INITIAL EFFECTS OF COST EFFECTIVE MATERIALS IN 2LiBH4-MgH2 HYDROGEN STORAGE MATERIAL

T. T. Le, J. Jepsen, C. Pistidda, M. Dornheim, T. Klassen
Department of Nanotechnology, Helmholtz-Zentrum Geesthacht GmbH, Max-Planck Straße 1, D-21502 Geesthacht, Schleswig-Holstein, Germany

INTRODUCTION

Hydrogen Storage Methods:
- Gas \(\text{H}_2 \): up to 700 bar
- Liquefied \(\text{H}_2 \): -253°C
- High cost
- Safety concerns

Solid-state storage:
Metal/compounds + \(\text{H}_2 \) —> Hydride/complex compounds

Solid-state Material:
- \(^{(1)} \text{LiBH}_4 \): 18.5 wt% \(\text{H}_2 \), \(\Delta H = -75 \text{ kJ/mol } \text{H}_2 \), too stable and irreversible due to the formation of boron element, high temperature is required for dehydrogenation (≥ 400 °C)
 \[\text{LiBH}_4 \leftrightarrow \text{LiH} + \text{B} + \frac{3}{2}\text{H}_2 \]
- \(^{(1)} \text{MgH}_2 \): 7.6 wt% \(\text{H}_2 \)
 \[\text{MgH}_2 \leftrightarrow \text{Mg} + \text{H}_2 \]
 - Operate at evaluated temperature, low reaction kinetics (high activation energy, \(\Delta H = -78 \text{ kJ/mol } \text{H}_2 \))
 - Slow diffusion rate
 - Insufficient nucleation or poor dissociation of \(\text{H}_2 \) molecule on material surface
- \(^{(1)} \text{LiBH}_4/\text{MgH}_2 \): 11.4 wt% \(\text{H}_2 \), reversible, \(\Delta H = -46 \text{ kJ/mol } \text{H}_2 \), \(T_{\text{m}}(\text{LiBH}_4) = 270 \text{ °C} \), \(T = 265 \text{ °C} \)
 - Desorption and absorption processes occur at high temperatures with a relatively slow two step kinetic.
 \[2\text{LiBH}_4 + \text{MgH}_2 \rightarrow 2\text{LiBH}_4 + \text{Mg} + \text{H}_2 \rightarrow 2\text{LiH} + \text{MgB}_2 + 4\text{H}_2 \]
- Improvement in the hydrogen sorption kinetic: Adding additives with catalytic effects (e.g. \(\text{TiCl}_3; 3\text{TiCl}_3\text{.AlCl}_3 \));
 - Cost: \(\text{TiCl}_3 > 4 \times (3\text{TiCl}_3\text{.AlCl}_3) \)

EXPERIMENTS

Equipment: Spex 8000 mixer mill
Milling Conditions:
- ball to power ratio: 20:1, milling time: 400 min,
- ball type: stainless steel, 3mm Diameter.

RESULTS AND DISCUSSION

1st Desorption Reaction Kinetics

- Shorter incubation period for \(\text{TiCl}_3 \) or \(3\text{TiCl}_3\text{.AlCl}_3 \) catalyzed \(2\text{LiBH}_4 + \text{MgH}_2 \) composites.

Solid solution \(\text{LiBH}_4 - \text{LiCl} \)
\(2\text{LiBH}_4 + \text{MgH}_2 + 10\text{wt\%} (3\text{TiCl}_3\text{.AlCl}_3) \)
(Desorption: RT to 400°C (5°C/min); 5 bar \(\text{H}_2 \))

\(\text{LiBH}_4 - \text{LiCl} \) solid solution was formed during reaction and substitution of \(\text{Cl}^- \) may facilitate the rehydrogenation.

Cycling Capability

- \(2\text{LiBH}_4 + \text{MgH}_2 + 5\text{wt\%} (3\text{TiCl}_3\text{.AlCl}_3) \) shows the highest hydrogen capacity and fast sorption rate.
- With adding (3\text{TiCl}_3\text{.AlCl}_3) and \(\text{TiCl}_3 \), desorbed state side is better.
- \(\text{LiBH}_4 - \text{LiCl} \) solid solution further study on the effect of \(\text{LiCl} \) on \(2\text{LiBH}_4 + \text{MgH}_2 \) hydrogen storage material.

Reversible Hydrogen Capacity