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Abstract It is well known that climate model output data cannot be used directly as input to impact
models, e.g., hydrology models, due to climate model errors. Recently, it has become customary to apply
statistical bias correction to achieve better statistical correspondence to observational data. As climate
model output should be interpreted as the space-time average over a given model grid box and output time
step, the status quo in bias correction is to employ matching gridded observational data to yield optimal
results. Here we show that when gridded observational data are not available, statistical bias correction
can be carried out using point measurements, e.g., rain gauges. Our nonparametric method, which we
call scale-adapted statistical bias correction (SABC), is achieved by data aggregation of either the available
modeled or gauge data. SABC is a straightforward application of the well-known Taylor hypothesis of frozen
turbulence. Using climate model and rain gauge data, we show that SABC performs significantly better than
equal-time period statistical bias correction.

1. Introduction

Statistical bias correction, as a field, has received substantial attention in recent years as it is a simple tool
that makes impact studies possible in situations where climate model data are available but are subject to
inherent biases. Since the early approaches [Wood et al., 2004], statistical bias correction techniques have
now diversified considerably [Maraun et al., 2010; Piani et al., 2010a, 2010b; Haerter et al., 2011; Teutschbein
and Seibert, 2012; Piani and Haerter, 2012] and have been widely applied to a range of global [Piani et al.,
2010b; Li et al., 2010] and regional climate model (RCM) data sets [Berg et al., 2012a; Gudmundsson et al.,
2012; Teutschbein and Seibert, 2012].

Most current statistical bias correction techniques have in common that some form of quantile mapping is
applied to match the probability distribution function of climate model output to that of observed climate
data. It is generally necessary that the spatial and temporal resolution of modeled and observed data match
as closely as possible—e.g., in order to avoid the so-called inflation or deflation issue [von Storch, 1999;
Maraun, 2013]. However, in many practical situations, observed spatial data may not be available. Some type
of derived data set, such as reanalysis data [Dee et al., 2011] or data products combining data from multiple
sources [Weedon et al., 2011; Berg et al., 2015], must be used. The former, as a model interpolation technique,
still suffers from error and bias, while in the latter, due to the blend of data sources, little is sometimes
known on the exact details of the underlying data resolution in specific regions or time periods. Further,
both model and observations must typically be regridded to obtain matching resolutions. For station data
(point measurements), regridding to a common grid, i.e., finding an area representation of observations,
is impossible from the outset—especially when few stations are available in the region of interest. One
possible option are then stochastic methods to account for variability at small scales [Eden et al., 2014; Wong
et al., 2014], which, however, entail assumptions on the distribution functions.

In this study we take a different approach that may be suitable when gridded observations of dynamical
variables are not available, but reliable station measurements are. The approach is a simple application
of the Taylor hypothesis of frozen turbulence. The original Taylor hypothesis states that as the mean
atmospheric flow advects eddies past a station, the properties of the eddies remain unaltered [Taylor, 1938].
The hypothesis has previously been used for precipitation disaggregation [Deidda, 2000]. Recognizing this,
mapping to a common grid is no longer necessary as lacking spatial information can be compensated by
increased temporal information.
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Figure 1. Map of the data used. Figure shows available rain gauge stations, the model grid at 7 km, and grid points (red
and blue numbers) used for the 28 km and 77 km correction. Red and blue boxes exemplify areas of respective grid
boxes. Also shown: topography in meters, coordinates, and state boundary (black) of Baden-Württemberg, Germany.

Here we will consider simulated precipitation versus rain gauge station observations. Each value of
simulated precipitation represents a space and time average determined by the grid size 𝛿x,mod and time
step 𝛿t,mod of the output. By contrast, station precipitation data represent a spatial point measurement
(𝛿x,obs=0) and a time average determined by the measurement time step (𝛿t,obs). In general, we will have
𝛿t,mod ≠𝛿t,obs. In the case of high-frequency observations, one might be tempted to simply aggregate
station data to a coarser time interval so that 𝛿t,mod =𝛿t,obs and use the resulting data set to perform a
statistical bias correction of the simulated precipitation. For example, if correcting simulated daily values
of precipitation with hourly station data, one might simply derive daily station data and proceed as usual.
We will show that further aggregation onto longer time intervals of the observed station data may lead
to better quality bias correction, while also avoiding the inflation issue [Maraun, 2013]. We also show the
inverse, when model data have comparably high resolution. In that case, moderate coarse graining of the
model data improves the statistical bias correction.

2. Data

We use a fine-resolution (1 km and 5 min) composite of radar images from the RADOLAN-RY product of
the German Weather Service (DWD) for Southern Germany, which was aggregated for varying resolutions
[Eggert et al., 2015]. Rainfall rates were calculated from radar echoes with the Z-R relationship [Steiner
et al., 2004] and are available for the 2 years 2007–2008. Additionally, a set of 1 h resolution rain gauge
data from Baden-Württemberg in southwestern Germany was used for the bias correction experiments.
The stations constitute a relatively dense network covering both the Black Forest mountain range and
the topographically less variable Rhine Valley (Figure 1). The station network is most dense in the period
1997–2004, which is used here. Stations with more than 10% missing data were discarded from the analysis,
and for the remaining stations NaNs were set to zero precipitation to simplify. This has little impact on the
results presented here.

The model data are taken from a simulation with the COSMO-CLM (COnsortium for Small scale
Modelling-CLimate Mode) [Doms and Schättler, 2002]. The current simulation uses ERA-Interim reanalysis
[Dee et al., 2011] as driving data in a double nesting setup with a second 7 km nest domain covering all
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of Germany, with the lateral boundaries well outside Germany’s borders. The output time step is 1 h for
precipitation. (Simulation details: Berg et al. [2012b].) For the current investigations, the model results
are applied at the original 7 km resolution, and also as representatives for coarser model resolution by
remapping to 28 km and 77 km. As shown in Berg et al. [2012b] and Fosser et al. [2014], the model has a
strong bias in mean precipitation amounts but performs well regarding the intensity distribution for both
daily and hourly timescales. Equally long periods of 8 years are used for the model and station data.

3. Methodology

The Taylor hypothesis [Taylor, 1938] states that observations at a given spatial and temporal resolution
should be similar to those at lower spatial but higher temporal resolution. Our method is hence based
on the idea that lacking spatial resolution can be compensated by increased temporal resolution. Point
measurements, i.e., data at high spatial resolution, should therefore be compared to spatially averaged data
at correspondingly higher temporal resolution.

3.1. Frozen Turbulence and Comparison of PDFs
The probability density function (PDF) of precipitation intensity I depends on the resolution in space and
time, expressed by the size of the grid box or time step (𝛿x or 𝛿t), of the precipitation data. Our methodology
is based on the assumption that PDFs of precipitation intensity obtained with different spatial and temporal
data resolutions (𝛿x , 𝛿t) can have similar, albeit not identical, features. For example, should the Taylor
hypothesis hold perfectly, then PDF(𝛿x , 0, I) = PDF(0, 𝛿t =𝛿x∕v, I), where v is an advection speed.

Using observed or modeled precipitation data (section 2), we produce PDFs of precipitation intensity at
varying spatial and temporal resolutions. We then compare the PDFs at different resolutions (𝛿x , 𝛿t): The
PDF agreement

S
(
𝛿x , 𝛿t; 𝛿′x , 𝛿

′
t

) ≡ 1 − ∫
∞

I0

dI |||w(𝛿x , 𝛿t, I) − w
(
𝛿′x , 𝛿

′
t , I
)||| (1)

measures the similarity of the PDFs corresponding to different resolutions [compare Perkins et al., 2007;
Eggert et al., 2015]. In equation (1), w(𝛿x , 𝛿t, I) is some function of the probability density function of
precipitation intensity and I0 defines a possible low-intensity cutoff. Note that for most regions of the
globe, zero intensity constitutes the bulk of the probability weight in the PDF, i.e., dry periods outnumber
the wet. Intensity weighting gives more emphasis to nonzero intensities. For this study, we therefore
choose w(𝛿x , 𝛿t, I) as the intensity-weighted PDF of precipitation, i.e., w(𝛿x , 𝛿t, I)≡ I ⋅PDF(𝛿x , 𝛿t, I)∕ ∫ ∞

0 dI′ I′ ⋅
PDF(𝛿x , 𝛿t, I′) and I0 =0. Other reasonable choices are the Kolmogoroff-Smirnov statistics or the use of the
bare PDF with a nonzero intensity cutoff I0 >0. We found all to give similar results, albeit with varying degree
of noise (not shown).
3.1.1. Observed Data
For observed high-resolution data (section 2) and for a given reference resolution (e.g., 𝛿x0 = 25 km,
𝛿t0 = 5 min, shown as a large white circle in Figures 2a and 2b), we now determine all equivalent resolutions.
This can be done in two equivalent ways leading to similar, albeit not identical, results:

1. Consider Figure 2a, where we directly compare PDFs of all resolutions with that of the reference resolu-
tion. The PDF agreement is therefore maximal, i.e., unity, not only for (𝛿x , 𝛿t)=(𝛿x0, 𝛿t0) but also for other
pairs of resolutions the figure shows high-agreement values along a “ridge” with increasing space and
decreasing time resolution. To the extent that the ridge top can be approximated by a line, this indicates
that PDFs for resolutions

(
𝛿x , 𝛿

∗
t − r𝛿x

)
, with 𝛿∗t the ridge intersect with the vertical axis, are all very similar.

Defining, analogously, 𝛿∗x as the ridge intersect with the horizontal axis and r∗≡𝛿∗x∕𝛿
∗
t , v∗ =1∕r∗ has units

of a velocity and gives the effective speed of advection [Taylor, 1938]. We note that as r∗ is the slope
of the ridge, it can also be estimated when any two points (𝛿t, 𝛿x) and

(
𝛿′t , 𝛿

′
x

)
on this line are known,

i.e., r∗ ≈
(
𝛿′t − 𝛿t

)
∕
(
𝛿′x − 𝛿x

)
. This will then also deliver 𝛿∗t , e.g.,

𝛿∗t = 𝛿t + r∗𝛿x

(
= 𝛿′t + r∗𝛿′x

)
. (2)

We will refer to the line defined by r∗ and 𝛿∗t as the relevant ridge. In short, scale-adapted statistical bias
correction (SABC) demands finding this relevant ridge. This ridge will then be used to identify the proper
scale adaptation.
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Figure 2. Mapping of distribution functions. (a) PDF agreement (equation (1)) of radar precipitation PDFs of different
spatial and temporal resolution to the origin radar precipitation PDF with 25 km and 5 min resolution (shown as black
star symbol). Resolutions equivalent to the reference resolution (white circle) shown as blue circles. (b) Similar to
Figure 2a but using contours of similar PDF agreement for extrapolation. The origin distribution is now chosen at 1 km
and 5 min (star symbol). Optimal resolutions shown as green squares. (c) Comparison of equivalent temporal resolutions
from Figures 2a and 2b as function of spatial resolution. Dashed lines indicate reference resolution. (d) PDF agreement
as function of spatial resolution: black circles indicate maximal PDF agreement derived in Figure 2a; red triangles denote
PDF agreement when keeping temporal resolution fixed to 5 min. (e) PDF agreement with an origin resolution chosen
at (7 km; 60 min) for model data. White triangles/diamonds/circles are computed ridges for reference resolutions (28 km;
60 min) and (77 km; 60 min), as well as 𝛿∗t =1440 min, respectively. (f ) Similar to Figure 2c but for an origin resolution
chosen at (154 km; 1440 min). Note the similar results for the ridges in Figures 2c and 2d. (g) Comparison to radar data.
Color bars denote respective PDF agreement.

2. Another approach is to use a contour line of PDF agreement, not the maximum, to obtain the optimal
resolutions. To obtain contours of PDF agreement, we specify a different origin resolution, that is, a
resolution that serves as a comparison. In (1), this origin had been set to the same value as the reference
resolution, but we now show that it can also be moved to another point in the plane, i.e., away from the
reference resolution. Figure 2b exemplifies this for the case where the origin is set to (1 km; 5 min). Using
now the PDF agreement corresponding to the reference resolution (i.e., 25 km and 5 min), i.e., comparing
PDF(1 km, 5 min) to PDF(25 km, 5 min), we find the line of similar resolutions, this time by comparing with
the respective PDF agreement (compare Figure 2b, green line).

Not surprisingly, the contour line (symbols in Figure 2c) differs very little from the ridge found in method (1).
This is clear when noting that all PDFs along the ridge are very similar. Hence, also the agreement of any of
them with an origin resolution away from the ridge should yield comparable values. Methods (1) and (2)
are two equivalent ways to obtain the value of 𝛿∗t , i.e., the desired temporal resolution of the rain gauge. In
practice (section 3.3) we use method (2).
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We can compare the PDF agreement S
(

0, 𝛿∗t , 𝛿x0; 𝛿t0

)
of PDF

(
0, 𝛿∗t

)
, obtained with method (1) with the

standard approach of simply taking the time resolutions to match, i.e., maintaining a temporal gauge
resolution of 5 min (Figure 2d). The values obtained for the ridge top are reasonably good (black circles),
and much better than when using unchanged temporal resolution (red triangles). From the example we
see that when the gauge data are first aggregated to approximately 80 min, it constitutes a much better
representation of the distribution function of spatial data, i.e., PDF(0, 80 min) ≈ PDF(25 km, 5 min), while
PDF(0, 5 min) ≠ PDF(25 km, 5 min).
3.1.2. Climate Model Data
In Figures 2e and 2f we repeat the analysis of PDF agreement for high-resolution climate model data
(7 km spatially and 60 min temporally). Setting the origin resolution first to the highest model resolution
(lower left corner in Figure 2e), we compute the contour lines for several choices of reference resolution
(solid white symbols). These choices are made to reflect the cases of (i) typical high-resolution RCM output
resolution (28 km, 60 min), (ii) high-resolution global climate model output (77 km, 60 min), and (iii) daily
gauge temporal resolution (1440 min). Fitting linear functions, we extrapolate the corresponding values
of 𝛿∗t (compare equation (2)). The fits show the following: For (i), the equivalent gauge resolution would
be approximately 3 h. For (ii), gauge resolution should be chosen at 7.5 h. For (iii), daily gauge resolution
requires model resolution given by any of the symbols (white circles) in Figure 2e. One possible choice is
(150 km, ≈ 12 h). That is, if a model of 150 km spatial resolution was available, optimal temporal resolution
would be approximately 12 hourly.

We repeat the analysis for another origin resolution (154 km spatially, and 1440 min, temporally, upper right
corner in Figure 2f ). Producing again the contour lines and corresponding fits, we obtain very similar values
of 𝛿∗t , confirming that the choice of origin resolution has little impact on the resulting contour lines.

To compare these results with the observational data, we also extrapolate the contour line corresponding
to one of the reference resolutions (28 km, 60 min) in the radar data (Figure 2g). In the observational data,
the closest corresponding spatial resolution is 25 km. We use this to obtain the slope r. Together with
the reference resolution (28 km, 60 min) we yield the extrapolated value of 𝛿∗t ≈161 min. This value lies
somewhat lower than those from the model data (there, 𝛿∗t ≈180 min). However, given the shortcomings of
both observational and modeled data and limitations of available resolutions, the agreement of the results
is remarkably good.

The previous analysis shows that the patterns obtained with observational data can approximately be
reproduced using model data. However, typically, the model output resolution will lie at lower resolutions
than the one used for Figures 2e and 2f. Consider, e.g., the resolution (77 km; 1 h); available spatial and
temporal model resolutions are hence 77, 154, 231, … , km, respectively 60, 120, 180, … , min (shown as
white crosses in Figures 2e and 2f). Desired contour lines must hence be determined using exclusively these
discrete combinations of resolutions. We will show how to obtain these in the following.

3.2. Bias Correction Methodology
We distinguish the two cases resulting from comparably low model resolution (model limited) and
comparably low gauge resolution (gauge limited).
3.2.1. Model-Limited Correction
Consider a climate model with a given output resolution (blue cross, Figure 3a). We assume that observa-
tions are only available through a rain gauge (red cross, Figure 3a), with a relatively high gauge resolution.
The goal is now to estimate the contour line that is defined by the model output resolution, i.e., the blue
cross symbol must lie on the contour line. The offset 𝛿∗t for this line will define the required coarsening,
i.e., scale adaptation, of the gauge data. Once the scale adaptation has been produced, standard statistical
bias correction [e.g., Piani et al., 2010b] can be performed.
3.2.2. Gauge-Limited Correction
In many practical situations, it is also possible that rain gauge resolution is poor compared to the model
resolution (Figure 3b, gauge-limited case). This may especially be the case in very data sparse regions, such
as areas of the globe with little infrastructure (deserts and glaciated regions), but even in developed areas,
complete spatial coverage by subdaily precipitation gauges is by no means standard and daily temporal
resolution is usually the best available data. Under such circumstances, scale adaptation can only be
performed by aggregating the model data. It must thereby be assured that the available gauge resolution
lies on top of the contour line. Available model resolutions are shown in Figure 3b (small cross symbols). It is
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Figure 3. Scale-adapted statistical bias correction. (a) Model-limited correction. Two-dimensional schematic of spatial and temporal averaging intervals and PDF
agreement ridges (black lines). Red and blue cross: symbols indicate available gauge and model resolutions, respectively. (b) Gauge-limited correction. Similar
to Figure 3a but also including the range of resolutions where aggregation could be performed (green shades). Dotted green line indicates a possible aggre-
gation choice. (c) Schematic showing the construction of equivalent resolutions. Corners of green-shaded region show available aggregated model resolutions.
Dashed gray line indicates choice of (n=2,m=3) and (n=1, m̃=6), yielding r=3𝛿t0∕𝛿x0 and 𝛿t = m̃𝛿t0 + r𝛿x0 =9𝛿t0. Solid gray line shows equivalent resolutions
yielding 𝛿t =𝛿∗t for the gauge-limited case (GL). Dotted purple line shows equivalent resolutions yielding 𝛿t =𝛿∗t for a model-limited case (ML); this line
must be extrapolated (purple arrow indicates extrapolation). (d) Model-limited, extrapolation of t̃ as 𝛿x →0 for an assumed model of resolution (28 km; 1 h).
(e) Gauge-limited case, interpolation of 𝛿t as 𝛿x →0 for an assumed model of resolution (77 km; 1 h) and gauge of 24 h resolution. (f ) Schematic of data aggrega-
tion and disaggregation: (i) aggregation of pairs of two subsequent precipitation measurements (blue bars) to respective averages (black lines). (ii) Statistical bias
correction (SBC) of aggregated data (black lines converted to red lines) and subsequent disaggregation of corrected data (gray bars).

now possible that multiple model resolutions can in principle be used for scale-adapted correction, i.e., any
that are compatible with a contour line through (0,𝛿∗t ). Note that once the correction has been performed,
the model data can be disaggregated to its original resolution. For each aggregated data point, we simply
separate the data by applying the appropriate correction to each of its individual contributions (Figure 3f ).

3.3. Practical Implementation
In practice, the resolution of the model output defines the reference resolution (𝛿x0, 𝛿t0) and we set the
origin resolution equal to this. Available model resolutions are all combinations of integer multiples
(n 𝛿x0;m 𝛿t0) of the reference resolution, with n and m integers (Figure 3c). Implementation of scale-adapted
bias correction follows four steps:

1. Set 𝛿t to 𝛿t0, i.e., m=1. Observe all PDFs for several accessible n 𝛿x0, e.g., 𝛿x0 and 2𝛿x0.
2. Fix a specific PDF in (1) by choosing a multiplication ñ, e.g., choose the resolution (2𝛿x0, 𝛿t0). Now obtain

the value m̃ where m̃ ⋅ 𝛿t0 yields maximum PDF agreement between PDF(ñ𝛿x0, 𝛿t0) and PDF(𝛿x0, m̃𝛿t0),
i.e., both will lie on the same contour line. The pairs (ñ𝛿x0, 𝛿t0) and (𝛿x0, m̃𝛿t0) define lines which can be
used to extrapolate to 𝛿x =0, yielding a value 𝛿t (compare equation (2) and Figure 3c).

3. Repeat steps (1) and (2) starting with m>1 in (1).
4. Extrapolate or interpolate the resolution for required 𝛿∗t , i.e., achieving 𝛿t ≈𝛿∗t .

Note: For better results, in step (2) a fit with respect to PDF agreement should be used to obtain m̃, thereby
allowing noninteger m̃ and yielding more exact estimation of 𝛿t .

Once 𝛿∗t has been obtained, in the ML case the gauge data will be aggregated to the resolution 𝛿∗t . In the GL
case, the model data will be aggregated to a resolution closest to the line defined by the contour through
𝛿∗t . Once the data have been aggregated, standard statistical bias correction will be performed.

HAERTER ET AL. ©2015. American Geophysical Union. All Rights Reserved. 1924
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Figure 4. Bias correction results. (a) Model-limited bias correction; intensity-weighted PDFs for the estimated observa-
tions (Obs, gray), i.e., the average of all stations in a grid box, 28 km model data (Mod, pink), SBC1 using a single gauge at
a 1 h resolution (orange), and SABC using a single gauge at 3 h temporal data aggregation (dark blue). PDFs shown are
aggregate distributions for all stations and grid boxes. Values marked in parentheses in legend are PDF agreement values
with 𝜌obs in percent. (b) Gauge-limited bias correction for 77 km model; curves and colors analogous to Figure 4a. SBC1
is now for a single station and model data aggregated to 24 h; SABC uses 19 h temporal aggregation of model data. Note
the different horizontal axes and units in Figures 4a and 4b. Results for individual grid boxes and stations for the ML case
shown in Figure 4a: (c) PDF agreement , (d) 99.9th intensity percentile, and (e) dry period fraction. Colors as in Figures 4a
and 4b. Symbols for each grid box are the different available stations (Figure 1), thin blue (pink) lines are guides to the
eye, linking same stations for increased (decreased) performance. (f–h) Similar to Figures 4c–4e but corresponding to the
GL case shown in Figure 4b.

4. Results

Does scale-adapted bias correction yield measurable improvement in practice? We carry out both types

of corrections (Figures 3d, 3e, and 4) and compare each to the correction where temporal resolutions are

simply matched for model and observations. Specifically, the tests are as follows.
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(ML) Model-limited correction. We employ the same model used in Figures 2e and 2f but start from a minimal
resolution of 𝛿x0 =28 km spatially and 60 min temporally. This is to mimic output resolution typical of current
RCMs. We assume station data to be available at 1 h resolution.

(GL) Gauge-limited correction. Again, using the same model and hourly temporal resolution, we now use
coarse spatial resolution (77 km), mimicking state-of-the-art global climate model output. The station
resolution is assumed to be daily.

Following the steps in section 3.3, we now obtain an estimate for the corresponding contour line (white
triangles and circles in Figure 2f for the ML and GL cases) without the knowledge of the data corresponding
to spatial scales below 𝛿x0. Specifically, we compute various curves (such as those shown in Figure 3c) and
for each determine the corresponding 𝛿t . This procedure yields a set of corresponding temporal resolutions
(m̃𝛿t0, 𝛿t), which is plotted in Figures 3d and 3e. For the ML case, these points allow us to extrapolate the
𝛿∗t corresponding to model temporal resolution 𝛿t0, yielding 𝛿∗t ≈163 min. The best equivalent gauge
aggregation (integer multiple of 1 h) is hence 3 h. We proceed analogously for the GL case, where we
determine the value of m̃ that corresponds to 𝛿∗t =1440 min, yielding m̃≈19, hence a model aggregation to
19 h (compare Figure 2e, where the value is ≈18 h).

To obtain a proxy for spatially averaged observations, we first group rain gauge stations into 28 km
(respectively 77 km) grid boxes and simply average their precipitation intensities. We discard grid boxes with
fewer than three stations. For the ML case, we maintain a temporal resolution of 1 h, and for the GL case, we
aggregate temporally to 24 h. The resulting spatially averaged signals will be less variable than that of any
station by itself, but, due to the finite number of stations per grid box, somewhat more variable than the
actual spatial average (i.e., that corresponding to an infinite number of stations per grid box). For each grid
box, the averaged station data serve as the “ground truth” for our procedure (we call its probability density
function 𝜌obs in the following).

We now use any single station within the grid box as constituting the only available station for a given
practical situation. Our hypothesis is that SABC yields better agreement with 𝜌obs than the standard
correction with matching time resolutions (SBC1). To exemplify the bias correction procedure, we use simple
empirical quantile mapping by estimating a regularly spaced quantile distribution, following Gudmundsson
et al. [2012]. Our approach is, however, generic and should also apply for more sophisticated bias correction
techniques [e.g., Piani et al., 2010b; Mehrotra and Sharma, 2012; Rocheta et al., 2014]. As a benchmark, we
first perform a correction with 𝜌obs (SBC0). This represents the ideal correction obtainable when sufficient
data are at hand. As expected, the resulting corrected model PDF is very close to 𝜌obs, as seen in Figures 4a
and 4b.

For the ML case, for each available grid box and for each possible choice of associated station, we now
repeat the procedure using the hourly data—assuming that only this single station is available for the bias
correction. For each combination of a grid box and station, this yields a histogram for the corrected data.
SBC1 significantly shifts the original distributions to more extreme intensities (Figure 4a); affecting the
overall PDF agreement and high percentiles. Repeating for SABC (gauge data coarsened to 3 h), markedly
closer agreement with 𝜌obs is reached. Besides the overall skill, also extremes and dry period fraction are
consistently improved for each single station used as reference (Figures 4c–4e). Also, the average intensities
are corrected well to that of the relevant reference station, which trivially produces a spread of results
around the average of 𝜌obs with only small differences between SBC0 and SABC.

An analogous comparison is performed for the GL case; now SBC1 employs temporal coarsening of model
data to match the assumed daily resolution of the station, leading to generally too heavy intensities
compared to 𝜌obs (Figure 4b). Again, SABC overall yields substantial improvement for PDF, extremes and dry
period fraction. Disaggregation back to hourly data (Figure 3f ) retains the increased skill seen in the daily
statistics but does not, e.g., affect other bias such as in the diurnal cycle.

We end with a comment on GL corrections: When multiple options are available for coarsening, one
relevant criterion for optimal choice might be loss of data samples in the statistics. Reduction of sample size
is greatest for intermediate options of spatial coarsening, but low for both the original spatial resolution
and very high values of the spatial coarsening. We consider the latter only a theoretical option, as it may
require substantial domain sizes and removes all spatial information, e.g., orographic effects (details on
sample reduction: Appendix A).
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5. Discussion and Conclusion

Statistical bias correction of precipitation has emerged as an indispensible tool at the intersection between
climate and impact modeling—but hinges on the availability of adequate observational data. Especially in
data sparse regions of the globe, successful bias correction is hampered by the lack of agreement of model
precipitation output resolution and the resolution observed. We have shown that even with observational
data from a single rain gauge station, considerable improvement can be achieved when aggregating the
available data to yield maximal PDF agreement between model and observations. We suggest the use of
this method, which we have called scale-adapted statistical bias correction (SABC), in situations where bias
correction is required but only limited point measurements are available.

Crucially, SABC capitalizes on the ability of the model to capture the space-time dynamics of precipitation.
The model is hence employed to associate adequate scales. In SABC, the variability of precipitation
intensity—measured at a station—is compared to model data measured over a spatial domain but
accordingly chosen, shorter time intervals. Our results point to the utility of outputting temporally highly
resolved model data, even (or especially if ) spatial resolution is low—the information on fluctuations,
encoded in the higher temporal output rate, will then be preserved and can be used for SABC. In this way,
the method can help remedy the inflation issue [von Storch, 1999; Maraun, 2013]. SABC can naturally not
impact on inherent model shortcomings in simulating temporal variability [Maurer and Pierce, 2014]. Also,
when atmospheric advection is not described adequately, the association of scales needed for SABC may
itself be biased.

The methodology is straightforward and can be applied for any type of climate model data. It requires only
to compute probability density functions for several choices of coarsened resolutions. This is simply done by
data aggregation, e.g., by doubling or tripling of spatial and temporal scales. Pairs of matching resolutions
then define appropriate gauge resolutions. Our results are encouraging in that quantitative improvement of
intensity distributions is reached for the overall histogram, extreme precipitation as well as dry periods.

SABC should not be limited to precipitation correction but may also be relevant for other meteorological
variables where the hypothesis of frozen turbulence applies, i.e., where advection of the quantity is the
dominant cause of local fluctuations. While our method works well even in regions of moderate topographic
variation (Southern Germany), stronger variation, e.g., mountainous regions, may introduce features that
naturally require fine-scale knowledge of local climate, not captured by single gauges. Especially when
gauge density is low, as is the case in vast parts of the globe, our method may allow for substantially
improved bias correction at essentially no cost in terms of model output, data storage, or mathematical
complexity.

Studying precipitation intensity at resolutions finer than that of convective systems has recently become of
widespread interest [e.g., Lenderink and Van Meijgaard, 2008; Berg et al., 2013; Eggert et al., 2015]. Observa-
tionally, data describing such extremes is often limited to individual gauges: Measurements from gauges
are usually considered more reliable than other sources of data, i.e., constitute the preferred source of
information. Yet modeling of station scale characteristics will—for the time being—not be feasible. Our
study speaks to an alternative solution, where low spatial resolution could again be compensated by high
temporal resolution. A station with hourly temporal resolution could then be modeled by a regional climate
model with approximately 12 km spatial and 5 min temporal output. Again, simply using the same temporal
output rate as available from the station would lead to sizeable error in the comparison (compare Figures 2a
and 2b).

As an alternative to recent stochastic methods [Eden et al., 2014; Wong et al., 2014], SABC could also be
used for simple, direct, downscaling of model data to the point scale—possibly circumventing the need for
a statistical model. In the example of the previous paragraph, each value of (12 km, 5 min) model output
would then be a proxy for an hourly average for a point measurement. An analysis of such downscaling is,
however, left to a future study.

Finally, it may be promising to combine SABC with two-dimensional bias correction [Piani and Haerter,
2012; Mehrotra and Sharma, 2015]. Given the large amount of data necessary to populate 2-D histograms
of dynamical variables, for example, temperature and precipitation, gridded data sets with sufficiently long
time series are hard to come by. Using SABC, climate impact modelers can access the information in station
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data directly without prior gridding. This has the potential to make 2-D bias correction a standard procedure
and will be the focus of future work.

Appendix A: Sample Size Reduction

We comment on the possible choices for gauge-limited corrections: When multiple choices are available for
possible coarsening, one relevant criterion for optimal choice might be loss of data samples in the statistics.
When coarsening, using equivalent resolutions along the relevant ridge, the reduction of sample size is
R(ñ)≡ ñ2 ⋅ m̃(ñ). Dropping the tilde for simplicity, and noting that m=𝛿t∕𝛿t0, 𝛿t =𝛿∗t − r𝛿x , and n=𝛿x∕𝛿x0,
we have

R(n) =
𝛿∗t

𝛿t0
n2 − r

r0
n3, (A1)

where we have defined r0 ≡𝛿t0∕𝛿x0. Equation (A1) states that R initially increases as a function of n but decays
for large n. Noting that n,m≥1, we have the bounds

nmin ≡ 1 ≤ n ≤ 𝛿∗t − 𝛿t0

r𝛿x0
≡ nmax. (A2)

Intermediate choices of n yield extreme reductions of data, for the case studied in Figure 4b, Rextr >100
is possible. Generally, n=1 may be a reasonable choice (in our example R(1)=19) but in some cases also
n=nmax should be considered, especially when high temporal resolution, i.e., small 𝛿t0, is available. In those
cases, R(nmax)<R(1) is possible, allowing a larger sample size to be preserved. In the plot, n ranges from
unity to nmax. Extremal Rextr occurs at intermediate values of n and can substantially exceed R(1) and R(nmax).
Dependencies on system parameters: R(1)=𝛿∗t ∕𝛿t0 − r∕r0. The value of n where extremal R is reached:
nextr =2r0𝛿

∗
t ∕3r𝛿t0; extremal R: Rextr =4r2

0𝛿
∗3
t ∕27r2𝛿3

t0. In practice, however, possible degradation of PDF agree-
ment, even along the ridge, should be evaluated when using large n. Assessment of this question should be
left for future work.
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