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Abstract

The Green–Naghdi theory of heat conduction enjoys great research interest
because it is developed in a very general way and because it is capable of
accounting for thermal pulse transmission in a very general manner. In this
paper, that theory is revisited, and some questions it leaves open are pointed
out.

1 Introduction

Fourier’s constitutive equation for the heat flux is well known; usually, heat
conduction is based on this law. Most engineering applications are de-
scribed accurately by the ensuing parabolic heat equation, but material be-
havior at cryogenic temperatures can completely differ from that at room
temperature. One of the properties that might change is the way heat prop-
agates. Predictions of the classical theory may diverge conspicuously from
experimental data. Moreover, Fourier’s law implies the unphysical prop-
erty that temperature perturbations propagate at infinite speed. In order to
overcome this drawback, intensive research activities have led to modified
theories of heat conduction which in general are hyperbolic. The detec-
tion of second sound1 has intensified the development of non-classical heat
conduction theories.

1 The phenomenon of second sound refers to the fact that wave-like energy transport
takes place, i.e., heat propagates under the form of thermal waves. Until now, second
sound in solids has been observed in very pure crystals in the vicinity of the local :
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2 S. Bargmann

A generalized theory was introduced by Green and Naghdi [28] and a
number of studies devoted to its investigation have already been released.
Although the papers on non-classical thermoelasticity by Green and Naghdi
were published shortly before their deaths, today they are the most cited
publications – more than 300 citations (according to Web of Science) of
their theory of thermoelasticity without energy dissipation [30], with a
steadily increasing number of citations each year.

The Green–Naghdi approach is capable of accounting for thermal pulse
transmission and is embedded in rational thermodynamics. The theory is
subdivided into three types, labeled Types I, II, and III. A wide range of heat
flow problems can be modeled. The novelty of their approach is the intro-
duction of the so-called thermal displacement, a field whose time derivative
is the empirical temperature.

The non-classical Type II (Fourier’s classical theory (Type I) is contained
as well) exhibits the outstanding property of being non-dissipative. In other
words, heat conduction no longer necessarily implies internal dissipation.
The resulting heat equation is hyperbolic. In particular, thermal wave prop-
agation at finite speed is incorporated. Furthermore, the entropy flux vector
is determined in terms of the same potential as the mechanical stress and is
proportional to the thermal displacement gradient.

Type III is a general extension and is capable of modeling according the
classical Fourier theory as well as undamped thermal wave propagation –
and, in addition, many more phenomena.

Further physical, mathematical, and numerical studies are still needed to
clarify the applicability, the secrets, the capabilities, as well as the limits
of the Green–Naghdi theory. This contribution is in this spirit and aims
at highlighting the distinct features of the Green–Naghdi approach and ad-
dressing open questions.

2 Green and Naghdi’s theory of thermoelasticity

The basic feature of Green and Naghdi [28] is the definition of the thermal
displacement ˛. It is the time integral over the empirical temperature T :

˛.X ; t / WD

Z t

t0

T .X ; t/ dtC ˛0: (1)

thermal conductivity maximum at cryogenic temperatures [5, 34, 40, 59, 66]. Fur-
thermore, a wavy nature of heat propagation has been detected in superfluids and in
certain inhomogeneous materials [62].
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Remarks on the Green–Naghdi theory of heat conduction 3

Here, X 2 R3 denotes the position and t 2 R the time; ˛0 is the initial
value of the thermal displacement ˛ at the reference time t0; P̨ D T holds.

It is well known that the classical form of the heat equation for a station-
ary rigid heat conductor reads

�c PT D � div q C r: (2)

Here, the constant c is the specific heat at constant pressure, t is the time,
and q denotes the heat flux vector. r is the heat supplied to the body by the
external world. Furthermore, the standard assumption q D �h relating the
heat flux vector q to the entropy flux vector h holds. In the classical theory,
Eq. (2) is retrieved from the energy balance.

Instead of using the energy balance as a basis, Green and Naghdi base
their theory on the entropy balance. At a later point, they substitute the en-
ergy balance into the entropy balance. Thus, the role of entropy and energy
is in a sense switched with respect to the classical approach. The Green–
Naghdi theory is subdivided into three different types of heat conduction,
which rely on the introduction of three different state spaces. In the case of
Type I, the constitutive quantities are assumed to depend on the temperature
T and on its gradient rT . The free energy  is assumed to be standard,

 1 D  standard; (3)

where examples for a standard thermal free energy are, e.g.,  standard1 D

cŒT � T lnT � or  standard2 D �cŒT � T0�
2=Œ2T0�. The second one results

from the Taylor expansion of the first and is used by Green and Naghdi [28]
for linearization in order to obtain a Fourier type heat equation. The heat
flux follows Fourier’s constitutive equation, i.e.,

q1 D ��1rT: (4)

Here, �1 represents the thermal conductivity and Eq. (4) leads to a parabolic
temperature equation,

�c PT D div.�1rT /C r: (5)

Green and Naghdi’s approach differs significantly from the classical way
in the derivation of the heat equations. Usually, the heat equation is derived
via the energy balance. In turn, Green and Naghdi use the entropy balance
as a basis, and elevate it to the most important balance equation in their
theory. As a result, the heat equations of the classical and of the Type I
theory look the same from the mathematical point of view. However, the
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4 S. Bargmann

physical meaning is not the same. In the classical approach, the heat equa-
tion is a consequence of the energy equation, whereas in the Green–Naghdi
approach it is a consequence of the entropy equation.

A point in the state space of Type II is a triplet consisting of the tempera-
ture T , the thermal displacement ˛, and the thermal displacement gradient
r˛. The free energy  is the sum of a standard and a non-standard contri-
bution:

 2 D  standard1 C
1

2
�2r˛ � r˛: (6)

The constitutive relation for the entropy flux h is given by

h2 D �
@ 

@r˛
D ��2r˛: (7)

The resulting hyperbolic heat equation,

�c PT D �c R̨ D div.�2r˛/C r; (8)

represents a wave equation for r D 0 and constant �2 > 0. Temperature is
propagated without damping at a wave speed of

p
�2=Œ�c�.

The Type III theory is the most general one. The state space of Type III
consists of ˛, T , r˛, and rT . In the case of Type III, the free energy
function is assumed to be

 3 D  standard1 C
�3

2
r˛ � r˛ (9)

(see Ref. [29]), and the heat flux is expressed as follows:

q3 D ��3r˛ � �4rT: (10)

The heat equation reads

�c PT D �c R̨ D div.�3r˛/C div.�4rT /C r: (11)

3 Distinct features of the Green–Naghdi theory

Green and Naghdi derived their theory in a very general and thermodynam-
ically consistent way. After formulating the balance laws, applying ma-
terial modeling principles, exploiting the second law of thermodynamics,
and formulating constitutive assumptions, the governing equations were
derived.
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Remarks on the Green–Naghdi theory of heat conduction 5

Probably the most distinct and outstanding feature is the theory of Type
II, which in general (see also Section 4.7) excludes internal dissipation.
As a consequence, it is possible to arrive at a physically meaningful varia-
tional formulation [58], whereas classical thermoelasticity is not deducible
from a variational principle. The governing equations of Type II corre-
spond to the Euler–Lagrange equations of thermoelasticity and the latter
lead to the solutions of the unknown mechanical and thermal fields. In this
context, the existence of a potential for different modeling quantities is the
key characteristic.

This construction of Type II theory leads to the outstanding property that
the entropy flux h (and, thus, the heat flux q/ is determined by the free
energy. Consequently, the entropy �, the entropy flux h and the mechanical
stress tensor (in the case of a coupled theory) are determined by the same
potential. This is elegant from a material modeling point of view because
all relevant modeling quantities are determined by one and the same scalar
functional. In the classical theory, constitutive equations have to be stated
for both the free energy and the heat flux. The constitutive relation for the
Type II heat flux naturally follows from the Green–Naghdi theory.

Furthermore, the Green–Naghdi theory overcomes the drawback of
Fourier’s theory of infinite propagation speed. In Green–Naghdi thermo-
elasticity, heat pulses are permitted to travel as thermal waves of finite
speed.

4 Remarks

4.1 Entropy balance

When it comes to entropy, it is possible to define an entropy inequality or an
entropy balance including a non-negative internal entropy production. The
latter path was chosen by Green and Naghdi [28]. It is often misinterpreted
by several authors (due to clumsy wording by Green and Naghdi), who
state that Green and Naghdi do not make use of the second law of thermo-
dynamics. However, they do assume a non-negative entropy production,
i.e., they do apply the second law.

Green and Naghdi postulated the entropy balance for the first time in
their work from 1977 [27], i.e., much earlier than their theory of thermo-
elasticity; as noted by them in [30], with only limited motivation back
then. In Green and Naghdi’s theory of thermoelasticity, the entropy bal-
ance in combination with the second law of thermodynamics is used to ob-
tain restrictions on the constitutive quantities. Precisely, they require that
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6 S. Bargmann

the reduced energy equation holds as an identity for all thermomechanical
processes. As noted in [30], their procedure differs significantly from the
common Clausius–Duhem approach, which uses an entropy imbalance.

4.2 Entropy – heat flux relation q D �h

In all three cases, Green and Naghdi apply the assumption that the entropy
flux h is equal to q=� . � is an absolute temperature for some materials,
but not necessarily for all; see Section 4.4. The relationship q D �h is
not universally true.2 Due to the introduction of the thermal displacement
˛ the relationship cannot be transferred directly to the non-classical theory.
Green and Naghdi are aware of this fact [28, Section 10] but do not provide
the proof that the assumption q D �h holds for all three cases of their
theory. The contribution [12] closes this gap for the important class of
isotropic materials. Furthermore, it is shown in [12] that in most cases �
can be identified with the absolute temperature.

4.3 The thermal displacement ˛

The thermal displacement ˛ is a scalar macroscopic quantity. As stated by
Green and Naghdi [28], it can be regarded as representing, on the molecular
scale, some “mean” thermal displacement magnitude. ˛ and r˛ are taken
as independent constitutive variables.

Green and Naghdi were not the first to come up with the idea of a variable
like the thermal displacement. Helmholtz [35] introduces a Lagrangian co-
ordinate that exists only through its time derivative. In 1921, von Laue [50]
uses the concept of thermacy (later on, van Dantzig [22] called it thermasy),
which equals the thermal displacement, the only difference being the sign
(thermacyD �˛).

A similar idea has also been utilized by Gurtin and Pipkin [33], but in a
way different from Green and Naghdi’s. Although their construction yields
a heat flux q which is determined by the functional for the free energy  ,
the latter does not play the role of a potential as is the case in the theory
of Green and Naghdi. Gurtin and Pipkin’s [33] constitutive relation for the
heat flux reads

q D �

Z 1

0

a.s/r�.t � s/ ds; (12)

2 The possible inappropriateness of the Clausius–Duhem approach in the case of mix-
tures, polar continua, structured continua, and coupled field gradient theories is men-
tioned in, e.g., Refs. [37,48,86], whose authors suggest exploiting the entropy princi-
ple according to Müller and Liu [54, 64], as it is the most general approach.
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Remarks on the Green–Naghdi theory of heat conduction 7

where a.s/ is a differentiable scalar-valued function referred to as the heat-
flux relaxation function.

As mentioned by Podio-Guidugli [70], one can think of the thermal dis-
placement ˛ as a fast variable in the sense that only its time derivative, i.e.
the temperature T , is observable on the macroscopic time scale. Kalpakides
and Dascalu [45] interpret ˛ as a continuous representation of the lattice vi-
bration and therefore as a phenomenon of quantum-mechanical origin. Van
Dantzig [22] interprets ˛ as a thermal time.

4.4 The absolute temperature � in the Green–Naghdi theory

Green and Naghdi [28] define ˛ via the empirical temperature T . Most
researchers utilize the same assumption. However, some (e.g., Ref. [43])
assume that the thermal displacement is a function of the absolute temper-
ature, as done in Refs. [22, 33]. In most cases, both assumptions lead to
results which only differ by a proportionality factor.

In Ref. [28] Green and Naghdi define the temperature � in terms of
the empirical temperature T and the thermal displacement ˛, i.e., � WD
�.T; ˛/. � is an absolute temperature for some materials, but not necessar-
ily for all. In what is Eq. (8.22) of [28] they specify a response function for
� as follows:

� D aC bT C d1˛; (13)

with a > 0, b > 0 and d1 being constants. In a later work [30], they
allow the absolute temperature to depend also on the thermal displacement
gradient r˛.

4.5 Analogies

The thermal displacement ˛ received its name in order to express the role
analogy with the mechanical displacement. This terminology stems from
statistical mechanics, where temperature is assumed to be proportional to
the mean kinetic energy of a particle system, i.e., T is associated with a
(mean) velocity. Consequently, one can think of looking at entropy � as a
thermal momentum (in analogy with the mechanical momentum), see, e.g.,
Ref. [70].

4.6 The free energy  

In the case of the Type II and III theories, the free energy  is stated to con-
sist in additional terms being quadratic in the thermal displacement gradient
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8 S. Bargmann

r˛; see Eqs. (6) and (9). This becomes necessary because in the Type II
theory the entropy flux is determined via h D � @ 

@r˛
. Hence, the free

energy must depend on the thermal displacement gradient. However, this
leads to the question of what this does to the absolute value of the free
energy, because this now depends on the choice of the material parameter
�2. The heat equation of Type II is perfectly suitable to model the second
sound phenomenon, which is only observed in a small temperature range.
Green–Naghdi theory implies that the material’s energy for �2 large is gov-
erned by the additional term, which, in this temperature range, may well
dominate  standard. Thus, the material’s energy is significantly higher in this
temperature window. Unfortunately, to the author’s knowledge, there are
no experimental data available to clarify this issue.

4.7 Terminology: Type II versus theory without energy dissipation

Several authors, including Green and Naghdi themselves, refer to Type II
as the theory without energy dissipation. This use of the terminology im-
plicitly suggests that this is always the case. However, the Type II theory
is not necessarily dissipation free. By construction, the free energy  de-
pends on the primary variables ˛, T , and r˛ (see Ref. [28]). This results in
a constitutive dependence of the internal dissipation � on the thermal dis-
placement ˛: � D �Œ@ 2

@˛
C

@�
@˛
�. Green and Naghdi chose the free energy

 2 to be independent of ˛ and d1 D 0. With this choice, internal dissipa-
tion � equals zero. However, one could also choose a free energy function
depending on ˛ or take d1 ¤ 0, arriving at a theory of Type II involving
internal dissipation!

4.8 The conductivity coefficient �2

The thermal conductivity �1 is a material parameter measured in W=ŒmK�
units, which is determined experimentally presuming Fourier’s law of heat
conduction. Green and Naghdi do not comment on how to choose a value
for �2, �3, and �4. �4 has the same dimensions as �1 and plays the role
of a thermal conductivity as well. The units of �2 and �3 are different,
namely, W=ŒsmK�. They are referred to as non-classical thermal conduc-
tivities, conductivity coefficients, material characteristics, or simply mate-
rial parameters. The values of �2;3;4 depend on the problem at hand, of
course. When modeling the phenomenon of second sound, the values for
�2;3 can be determined in the same way the thermal conductivity �1 is com-
puted. The velocity of the wave is measured in the experiments and given
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Remarks on the Green–Naghdi theory of heat conduction 9

by
p
�2=�c, with � and c known. Consequently, �2 can easily be calcu-

lated. Moreover, when applying Green–Naghdi theory to the second sound
phenomenon, it is reasonable to assume �2 D �3. A conclusive experimen-
tal validation of theories of Type II and III is wanted. The thermal displace-
ment ˛, its gradient r˛, and the conductivity coefficient �2 are quantities
difficult to measure with the current experimental facilities. However, their
determination is important for the credibility of the theory.

4.9 Type II theory versus Type III theory

At first sight, the heat equation of type II (Eq. (8)) looks like a special
case of the heat equation of type III (Eq. (11)). However, the physical
meaning of the two types differs greatly. If �4 D 0 is zero, the heat fluxes
read, respectively q2 D �h2 D ��2�r˛ and q3 D ��3r˛. The heat
flux q2 is measured in different units ([WK]) from the classical heat flux
([W]). Consequently, the Type II theory is not a limiting case of the Type III
theory. Furthermore, the heat equations of Type II and III are the same for
�4 D 0 from a mathematical point of view, but they do not represent the
same physical object due to the different heat fluxes.

It remains to be seen to what class of materials one should apply Type II
and/or Type III theories. When it comes to modeling thermal waves, the
heat equation of Type II and Type III are both suitable. Unfortunately,
there exist no experimental data on whether second sound in solids involves
internal dissipation or not. In superfluids, it has been shown that second
sound waves propagate without dissipation.

4.10 Green and Naghdi’s theory of dissipation-less viscous fluids

Although the thermomechanical theory for solids has received high atten-
tion, this is not the case for Green and Naghdi’s transfer of their ideas to
fluids. Their theory of dissipation-less viscous fluids [31] creates a new
type of non-Newtonian fluids and allows for dissipation-less flows with un-
damped second sound heat waves. This is due to the fact that in their theory
fluids have more general thermal properties than in standard approaches. To
date, only very few researchers (see, e.g., Refs. [43,77–79]) have picked up
this idea and applied it to viscous fluids and gases. A lot remains to be done
in this area of research. In many conference discussions, scientists state that
they believe that the Green–Naghdi fluid theory is “a suitable candidate for
many modern applications” (e.g., [79]), such as nanofluids or a single phase
theory for Helium II. However, they have not yet been able to show that this
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10 S. Bargmann

is indeed the case.3 Nevertheless, this author believes that it is only a matter
of time before this will be caught up.

5 Conclusion

Green and Naghdi have introduced a very general theory representing an
alternative candidate for modeling thermoelasticity. A wide range of heat
flow problems can be modeled, such as the classical problems as well as
the second sound phenomenon. Moreover, Green–Naghdi Type II theory
does not exhibit the problem of infinite wave propagation speed.

The search for an all-embracing non-classical theory of thermoelasticity
is not yet finished. Only a detailed investigation of the most promising ap-
proaches can lead to a value judgement; the Green–Naghdi theory certainly
is one of those, in the author’s opinion. In addition to theoretical analyses,
a conclusive experimental validation of the theories of Type II and III is
wanted.

Appendix

In the following, we shortly discuss the various research directions based on
the Green–Naghdi theory, which are investigated in different research com-
munities. None of the listings claims to be complete; there are simply too
many. The book [84] surveys different theories of generalized heat wave
equations, including the Green–Naghdi approach. Acceleration as well as
shock waves within Green–Naghdi theory are discussed, and uniqueness,
growth, and spatial decay analytical results are presented.

Mathematical results can be found, both for the linearized and the non-
linear theory [74], for Type II [16, 17, 32, 42, 47, 51, 74] and for Type III
theories [18, 32, 44, 47, 51–53, 55, 60, 63, 71, 80, 88, 89], for the dynamic
problem as well as for the (quasi-) static reduction [74]. Mathematicians
have published papers concerning, e.g., existence of solutions [20], unique-
ness results [8,16,19,56,65,74,75], stability properties [72–74,76], spatial
decay and wave propagation [15, 41, 42, 61, 71].

Several contributions to the analysis of Green and Naghdi’s ideas stem
from the community of applied mechanics. Thermodynamical investiga-
tions [12, 20, 70] are carried out, the theory is formulated in a Hamiltonian

3 This is in contrast to the Green–Naghdi theory for solids, which has been proven (and
are necessary) for many applications.
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Remarks on the Green–Naghdi theory of heat conduction 11

framework [57] and on the material manifold [9, 24, 45, 46, 58]. In addi-
tion, the Green–Naghdi theory is extended to more complex inhomoge-
neous materials. For example, a micropolar Green–Naghdi theory is the
subject of Refs. [21, 25, 49, 69, 85], whereas micromorphic Green–Naghdi
bodies are investigated in Ref. [39]. Multiphysics problems are studied in
Refs. [2, 4, 7, 9, 23, 26, 38, 82, 83].

Although the Green–Naghdi theory is also attractive from a numerical
point of view, numerical investigations are significantly fewer than the
numerous theoretical contributions. Computational results are found in
Refs. [1, 6, 9–11, 13, 14, 36, 67]. All of the aforementioned authors ap-
ply the Finite Element Method; further numerical results are presented in
Refs. [3, 68, 81, 87].
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