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Abstract4

HF radar measurements in the German Bight and their consistency with other5

available observations were analyzed. First, an empirical orthogonal func-6

tion (EOF) analysis of the radial component of the surface current measured7

by one radar was performed. Afterwards, Neural Networks (NNs) were trained8

to now- and forecast the first five EOFs from tide gauge measurements. The9

inverse problem, i.e. to forecast a sea level from these EOFs was also solved10

using NNs. For both problems, the influence of wind measurements on the11

nowcast/forecast accuracy was quantified. The forecast improves if HF radar12

data are used in combination with wind data. Analysis of the upscaling po-13

tential of HF radar measurements demonstrated that information from one14

radar station in the German Bight is representative of an area larger than15

the observational domain and could contribute to correcting information from16

biased observations or numerical models.17
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1. Introduction

High-Frequency (HF) radars measure the radial components of the surface current vec-18

tor in the coastal ocean over space scales up to hundreds of kilometers, and on temporal19

scales starting from tens of minutes, thus providing a strong component for monitoring20

and prediction systems off the coastal ocean [Emery et al., 2004; Shay et al., 2007; Barth21

et al., 2009]. For a large number of applications the consistency of HF radar data with22

other available observations needs to be quantified. This concern motivates the present23

research. In particular, a synergy is sought with data which are known to be of good24

quality (e.g. from tide gauges). Furthermore, use is made of as many as possible data25

sources (HF radar, tide gauges, wind observations and an ADCP), with a focus on short-26

term prediction capabilities based on observations, including skill estimates. Finally, the27

fundamental research question is addressed: can open shelf state estimates benefit from28

coastal ocean observations, or said with other words: do HF radar data enable upscaling29

in the sense of making reasonable predictions of the remote large-scale environment not30

sampled by HF radars?31

2. Data and Methods

HF radar data from the Wellen Radar (WERA) system [Gurgel et al., 1999] were used.32

One HF radar was installed on the island of Wangerooge (see Fig. 1a). The radar operated33

at a center frequency of 13 MHz. Data used in this study are the radial components of the34

surface current measured with a spatial resolution of 2× 2 km taken almost continuously35

in January 2010 with a coherent integration time of approximately four minutes. The36

dynamics in the area covered by the radar are dominated by M2 tidal wave propagating37
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from west to east along the southern coast of the German Bight, then turning to the north38

following the eastern coast.39

Empirical orthogonal function (EOF) analysis is used to compress the radar dataset.40

Because the spatial coverage varied from measurement-to-measurement, a spatial and41

temporal subsample of the original dataset was needed, which did not contain gaps in42

space, allowing to perform EOF analysis. Here, the spatial resolution was reduced to 4×443

km by taking the averages of one to four points on the original grid. Only grid points44

with high data coverage were kept (this spatial subdomain containing 430 grid points45

is shown in Fig.1a). Observations which did not cover this subdomain were eliminated.46

After this processing, 3,426 of the original 9,258 measurements were left for the EOF47

analysis. In the following, the first five EOFs were used which altogether describe 92% of48

the variance. Horizontal patterns are not shown, because statistical characteristics of the49

radial velocity reflected not only physical processes, but also the specific observational50

setup. The projection of the data onto the dominant EOF-1 (describing 58% of the51

variance) presented as a function of time modulo M2 duration ( Fig1b) was instructive52

as a demonstration of the variability associated with the dominant M2 tide. The beat53

frequency was due to the spring-neap-cycle.54

Other observations used in this study were coastal sea level data from seven tide gauges55

(see planimetric symbols in Fig.1a for locations), wind data at 10m (u10, v10) from He-56

ligoland, wind data at 33m (u33, v33) and current data at 2m from FINO-1 research57

platform. Figure1c shows the temporal variability of the sea level from the tide gauge58

in Büsum. Gauge data are available every 10 minutes; those taken at times of radar59
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measurements used for the EOF analysis are marked. In Figure1d, the same representa-60

tion was chosen for the hourly wind data from Heligoland. Variability found in the data,61

including several storm events was considered to be representative of different weather62

conditions in the area under study. At the FINO-1 platform, the mean current speed of63

0.65m/s with a standard deviation of 0.25m/s was estimated from measurements with an64

ADCP. Overall, the meridional current component is weaker then the zonal one and more65

variable, the tidal oscillation in this direction being less pronounced.66

The consistency of the HF radar data with the other observations will be analyzed using67

Neural Networks (NNs). NNs, as well as Self-Organizing Maps, are well applicable to68

identifying physical processes and dynamically distinctive spatial and temporal structures69

in HF radar data [Liu et al., 2007]. For the training of the NNs, a pre-existing program70

[Schiller , 2000] was used. About 90% of the data was chosen randomly for the training71

of the NNs; the remaining part was kept as independent testing data (see Fig.1c,d).72

3. State estimates in the HF radar area based on independent observations

and Neural Networks

The first step was the reconstruction of the first five EOFs of the radar measurements73

from the data of the seven tide gauges. The sea level data from the tide gauges were used74

at the time of the radar measurement, plus those taken 1.5 and 3 hours earlier (NN1). This75

choice of input data was motivated by the size of the area, the typical current velocities,76

and the fact that the latter depend on the time derivative of the sea level. Alternatively,77

the same reconstruction using only the three gauges at Borkum, Büsum and Heligoland78

was carried out (NN2). Finally, a forecast of the five EOFs using only the seven gauges79
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measured 1.5 and 3 hours before the radar observation (NN3) was performed. The NNs80

architectures giving the best performances are summarized in Table 1.81

Fig.2 shows the reconstruction error defined as the root mean square (rms) difference82

between the reconstructed radar data and the original data. The radials reconstructed83

directly from the first five EOF modes can be considered as the ”best possible perfor-84

mance” giving the smallest overall error of about 0.05m/s. This performance improves85

further with an increasing number of EOFs. For example, the improvement is quite no-86

ticeable, east and south of Heligoland Island, a region of complex hydrodynamics where87

the reconstruction using five EOFs gives errors up to 0.1m/s.88

The reconstruction errors when applying NNs(1-3) to this testing dataset are overall89

below 0.1m/s Compared to the ”best possible performance”, the proposed methods show90

a similar spatial distribution of the errors but with higher absolute values. The nowcast91

using seven gauges (NN1) is slightly better than the one using only three (NN2). The92

forecast (NN3) performs almost as well as the nowcast, which is an important result.93

To further improve forecasting skill, i.e, to approach the reconstruction error of the94

”best possible performance”, hourly wind data (u10, v10) from Heligoland were used as95

an additional input to the NN. This choice was motivated by earlier research [Barth et96

al., 2011] that demonstrated wind forcing for a numerical model can also benefit from97

the HF radar observations. A comparison of the performances of the forecasts without98

using wind data (NN3) and with using wind data (NN4) on the whole testing dataset was99

carried out, as well as on two subsamples with relatively high (>10m/s) and low (<1m/s)100
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winds. The inclusion of the wind improved the forecast skill during the stormy period.101

Calm winds did not contribute to a noticeable improvement.102

4. Predicting ocean state based upon HF radar observations

The inverse problem, i.e., to forecast the ocean state which here is defined by sea level103

and ocean currents, outside the area covered by HF radar from the first five EOFs of104

the HF radar measurements, is considered in the following. The prediction of the sea105

level at the position of the tide gauge at Cuxhaven two hours ahead is first addressed.106

The problem may appear too ”exotic” for practical applications; however, it has been107

chosen to illustrate the consistency between radials from only one HF radar station, which108

give incomplete information about currents and sea level from tide gauges, which is a109

signal that can be trusted. Furthermore, this mapping of one radial velocity component110

onto clear physical variables was aimed at removing uncertainties associated with specific111

instrumental designs.112

Two NNs were trained. Input to both NNs are the five EOFs of radial velocity. For one113

of them wind data (u10, v10) from the island of Heligoland were also used. Each NN has114

one output; i.e, the sea level at Cuxhaven two hours ahead.115

Scatterplots of the sea level at the tide gauge station as forecasted by the NNs versus the116

observed data (Fig.3a) illustrate the performance of the two networks. The inset displays117

the distribution of the differences between observation and forecast. The first two plots118

refer to the forecast without (NN5) and with (NN6) using the wind data, respectively. The119

forecast taking into consideration the wind performs considerably better. Its rms error is120

8.4cm lower than in the case when wind data were not used. This result demonstrates121
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that substantial complementarity could be expected if HF radar data would be used in122

combination with wind data when estimating sea level in the coastal ocean.123

To check representativeness of analyses based on radial components of the surface cur-124

rent from one station only, the forecast skill when predicting current velocities perpendic-125

ular to the Wangerooge station radial direction with data from two radars instead of one126

was estimated. Although the improvement of about 0.2 could be considered in practical127

applications, it was relatively small, thus justifying the analysis presented here based on128

data from one station only.129

Recent developments in oceanography have demonstrated that downscaling substan-130

tially improves the quality of state estimates in the coastal sea. The potential of upscaling,131

which is here understood as aggregation of the effects of small-scale coastal processes on132

the large-scale dynamics, is still not well understood. To analyze the upscaling potential133

of the HF radar data, a NN was trained to forecast currents outside the HF radar array134

coverage. Current data from the FINO-1 platform with ten minutes temporal resolution135

were used for training and testing the NN. Input to this NN7 consisted of the first five136

EOFs from the radial velocity and the wind measurement from the FINO-1 platform.137

Outputs were the two current components at FINO-1, two hours ahead. Applying NN7138

to the testing data (left column in Fig.3b) demonstrated a very good skill. To simplify139

the interpretation of the NN results, current components from FINO-1 station were trans-140

formed into components parallel and perpendicular to the HF radar radial direction. The141

difference in rms error estimates for the two components is below 1cm/s. But the slope142

found with linear regression deviates more from unity for the perpendicular component.143

D R A F T April 8, 2011, 11:21am D R A F T



WAHLE AND STANEV: NN ANALYSIS OF COASTAL OBSERVATIONS X - 9

To perform an evaluation of the quality of results, an alternative NN for forecasting144

the current components was constructed. Input to this NN8 consisted only of the tidal145

component of the currents at FINO-1 station and the wind data. Output was again146

the current (tidal and non-tidal) vector at FINO-1 station. The extraction of the tidal147

component was based on a tidal analysis of the observed data using the software package148

T-TIDE [Pawlowicz et al., 2002]. Results of applying NN8 to the testing data (right149

column in Fig.3b) reveal a very reasonable skill, with the rms error being 5cm/s higher150

for the parallel component. Again, the slope of the regression line for the perpendicular151

component deviates more from unity. Presumably, the differences in forecasting the two152

current components for both, NN7 and NN8, originate from the dominant M2 being153

almost a zonal current (parallel component) at FINO-1, whereas the meridional current154

(perpendicular component) is mainly non-tidal.155

The comparison between the corresponding panels of Fig.3b demonstrate that, although156

the HF radar observations did not reach the FINO-1 platform, the forecast based on157

coastal HF radar data outperformed the one from the simple partial tide synthesis model.158

This result indicates that forecasts based on HF radar data could be superior compared159

to the ones based on a modeling approach; in the present case, tidal analysis and the160

associated forecast played the role of one very simple and imperfect model.161

5. Conclusions

The quality of forecasts for leading EOFs of HF radar-measured radial surface current162

velocities using Neural Networks and data from tide gauges and wind measurements was163

estimated as quite good, as compared to errors in observations and methods used. Solving164
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the inverse problem, that is to forecast the sea level at a gauge station, was addressed165

in order to compare the performance of NNs to high-quality data from tide gauges. In166

either case, a forecast of 1.5 to 2 hours ahead appeared to have a good accuracy. Adding167

the wind data to the input information resulted in an improvement of sea level forecast168

at the location of the tide gauge, especially under stormy weather.169

The consistency and complementarity between data of different sources was investigated170

in an experiment aiming at forecasting currents outside the domain of HF radar data. This171

experiment could only work provided good correlation existed between two independent172

velocity data sets, as was proven to be the case here. Furthermore, it demonstrated that173

information from radars in the German Bight could contribute to ”repair” information174

from biased observations or models. Outputs from large scale numerical models could be175

considered as such biased information. The present research could motivate (1) future use176

of the presented techniques and (2) studies on upscaling of coastal observations, which177

could be considered as a contribution of coastal observatories to regional predictions in178

shelf seas.179
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Figure 1. a) The number of available data in the German Bight provided by HF radar at

Wangerooge in January 2010. Positions of stations mentioned in text are given by symbols.The

grey area indicates the maximum spatial coverage of the radar system. b) Dominant PC as

a function of time modulo M2 period. c) Sea level from the tide gauge at Büsum station as

a function of time. Dashed lines indicate mean high (low) water. Black (red) dots indicate

measurements used for training (testing) of Neural Networks. d) Graphical representation as in

c) but for wind measurements on Heligoland.
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Figure 2. Spatial distribution of the root mean square error (m/s) of the reconstructed

radar data from the original ones when applying different approaches to the test sample data.

The top left figure refers to reconstruction with the original EOFs, and the remaining figures to

reconstruction from EOFs calculated by NN(1-3) (see Table 1). The position of the Island of

Heligoland (black square) is also given to localize areas of maximum errors.
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Figure 3. a) Performance of NN5 and NN6 (see Table 1) when forecasting the tide gauge

signal at Cuxhaven. The sea level as forecasted by the NNs versus observations for all test

data is shown. The red lines were calculated using linear regression. ”Slope” gives the slope of

the regression line, ”abs” gives the axis intercept. The distribution of the differences between

measured and forecasted sea levels is given in the insets. b) Graphical representation as in a)

but for performances of NN7 and NN8 (see Table 1) which forecast the currents (here plotted as

components parallel (top row) and perpendicular (bottom row) to the radial direction of the HF

radar) at FINO-1 station.D R A F T April 8, 2011, 11:21am D R A F T
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name input layer hidden output layer
layer(s)

NN1 7 sea levels t = 0,−1.5,−3h 15x8 5 EOFs t = 0h
NN2 3 sea levels t = 0,−1.5,−3h 15x8 5 EOFs t = 0h
NN3 7 sea levels t = 0,−1.5h 20 5 EOFs t = +1.5h
NN4 7 sea levels t = 0,−1.5h, 20x8 5 EOFs t = +1.5h

wind t = −1.5h, [−6.5,−1.5h]
NN5 5 EOFs t = 0h 15x10 sea level t = +2h
NN6 5 EOFs t = 0h, 15x7x5 sea level t = +2h

wind t = 0h, [−5, 0h],
NN7 5 EOFs t = 0h, 20x10x6 FINO-1 current

wind t = 0h, [−5, 0h], t = +2h
NN8 tidal current t = 0h, 20x10x6 FINO-1 current

wind t = 0h, [−5, 0h], t = +2h
Table 1. Architectures of the various Neural Networks discussed. For the wind input data,

squared brackets indicate time intervals for averaging. The numbers in the third column give the

number of neurons in each hidden layer: e.g., NN1 has two hidden layers with 15 and 8 neurons,

respectively.

D R A F T April 8, 2011, 11:21am D R A F T


	Wahle
	Wahle-georeslett

