exceptional cases (such as Ref. [35] for Si). This prompts us to ignore excess shear stiffness and focus on area strain and the associated parameters \(f \) and \(C \) alone.

Two other derivatives of \(\psi \) are of relevance to the mechanics of electrodes. The electrocapillary coupling coefficient \(\varsigma \) [34] describes how \(f \) varies when the surface is charged, \(\varsigma = \partial^2 \psi/\partial e \partial q = (df/d\psi)|_e \), and one may, in an analogous way, introduce an electro-elastic coupling parameter, \(\lambda \), to describe elastic modulus variation with the surface charge:

\[
\lambda = \frac{\partial^4 \psi}{\partial q^2 \partial e} = \frac{dC}{d\psi} \bigg|_e.
\] (2)

It has been pointed out that the impact of capillarity on the effective stiffness of nanostructures may be parameterized by a simple geometric measure that rescales the dimensions of the nanoscale object [36]. In an attempt at illustrating the magnitude of \(C \), we adopt that concept to our notation. To this end, we consider the straining of an elastically isotropic slab, representing a square patch of thin film of edge length \(l \) and thickness \(t \), by in-plane forces \(F_1 \) and \(F_2 \) attached to two opposite cross-sectional faces (Fig. 1).

The absence of capillary effects, simple linear elasticity of isotropic media relates the area strain \(e \) to the sum of the forces, \(F = F_1 + F_2 \) via \(F = ltBe \), where \(B \) denotes the biaxial modulus of the bulk of the film, \(B = Y/(1 - \nu) \) with \(Y \), Young’s modulus and \(\nu \), Poisson’s ratio of the bulk. Adding surface excess elasticity,

![Figure 1: Schema of a cuboid slab, representing a patch of thin film of area \(l \times l \) and thickness \(t \), loaded on two opposite cross-sectional faces by the forces \(F_1 \) and \(F_2 \).](image-url)
and measuring \(\epsilon \) relative to a reference state of the film at \(F = 0 \), we have

\[
F = ltBe + 2\{ Ce, \tag{3}
\]

where the extra term accounts for the change in the surface stress that acts along the edges bounding the upper and lower (hence the factor 2) surfaces. Eq. (3) may equivalently be written as

\[
F = l(t + 2\tau)Be, \tag{4}
\]

where \(\tau \) is defined as

\[
\tau = C/B. \tag{5}
\]

By its definition through Eq. (5), \(\tau \) is simply a parametrization of the surface excess elastic constant \(C \). Eq. (4) implies an intuitive geometric meaning of \(\tau \). That parameter represents an effective thickening (for \(C > 0 \)) or thinning (\(C < 0 \)) of the effective film cross section in order to match the actual elastic response of the film of thickness \(t \) (and with capillarity) by that of a thicker or thinner equivalent film that has no capillarity. The argument applies to more general geometries, and it implies that by working with \(\tau \) instead of \(C \) one replaces the elastic constant of the surface with an apparent excess constant (or an apparent specific excess volume) as the materials parameter. Even though the above exercise appears trivial, we shall use it profitably in the discussion of our experimental results.

We emphasize that the apparent excess thickness \(\tau \) is merely a formal parametrization of the excess stiffness; \(\tau \) has no relation to the actual inward or outward relaxation at the surface or to the physical specific excess volume, which are defined separately (see Refs. [34, 37]).

The estimates in Ref. [36], based on EAM-potentials, put the value of \(\tau \) for the example of Al and Si surfaces in the order of \(-100 \) pm. For gold, with isotropic (polycrystalline) elastic constants \(Y = 78 \) GPa and \(\nu = 0.44 \), Eq. (5) would associate that \(\tau \)-value with \(C = -14 \) N/m.

3. Experimental procedure

The synthesis of np-Au used procedures identical to Ref. [38] except were explicitly stated. In brief, ingots of the master alloy of Au25Ag75 were produced by arc melting, homogenized in a high-temperature anneal, shaped by wire drawing and cutting with a wire saw, annealed for recovery and then electrochemically dealloyed at ambient temperature using the potential 0.75 V in 1 M HClO4. All potentials in this work are measured and quoted relative to the Ag/AgCl (pseudo) reference electrode in the same electrolyte, for which we measure +0.515 V vs. the standard hydrogen electrode (SHE).

In order to remove residual Ag, the dealloying was followed by polarization at potential 1.1 V in a fresh electrolyte until the current dropped below 10 \(\mu \)A. The as-dealloyed samples then underwent 20 potential cycles in the interval \(-0.5 \) to 1.0 V (scan rate 5 mV/s) to remove surface and subsurface oxides. The residual silver content, as determined by energy-dispersive x-ray spectroscopy in the scanning electron microscope (SEM) was then < 1 at.%. Subsequently, the samples were repeatedly rinsed with ultrapure water (18 MΩ) and dried in Ar flow for several days. Samples were cylindrical, 1.17 – 1.20 mm in diameter and 1.90 – 2.10 mm in length.

Ligament size was determined by evaluating diameters in scanning electron micrographs. Taking into account the samples' mass and dimensions after dealloying and drying, the solid volume fraction of the as-prepared samples was \(\phi = 0.26 \pm 0.01 \).

Compression tests on dry samples were run at room temperature using a Zwick Z010 TN testing frame with a calibrated load cell, with the deformation monitored by a laser speckle extensometer (Zwick laserXtens) focusing on the load surfaces. The engineering strain rate was held constant at \(10^{-4} \) s\(^{-1}\). Unload/load segments from different prestrains, at the same strain rate, served for determining the effective (macroscopic) Young's modulus, \(Y_{\text{eff}} \).

Dynamic mechanical analysis (DMA) in compression mode was carried out for quantifying changes in \(Y_{\text{eff}} \) in response to potential change. Using a DMA 242C (Netzsch), we applied cyclic loading at frequency 1 Hz under strain control with peak-to-peak amplitude \(\epsilon = 0.76\% \), superimposed to a static load of 2.1 N (corresponding to a static effective macroscopic stress of 1.9 MPa). A glass cuvette (Hellma) served as the in situ electrochemical cell while the load was applied via a quartz pushrod. All in situ experiments were conducted in 1 M HClO4 (Suprapur, Merck). A larger sample of np-Au formed the counter electrode. The potential was controlled via a potentiostat (PGSTAT 302N, Metrohm). The electrode charge was obtained by integrating the current.

4. Results

4.1. Compression tests

Np-Au with a ligament size of \(L = 40 \pm 5 \) nm was used throughout the present study (inset of Fig. 2a). We first inspect the elastic properties of dry samples in compression. The true stress–true strain curve of Fig. 2a is characterized by immediate plasticity even at the lowest strain, with no distinguishable yield point. This agrees with previous results for compression of macroscopic np-Au samples of similar ligament diameter [3, 39]. The analysis of the unload/load segments confirms the pronounced increase in the stiffness as the plastic deformation proceeds (Fig. 2b) that has been pointed out in Ref. [29].

4.2. Dynamic mechanical analysis

Owing to their large compliance, which is similar to that of polymers, the porous metal samples are well compatible with the load range of a DMA. Prior to DMA experiments, samples were predeformed to a true strain in
Figure 2: Compression behavior of np-Au: a) load-unload stress-strain diagram for engineering strain rate 9.5×10^{-5} s$^{-1}$. Inset: scanning electron micrograph of nanoporous microstructure. b) Variation of effective Young’s modulus, Y^{eff}, as determined from the load/unload segments, with strain (circles). Also shown (squares) is Y^{eff} as measured independently in the dynamic mechanical analyzer, using prestrained samples. Both data sets are seen to be consistent. Inset: photograph of typical sample.

The DMA experiment worked with the pore space of the np-Au wetted by 1 M HClO$_4$ as a weakly adsorbing aqueous electrolyte. The effective macroscopic stiffness values obtained by DMA on several samples are shown in Fig. 2b for comparison with the results from the unload/load cycles during the conventional compression test. It is apparent that the two data sets for Y^{eff} are consistent. This supports the validity of the DMA data. Below we shall focus on studies probing the relative changes in the elastic response. These relative changes can be sensitively detected, irrespective of the degree of uncertainty in the absolute values.

The DMA experiment worked with the pore space of the np-Au wetted by 1 M HClO$_4$ as a weakly adsorbing aqueous electrolyte. The metal network was wired as the working electrode and the polarization of the metal-electrolyte interface controlled by a potentiostat. This in situ environmental control allowed us to probe changes in the elastic behavior of np-Au in response to varying the state of the surface. The approach was similar to that for electrochemical actuation studies by dilatometry [40]. Note the distinct difference between the electric and mechanical cycles. As each cyclic voltammogram took 1400 s, the corresponding frequency was < 1 mHz, more than three orders of magnitude slower than the mechanical cycles at 1 Hz. Therefore, each mechanical cycle was approximately at constant potential, and the mechanical and electric changes could be reliably separated.

Fig. 3 summarizes results of the in situ experiment, starting out in part a) with a cyclic voltammogram (CV) of electrode current versus electrode potential during a cyclic potential scan at 2 mV/s. The CV exhibits the well-known features of gold in acidic solutions, with oxygen species electrosorption peaks at the positive end and an extended capacitive regime at lesser potentials. Electrochemical studies of gold surfaces have established that the electrosorption under the present conditions is initiated by the deposition of 1 atomic monolayer of OH (peak at $\approx +0.8$ V), followed by gradual desorption of the hydrogen at more positive E [41]. The adsorbate layer is reversibly desorbed during the negative-going scan. At +0.425 V, the open circuit potential of as-prepared samples was that of a clean surface, confirming that the reduction treatment during synthesis removed all superficial oxide. We also note that the potential of zero charge (pzc) of Au in 1 M HClO$_4$ is +50 mV on our potential scale (or 565 mV vs. SHE [42]), so that the scan in the capacitive regime covers regions of both, positive and negative surface charge.

Fig. 3b reports various aspects of the mechanical characterization, which was measured simultaneously with the cyclic voltammograms. The length change, Δl, represents a variation of the mean sample length, averaged over each of the fast load cycles. It is seen that Δl undergoes a cyclic variation, with the length a monotonous function of the potential. This behavior, as well as the peak-to-peak amplitude of 0.063% \pm 0.004%, is consistent with previous reports on the potential-induced strain of np-Au [40, 43]. The cyclic strain responds to a variation in the surface stress when the electrode is charged, and the expansion with increasing potential is consistent with a negative value of the electrocapillary coupling parameter ς for Au surfaces in the potential regime of our experiment [33]. In view of the reported impact of higher order bulk elasticity on the elastic response of nanowires at strains of several % [14] it is significant that the surface-induced strain amplitude is quite small here, so that its consequences for the bulk elastic constants may be ignored in our experiments.

The key observation in Fig. 3b is that the effective storage and loss moduli, which we denote by Y' and Y'' for brevity, exhibit a large cyclic variation. Most remarkable is a strong increase of Y' during oxygen electrosorption around the positive potential vertex. At the same time, Y'' decreases to less than half its clean-surface value. A second maximum in Y' is observed at the negative potential vertex, while no significant feature in Y'' is resolved in that region. The observations suggest that both positive electric charging during oxygen electrosorption and negative charging during capacitive processes enhance the
stiffness. Note that this behavior is qualitatively different from the monotonous potential-dependence of the length change. At any potential, the loss modulus remains small in comparison to the storage modulus, indicating a nearly ideal elastic behavior.

Superimposed to the cyclic changes is a slow upward drift of Y''. This stiffening coincides with an irreversible densification, with a shrinkage $\Delta l \sim -4 \mu m$ or -0.2% of the initial length after the 7 cycles. Similar behavior is typically observed during potential cycles with nanoporous metals, and may arise from slow plastic deformation under the action of the surface stress [6]. Since the cyclic changes in length and elastic response remain invariant, the impact of the densification on the material’s behavior of interest appears negligible.

Figure 3: Results of dynamic mechanical analysis measured in situ during 7 successive cyclic scans of the electrode potential E between -0.4 and $+1$ V, using 1 M HClO$_4$ as the electrolyte. a) Electrochemical characterization, represented by cyclic voltammograms (CVs) of current I versus electrode potential E at scan rate 2 mV/s, with scan direction indicated by arrows. Potential of zero charge (pzc) and open circuit potential (ocp) are also indicated. b) Mechanical characterization recorded simultaneously with the CVs, with variation of E with time indicated by blue line and upper left ordinate: length change (black, upper right ordinate), storage modulus Y'' (red, lower left ordinate), and loss modulus Y'' (green, lower right ordinate). Vertical lines mark vertex points of CV for one exemplary cycle.

Figure 4: Relative variation of the storage modulus $\Delta Y''/Y''_0$ of np-Au electrode at two distinguishable surface states: a) $\Delta Y''/Y''_0$ vs. E in capacitive double-layer regime and b) charge associated with charging and discharging processes of electrical double layer. d) $\Delta Y''/Y''_0$ vs. E in adsorption-desorption region and e) corresponding charge transfer attributed to the oxidation and reduction reactions. c) and f) $\Delta Y''$ as a function of charge Q for both states. $\Delta Y'' = f(Q)$ exhibits a reasonably linear behavior with slopes -413.62 ± 43.41 MPa/C and 147.08 ± 2.99 MPa/C. Electrolyte is 1 M HClO$_4$, scan rate is 2 mV/s. Arrows indicate the direction of scan.

Additional in situ DMA measurements explore two separate potential windows from the scans of Fig. 3, namely capacitive polarization ($E = -0.4...0.4$ V) and oxygen species electrosorption ($E = 0.4...1.0$ V). Fig. 4 summarizes the results. Part d) of Fig. 4 shows that OH adsorption leads to an increase in Y'', in direct proportion to the electrode charge, Q, as displayed in Fig. 4e. Backward (cathodic) scanning initially leaves Y'' constant with the adsorbate layer remaining in place. Further potential reduction leads to oxygen desorption, with the stiffness reverting to its initial, lower value. In fact, a linear and hysteresis-free relation is obtained when plotting Y'' versus Q for both scan directions (Fig. 4f). We have repeated this experiment on a set of five separate samples from different batches and found highly consistent results, with the relative change in storage modulus of $7.8 \pm 0.9\%$.

The second potential window inspects the capacitive regime. The potential scans here reveal a linear variation of the storage modulus with potential (Fig. 4a) and charge (Fig. 4b and 4c). As compared to oxygen electrosorption, the slope during capacitive charging is of inverse sign, with
negative charge or surface excess of electrons stiffening the material. The overall variation in \(Y' \), again determined independently with five samples, here attained 1.6 \(\pm \) 0.1%.

5. Discussion

In relation to the effective Young’s modulus we note that our result for \(Y^{\text{eff}} \) at the onset of deformation is at least one order of magnitude lower than what was deduced in several previous reports on nanoporous gold. Experiments using nanoindentation, film bending, and microtensile or compression tests found \(Y^{\text{eff}} \) in the range 3 – 13 GPa for ligament sizes of 20 – 40 nm [30, 44, 45]. It is therefore significant that we obtained consistent results with a series of samples from different batches. These samples are of the crack-free type that our earlier studies have shown to be perfectly deformable in compression [38, 39] and to yield strong and ductile nanocomposites when infiltrated with polymer [3]. We therefore rule out structural imperfections such as native cracks as a possible origin of the large compliance. A possible explanation attributes the higher stiffness found by other authors to densification during loading (in the case of nanoindentation) or synthesis (thin films). Compared to other methods, our conventional mechanical testing of nm-sized samples appears a conservative and reliable method, supporting our result.

As the most important aspect of the in situ DMA data we advertise the implications for the surface excess elasticity. As the electrochemical cycles affect the material exclusively at its surface, the changes in the effective elastic response are forcefully the signature of a variation in \(C \). Our results therefore conclusively establish that local changes in the stiffness at surfaces can significantly affect the macroscopic elastic response of nanomaterials. The significance of this observation rests specifically on its nature as a reversible modulation of the elastic response of a given sample. While the effective stiffness varies, the geometry of the microstructure remains invariant. This rules out artifacts from incorrect or imprecise reference data, which can arise when surface contributions are to be derived from absolute values of the elastic response of a nanomaterial or nanoscale object. In such instances, precise data for geometric dimensions, for crystallographic orientation and for the set of elastic coefficients of the material are crucial and not in all instances available. This complication is avoided in our approach.

Our phenomenological description of surface excess elasticity has introduced the parameters \(\varsigma \) and \(\lambda \), which quantify, respectively, the charge-dependencies of the surface stress and of the surface excess elastic constant \(C \). The observations on potential-induced strain in Fig. 3b confirm the established finding that \(\varsigma \) of clean Au surfaces is of same (negative) sign for capacitive charging and for oxygen species electrosorption [33, 40]. By contrast, the data for \(Y^{\text{eff}} \) vs. \(q \) in Fig. 4c and 4f imply that \(\lambda \) takes on different signs, negative for capacitive surface charging and positive during oxygen species electrosorption.

Going beyond the observations on the sign and establishing a precise link between \(\lambda \) and the variation in \(Y^{\text{eff}} \) requires continuum theory for \(i \) the elasticity of solid networks with realistic geometry and \(ii \) the impact of surface excess elasticity on networks with a nanoscale structure size. Research on issue \(i \) is ongoing with increasingly detailed models [29, 46]; yet predictions with the required precision of much better than the magnitude of our effect (2 – 8%) are as yet unavailable. Issue \(ii \) has seen computations restricted to model geometries [47, 48] that do not approximate the microstructure of np-Au, and even the simpler problem of predicting the response of the strain to the surface stress is afflicted with uncertainties of several 10% [43].

In view of the above concerns, we propose an order-of-magnitude estimate of the change in \(C \). The elastic deformation of not too dense network solids, such as nanoporous gold, is dominated by the bending deformation of the struts or ligaments [29]. In other words, Bernoulli beam theory [49] applies, and the relevant geometry parameter for the bending stiffness is the second moment of inertia of the ligaments, \(I = \frac{1}{4} \pi r^4 \) with \(r \) a characteristic ligament radius. In the spirit of Eqs. (4) and (5), the change in excess elasticity may be represented by an apparent small variation in ligament radius, which may then be identified with a change in the apparent surface specific excess volume \(\tau \). We thus take \(\delta I = (dI/dr) \delta r \), which implies that the relative change in bending stiffness agrees with

\[
\frac{\delta I}{I} = \frac{4}{r} \delta \tau .
\]

Assuming linear elasticity, the relative change in stiffness of the ligament as the single constitutive structural element agrees with the relative change of the macroscopic stiffness. Therefore, the relative changes in \(Y^{\text{eff}} \) by 7.8 and 1.6% in the two potential regions investigated correspond to numerically identical relative changes in \(I \). With \(r \approx 22 \text{ nm} \) (half the ligament diameter), and using Eq. (6), we obtain for \(\delta \tau \) the values 430 and 88 pm. This compares to estimates for the absolute value of \(\tau \) in the order of 100 pm [36]. Eq. (5) then implies changes in \(C \) in our experiments by 60 N/m (electrosorption) and 12 N/m (capacitive charging). For comparison, the uniaxial in-plane excess surface stiffness of the embedded-atom-potential approximation of Au(111) is \(-8.0 \text{ N/m} \) [8]. Hence, the observed changes in \(C \) of our study are similar or even much larger than reported estimates of the absolute values of the surface excess stiffness at clean surfaces. This underlines the significance of the surface adsorbate coverage or electric polarization for the surface excess elasticity.

In relation to the variation in \(\tau \) we also note that the lattice parameter of Au is \(\sim 408 \text{ pm} \) and the spacing between dense-packed layers is \(d_{111} = 235 \text{ pm} \). In other words, in order to account for the effective stiffening of np-Au samples during adsorption of 1 atomic monolayer
of OH by the hypothetical process of simply adding extra Au on the surface, one would need to add a layer with the thickness of more than a full lattice parameter or nearly two dense-packed layers of Au. These are huge effects, for instance in comparison to the actual change in excess volume during capacitive charging of Au in electrolyte, which is in the order of only 1 pm [50, 51].

In a quite general sense, the variation of the surface excess elasticity may be understood as the consequence of reversible changes of the bonding strength between the atoms at the surface. In the case of capacitive charging, the observed sign of λ is consistent with a simple-minded picture in which excess electrons at a negatively charged surface will partly leak into the bonding regions of electron density in-between the surface layer of atoms [52]. This would be expected to enhance both the surface stress and the surface excess stiffness; in both instances the expectation agrees with our observation. Yet, the argument fails to explain the stiffening in the case of oxygen species electro sorption, where charge is expected to be transferred from the metal to the oxygen, leaving the surface depleted in electrons. The bond forces between the adsorbed OH and the Au might contribute to the surface stiffness, yet there are good arguments for ignoring such forces and attributing the impact of anion adsorption on noble metal electrode surfaces exclusively to the changes in the bonding between the metal atoms [32, 53, 54]. In our view, the state of the art on the capillarity of solids does not afford a simple explanation for the considerable stiffening of the Au surface during oxygen species electro sorption.

The almost complete suppression of the loss modulus when oxygen species adsorb is remarkable. This would be consistent with a scenario where surface defects (step edges, kinks) rearrange in response to a variation of the heterogeneous strain fields on the surface. Upon oxygen adsorption, the rearrangement might be quenched along with the surface mobility of gold. Alternatively, the dissipative loss for the nominally clean surface might arise from the rearrangement of adatoms in varying strain fields at the surface, consistent with the reported trend for a decoration of strain fields by adatoms [55]. Weakly adsorbed anions such as sulfate are present at these potentials [56], and sulfate might indeed be an impurity in the electrolyte. Oxygen species are known to displace the anions from the surface [56]; since the oxygen is more strongly bound it may not rearrange in varying stress fields at the surface, thereby explaining the reduced loss.

6. Conclusions

In conclusion, our experiments demonstrate that the effective elastic modulus of np-Au in contact with an electrolyte can be controlled by the electrode potential. Adsorption of oxygen species as well as a simple excess of electrons in the surface are both found to reversibly increase the macroscopic stiffness. The relative changes in macroscopic stiffness for the two processes reach $\sim 8\%$ and $\sim 2\%$, respectively. In relation to the excess elastic response of the surface, these findings imply changes which are considerably larger than the absolute values that have been suggested by atomistic simulation using embedded atom potentials. Our findings conclusively establish the important impact of surface excess elasticity on the mechanical behavior of nanomaterials. They also show that this behavior is crucially dependent on the state of the surface, clean or adsorbate covered. The strong impact of small quantities of adsorbate may explain some of the discrepancies in earlier attempts to explore surface excess elasticity, in which the adsorbate coverage was not characterized.

As a direct consequence of the importance of surface elasticity, our findings also reveal a novel functionality of nanoporous metals, namely their electrochemically tunable stiffness. This supports the notion of modification of properties of nanometer-sized structures by means of electric signals [38, 57, 58].

Acknowledgments

This work was supported by Deutsche Forschungsgemeinschaft through grant WE1424/14-1.

References

