Overview

— Linde Engineering’s Key Plant Types
— Hydrogen Market
— Feedstocks
— Technology: Syngas Generation, Product Recovery
— Summary
Linde Engineering
Key Plant Types

Olefin Plants
Products:
- Ethylene
- Propylene
- Butadiene
- Aromatics
- Polymers

Natural Gas Plants
- Products:
 - LNG
 - NGL
 - LPG
 - Helium

Hydrogen and Synthesis Gas Plants
- Products:
 - H₂/CO/Syngas
 - Ammonia
 - Gas removal
 - Gas purification

Air Separation Plants
- Products:
 - Oxygen
 - Nitrogen
 - Rare gases
Industrial Hydrogen Market

Installed capacity worldwide: 600 Billion Nm³/year

Hydrogen Consumers:

- Ammonia: 54%
- Chemical Industry / Refineries: 35%
- Electronic Industry: 6%
- Metal- / Glass Industry: 3%
- Food Industry: 2%

Trends shaping future Hydrogen demand:

- Increase of World Oil Consumption
- Decline of Overall Crude Oil Quality
- More Stringent Environmental Standards
- New Applications (Automotive fuel, Fuel cell)
Feedstocks

Light Hydrocarbons
- Refinery Gases
- LPG (Propane, Butane)
- Natural Gas (48 %)
- Naphtha

Process
- Steam Reforming
- Partial Oxidation

Heavy Hydrocarbons
- Fuel Oil (30 %)
- Vacuum Tar
- Asphalt
- Petroleum Coke
- Coal (18 %)

Process
- Partial Oxidation
Synthesis Gas Generation Principles

- Steam Reforming (SR)
 - Catalytic
- Autothermal Reforming (ATR)
 - Catalytic
- Partial Oxidation (POX)
 - Non-Catalytic
- Pyrolysis

![Graph showing different synthesis gas generation principles](image-url)
Reactions

Non Oxygen Consuming:

- **Steam Methane Reforming (SMR)**
 \[
 \text{CH}_4 + \text{H}_2\text{O} \rightarrow \text{CO} + 3 \text{H}_2 \quad \text{endothermal}
 \]

- **Carbon Monoxide Conversion (CO-Shift)**
 \[
 \text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2 \quad \text{exothermal}
 \]

Oxygen Consuming

- **Hydrocarbon Conversion**
 \[
 \text{C}_n\text{H}_m + \frac{n}{2}\text{O}_2 \rightarrow n\text{CO} + \frac{m}{2}\text{H}_2 \quad \text{exothermal}
 \]

- **H2 Oxidation**
 \[
 2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O} \quad \text{exothermal}
 \]

- **Carbon Monoxide Oxidation**
 \[
 2\text{CO} + \text{O}_2 \rightarrow 2\text{CO}_2 \quad \text{exothermal}
 \]

- **Synthesis Gas contains H2, CO, H2O, CO2, unreacted Hydrocarbons, Impurities**
- **Requested Products are H2, CO, CO+H2**
- **H2 Separation + Purification required**
Typical Basic Block Diagrams for H₂ Production

Light Hydrocarbons

- **Feed Pre-treatment**
 - Steam
 - Feed
- **Steam Reforming**
 - Heat Recovery
- **CO-Shift**
 - Pressure Swing Adsorption
 - Export Steam
 - Hydrogen
 - Fuel Gas
 - Fuel

Heavy Hydrocarbons

- **Feed Preparation**
 - Partial Oxidation
 - CO-Shift/Heat Recovery
 - CO₂,H₂S,COS Removal
 - Pressure Swing Adsorption
 - Fuel Gas
 - CO₂-Byproduct
 - Sulphur
 - Export Steam
 - Hydrogen
 - Fuelgas
Steam Reformer

Hydrocarbon + Steam

Burners

Reformer Tubes

Flue Gas

Syngas ~850°C, 20 - 30 bar, ~70 % H₂ in dry gas
Partial Oxidation/Autothermal Reforming Reactors

ATR (Natural Gas)
- Feedstock + steam
- Catalyst bed
- Combustion chamber
- ~35 bar
- ~1000 °C
- Synthesis gas: H_2 in dry gas ~ 65%

POX (All Feedstocks)
- Feedstock
- Oxygen
- Combustion chamber
- 30 – 70 bar
- ~1400 °C
- Synthesis gas: H_2 in dry gas ~ 61%
CO-Shift Reactor

- Shifts undesired CO to H₂
 \[\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2 \] exothermal

- Simple catalytic reactor

- CO conversion depends on Temperature
 High Temperature Shift: ~ 75 %
 Low Temperature Shift: ~ 90%

- H₂ in dry gas ~ 75 %
Rectisol® Wash Unit for POX Synthesis Gas

- e.g. for Syngas from Coal Gasification
- Methanol as washing solvent
- Rectisol® process separates CO₂, H₂S, COS
- H₂ Purity ~ 98 %
H₂ Purification: Pressure Swing Adsorption

- **Pressure Swing Adsorption** for high purity H₂
 - based on selective adsorption using different kinds of adsorption materials (e.g. molecular sieves)
- **H₂ Purity up to 99.9999 %**
- **H₂ Recovery up to 90 %**
Summary

- Major Hydrogen Market is Chemical Industry
- Feedstocks are Hydrocarbons from Methane to Coal
- Syngas Generation by Steam Reforming, Partial Oxidation, Autothermal Reforming, and CO-Shift Conversion
- \(\text{H}_2 \) Separation from Syngas and Purification depend on Demand and Syngas Process
Thank you for your attention

Linde Engineering