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Synopsis 

Small-angle scattering from polydisperse non-homogeneous particles with diffusive interface is considered for 

the case of small diffusivity. The deduced simplifications both in the analysis of polydispersity and inner 

structure (contrast variation) of the particles are used in the treatment of the small-angle neutron scattering data 

from liquid dispersions of detonation nanodiamonds. 

Abstract 

The particles with a diffusive surface, which is characterized by a deviation from the Porod power-law 

asymptotic behavior in small-angle scattering towards the exponent below 4, are considered with respect to the 

polydispersity problem. The case of small diffusivity is emphasized, which allows one to describe the scattering 

length density distribution within the spherically isotropic particles in terms of a continuous profile. This 

significantly simplifies the analysis of the particle size distribution function, as well as the change in the 

scattering invariants under contrast variation. The effect of the solvent scattering contribution on the apparent 

exponent value in the power-law type scattering and related restrictions in the analysis of the scattering curves 

are discussed. The principal features and possibilities of the developed approach are illustrated in the treatment 
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of the experimental small-angle neutron scattering data from liquid dispersions of detonation nanodiamonds. 

The obtained scattering length density profile of the particles fits well a transition of the diamond states of 

carbon inside the crystallites to graphite-like states at the surface and makes it possible to combine the diffusive 

properties of the surface with the experimental shift of the mean scattering length density of the particles as 

compared to that of pure diamond. The moments of the particle size distribution are derived and analyzed in 

terms of the lognormal approximation. 

1. Introduction

Highly dispersed systems especially those developed for the practical use contain, as a rule, 

heterogeneous (multicomponent) and polydisperse nanoparticles. Often they form multiscale 

aggregate structures. All these factors complicate the interpretation of the experimental data of small-

angle X-ray (SAXS) and neutron (SANS) scattering applied to such systems and give rise to the 

question of how far one can advance in the reliable structural characterization of complex colloids. 

The analysis of the polydispersity of homogeneous particles composing clusters in dispersed 

systems was recently considered by Beaucage and colleagues (Beaucage et al., 2004) in the frame of 

the unified exponential/power-law approach (Beaucage, 1996) employing the fact that in rather 

polydisperse systems the small-angle scattering curves show a smooth transition from the Guinier 

regime to the power-law asymptotics. As the main result, it was proposed to describe and compare the 

polydispersity of different systems by a polydispersity index (PDI), a definite combination of the 

parameters of the exponential/power-law expression. In addition, the experimentally found PDI of an 

arbitrary system can also be compared with the values formally calculated for different correlation 

types including those which can take place in a generalized two-phase system. The situation is more 

complicated if the particles are non-homogeneous and one cannot use this approach directly. Quite 

standard way for studying non-homogeneous nanoparticles by means of the small-angle scattering is 

the contrast variation technique based on the analysis of the changes in the scattering when varying 

the scattering length density (SLD) of the homogeneous carrier (or „solvent‟) containing the studied 

nanoparticles. The classical applications of this method are referred to monodisperse objects such as 

proteins (e.g. Stuhrmann, 1982; Feigin & Svergun, 1987; Perkins, 1988; Stuhrmann, 1995). The 

extension of this method for polydisperse systems in terms of the modified contrast was recently 

considered (Avdeev, 2007a) including the contrast dependences of the scattering invariants (Guinier 

parameters, Porod volume), which were found to be principally different as compared to those for 

monodisperse particles. In some cases, such as in the case of the structural polydispersity (i.e. the 

variation in the inner structure with the same particle shape and size) the general expressions of this 

approach are significantly simplified and exhibit more transparent relations between the 



3 

experimentally determined parameters and the structural parameters of the particles including the 

parameters of the polydispersity function (Stuhrmann & Duee, 1975; Almgren & Garamus, 2005). 

In this paper we consider a specific kind of polydisperse non-homogeneous particles whose 

structure, on the one hand, allows also significant simplifications of the general contrast variation 

approach in the small-angle scattering, and, on the other hand, makes it possible to analyze the 

scattering in the same manner as for polydisperse homogeneous particles (Beaucage et al., 2004). The 

non-homogeneity of these particles is determined by their interface conventionally defined here as a 

„diffusive surface‟. It is close to the concept introduced by Schmidt (Schmidt, 1995) of a diffusive 

interface between two homogeneous phases to explain the experimentally observed deviations of the 

scattering from the Porod law towards lower values of the power-law exponent (< 4) at large q-

values in reversed-phase silicas (Schmidt et al., 1991b). The same deviations were revealed for SANS 

from ethanol solutions of hydrolyzed TEOS (Avdeev et al., 2004). A recent example of such non-

Porod asymptotic behavior of the scattering is related to the detonation nanodiamond (DND) both in 

powder state (Avdeev et al., 2007b) and in liquid dispersions (Avdeev et al., 2009). It should be noted 

that there are other types of surface diffusivity corresponding to fractal surfaces with the Porod 

exponent between 3 and 4 (e.g. Schmidt, 1995) and smeared interfaces of the spherical multi-shell 

type (Heinemann et al., 2000; Foster, 2011) still satisfying the Porod law. 

DND is characterized by an intrinsic non-homogeneous structure because of graphitic states 

of carbon at the particle surface (Raty et al., 2003). In SANS experiments with the contrast variation 

on liquid DND dispersions (Avdeev et al., 2009) the diamond-graphite spatial transition in DND was 

considered in terms of the „core-shell‟ approximation, which explained the experimentally detected 

shift in the mean scattering length density (SLD) of DND as compared to the diamond density and 

gave about 0.5 nm thickness for the graphite shell in the particles with the total size of about 7 nm. It 

is, however, clear that the „core-shell‟ representation cannot explain the above-mentioned deviation 

from the Porod law, and a „broader‟ interface is to be introduced for this purpose. By assuming the 

spherical symmetry of such particles, the corresponding SLD profile by analogy with the early works 

on diffusive surface (Schmidt, 1995) should have the form: 

0

0

,   0 ,

,  ,

r R d

r R r
R d r R

d

(1) 

where r is the distance from the particle center; R is the radius of the particle; d is the parameter 

determining the width of the transition layer at the particle surface; 0 is the SLD of the homogeneous 

„core‟ of the particle, which can be associated with the SLD of diamond. The exponent β lies between 

0 and 1, thus defining the limit of the derivative dρ/dr   at r = R. This is a principal difference 

from the other types of the diffusive surfaces mentioned above, where the derivative of ρ(r) at the 
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interface approaches zero. Specifically due to this feature, as it was shown (Schmidt, 1995), the 

asymptotic behavior of the small-angle scattering from the particles with the SLD profile of type (1) 

follows the expression: 

4 2
( )I q Bq , (2a) 

2 2 2

0
2 ( 1) /B n S d , (2b) 

where S is the particle surface area; n is the particle number density; Γ(x) is the Euler gamma 

function. 

It is important that the scattering curves from DND are rather smeared because of the particle 

polydispersity, so the exponential/power-law approach can be formally applied in their treatment 

(Avdeev et al., 2007b; Avdeev et al., 2009). At the same time, according to profile (1), the DND 

particles are non-homogeneous, which can have additional effects on the scattering especially in the 

contrast variation experiments. The aim of this work is to consider two indicated aspects of the 

analysis of the scattering (polydispersity and contrast variation) for the particles with the SLD profile 

(1). The general solution of this problem is difficult regarding the interpretation of the experimental 

scattering curves. However, in the case of small β (which takes place in practice) a number of 

simplifying factors can be indicated, thus making it possible to deduce relatively simple expressions 

for the scattering invariants, which take both the particle heterogeneity and polydispersity into 

account. The possibilities of the proposed approach are then discussed basing on the model scattering 

curves and experimental SANS curves obtained previously for the liquid DND dispersions (Avdeev et 

al., 2009). 

2. Model

SLD profiles corresponding to Eq. 1 with different parameters are shown for illustration in 

Fig. 1. In the case of a polydisperse system the particle radius R is distributed over some interval 

according to some function f(R). As compared to homogeneous particles, here, the moments n
R  

depend additionally on the profile parameters d and β. This makes the expressions for the moments 

rather cumbersome because of the size-dependent contributions of the (r) function and does not 

allow one to use the ideas of the approach (Beaucage et al., 2004). However, some principal 

simplifications can be considered, if one takes experimental peculiarities into account. First, for DND 

particles the β-parameter should be sufficiently small (which is observed in practice) to describe the 

transition from diamond in the center ( 10 2
11.8(3) 10 cm

diam
) to graphite 

( 10 2
7.0(3) 10 cm

graph
) at the periphery. This case is illustrated in Fig.1 where for comparison the 

„core-shell‟ profile corresponding to these SLDs is given. One can see that at β << 1 the profiles 

corresponding to Eq.1 almost coincide with the sharp „core-shell‟ interface at r = R because of their 
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infinite derivatives at the outer particle radius and, thus, describe well the transition to 
graph

. The 

alternative way to describe this transition using (1) is to add the constant 
graph

 to this profile with the 

corresponding renormalization of the SLD of the central part. However, as it will be discussed below 

(see Section 4.2) such constant would affect strongly the exponent in the power-law type scattering 

(2a). The -values obtained in the experiments on DND (see Section 6) lie around 0.1 (according to 

Eq.2a the corresponding power-law exponent of the scattering is –4.2) and satisfy well the discussed 

condition. The second simplification is related to the fact that while the profile (1) explains the non-

Porod behavior of the scattering at large q-values, still when fitting it to the experimentally found 

mean SLD of DND (see Section 6) one obtains rather large d-values. Thus, for a 7-nm DND 

nanoparticle in the monodisperse approximation the corresponding estimates give d = 2.5 nm. This 

means that being polydisperse a significant part of the particles meets the condition d  R. This gives 

an idea to consider the corresponding approximation (Fig. 1) as an intrinsic property of all particles. 

So, the substitution d R  into (1) gives the profile: 

0
( ) 1

r
r

R
,     0 < r < R. (3) 

The smaller is the β -value the less is the difference between (3) and (1). So, the smallness of the β -

parameter allows one to consider the profile (3) as a good approximation to (1) in the case when d is 

not strictly equal to R but approaches it (see Fig. 1). The made substitution has two important (from 

the practical viewpoint) consequences. First, the number of parameters that define the SLD profile 

(and, hence, the moments n
R ) is reduced. Second, the mean SLD over the particle volume becomes 

independent of the particle radius R and is determined only by the "core" SLD 0 and exponent β as: 

2 0

3

0

63
( )

( 1)( 2 )( 3)

R

r r dr
R

. (4) 

Similarly, the size independence retains for any mean n-th power of (r) over the particle volume in 

such approximation: 

2 0

3

0

63
( )

( 1)( 2 )( 3)

R n
nn

r r dr
R n n n

. (5) 

3. Analysis of polydispersity using the unified exponential/power-law approach

By analogy with the work (Beaucage et al., 2004) we consider first the powder state of 

nanoparticles with the diffusive interface (3). A similar case is when the particles are located in a 

weakly scattering liquid with SLD ρs ~ 0. In the frame of the unified exponential/power-law approach 

(Beaucage, 1996) the scattered intensity for such particles has the form: 
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2 2
( ) ex p / 3 *

P

g
I q G q R B q , (6) 

where the Guinier regime with the parameters G (forward scattered intensity) and Rg (radius of 

gyration) at small q-values is combined with the power-law scattering regime (exponent P = 4+2β) at 

large q-values by the renormalization of the q-variable in the power-law term as 

3
)]6/(/[*

g
qRerfqq . The explicit form of the B parameter is given in Eq.2b. 

Using the definitions of the Guinier parameters together with the SLD profile (3) and 

applying the averaging over the particle radius distribution function (here and below denoted by 

brackets . . . ) one obtains: 

22 6
4 / 3G n R , (7a) 

8

2

6

1 2

( 4 )( 5 )
g

R
R

R
. (7b) 

One can see that the mean SLD of the particles  calculated according to Eq.4 is factored out in (7a) 

because it does not depend on the particle size. The corresponding averaging of the parameter B in 

(2a) and (6) results in the expression: 

2 2 2 2 2

0
8 1B n R , (8) 

where, in addition to (2b), the explicit relation between S and R for the spherical particles is taken into 

account. 

Then, one can propose a modification of the polydispersity index PDI in the given case. For 

the particles with the sharp boundary it is combined as a dimensionless ratio (Beaucage et al., 2004) 

4

P D I
g

B R

G
, (9) 

and takes its minimally possible value of 1.62 for homogeneous monodisperse spheres. Then, the 

normalized PDI index is introduced as 

4

n
P D I

1 .6 2

g
B R

G
. (10) 

Its value (which can be obtained directly from the experimental curve) is related to a polydispersity 

model, so PDIn can be used as a classification parameter. In the case of polydisperse particles with the 

diffusive surface only equation for the B-coefficient is principally modified from the viewpoint of 

averages of different powers of R, since it contains the average of the non-integer power of R (see 

Eq.8). The analog of PDI indexes in this case are the combinations: 



7 

4 2

P D I
g

B R

G
, (11a) 

4 2

n
P D I

( )

g
B R

t G
, (11b) 

where 

2

2 21 12
( ) ( 1)( 2)( 3) ( 1) ~ 1 .62 1 .78 0 .88

8 ( 4)( 5)
t . (12) 

It should be noted that along with the polydisperse particles with diffusive surface (1) Eqs. 11 

are valid also for the two-phase systems with analogous radially averaged interface (r) characterized 

by the wide diffuse transition from one phase to another. Since β is assumed to be small, still the 

normalized index PDIn can be used for the evaluation of the correlation type in the system, which is 

responsible for the observed transition from the Guinier to the power-law scattering. Here, the 

particles themselves are of a spherical shape with strict boundary for the solvent, so the only 

appropriate model, which can be naturally considered, is the model of polydisperse particles. Then 

PDIn index is to be used for comparison of the polydispersity rate in the studied systems with small β 

without any knowledge about the particle size distribution. As is shown in (Beaucage et al., 2004), in 

practical analysis of small-angle scattering data it is convenient to consider the particle polydispersity 

in terms of the approximation of the log-normal distribution of spherical particles: 

2 2 1 / 2

0
( ) exp ln ( / ) / 2 / (2 )f R R R s Rs . (13) 

Parameters R0 and s of the function (13) are directly determined by the PDIn index. Here, the 

corresponding expressions take the form: 

n

2

ln P D I

12 10 2
s , (14a) 

0 2

( 4 )( 5)

12 exp(14 )
g

R R
s

, (14b) 

Thus, for the SLD profile (3) the ideology of the approach (Beaucage et al., 2004) in the data 

analysis of the small-angle scattering from spherical-like particles with diffusive surface can be 

applied after some renormalizations in the equations for the scattering invariants (7), (8). This means 

that at small β-values the effect of (r) on the moments n
R  is similar to that in the case of 

homogeneous particles and explains the fact that the unified exponential/power-law approach can be 

well applied in the treatment of the experimental SANS data from non-homogeneous DND particles 

(Avdeev et al., 2009). 
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It is important to note that the considered approach is not valid for the pores with diffusive 

surface. The presence of a matrix (solvent) with zero SLD is essential for the obtained expressions. 

The „solvent-pores‟ inversion results in a principally different profile as compared to (1). By this 

reason, the scattering from DND powders, where the pores are the scattering particles against the 

matrix of DND crystallites (Avdeev et al., 2007b), cannot be treated properly by the proposed way to 

get the information about the pore polydispersity. 

4. Contrast variation

4.1. Scattering invariants 

The main peculiarity of the model presented in Section 2 which is essential for the contrast 

variation follows from Eq.4. While the particles are non-homogeneous, still its mean SLD is size 

independent. Using this fact one can define the effective mean SLD in the concept of the modified 

contrast (Avdeev, 2007a) as follows: 

2 2
/

e c c
V V . (15) 

Here and below 
c

V  denotes the particle volume inaccessible for the solvent, which for the SLD 

profile (3) equals to the volume of a sphere of radius R. Consequently, the contrast in the system is 

defined as: 

s
. (16) 

Then the forward scattered intensity has the form: 

2

2 2 2 2 2 61 6
( ) ( ) ( )

9
e s c e c

G n V n V n R , (17) 

i.e. in the effective match point (minimum in the intensity as a function of the contrast) the parameter 

(17) takes zero value. This means that as compared to the polydisperse non-homogeneous particles in 

the general case there is full matching for the considered particles with diffusive surface in the 

approximation (3) as for monodisperse particles! 

The second Guinier parameter, radius of gyration, in the case of monodisperse non-

homogeneous particles depends on the contrast as: 

2 2

2
( )

g c

a b
R R , (18) 

where: 

1 2
( ( ) )

c

c

V

a V r r dr , 
(19a) 
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2

1 2 1 2 1 2
( ( ) )( ( ) )( )

c c

c

V V

b V r r r r dr dr . 
(19b) 

Here, 
c

R  is the radius of gyration of the particle shape related to the volume 
c

V  (for the considered 

spherical particles it is 3 / 5R ). The parameters a and b are determined by the fluctuations of SLD 

inside the particles and formally describe the relative location of the particle components with 

different SLDs. It can be stated with assurance that in the frame of the considered model of the SLD 

profile (3) the a-parameter is negative, since „lighter‟ (from the viewpoint of scattering) components 

are at the periphery. Its direct calculation according to (19a) for the profile (3) gives: 

2 2

0

3 20 18
1 ( ) 0

5 ( 4 )( 5) 5
a R R v , (20) 

where 

5

1

( 9 )
( )

( )

i

v

i

. 
(20a) 

For the particles with the spherically symmetric SLD profiles the b-parameter is certain to take zero 

value: 

0b . (21) 

For polydisperse particles in the general case in accordance with (Avdeev, 2007a) for 
g

R  one has: 

1
2 2

2

2 2 2
1

( ) ( )

c c

g

c

R V A B D
R

V
, (22) 

where 

2 1 2 2 2
2 ( )

c c e c c
A V aV R V , (23a) 

2 1 2 2 2 2
( ) ( )

c c e c e c c
B V bV aV R V , (23b) 

2 1 2
( )

c e c
D V V . (23c) 

Using (15) and substituting (23) in Eqs. (20), (21) one obtains: 

8

2 1 2

06

1 8
( )

5
c c

R
A V aV v

R
 < 0, (24a) 

0B , (24b) 

0D . (24c) 

from which: 
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8 8

2 0

6 6

6 ( )3 20 3
1 1 1

5 ( 4)( 5) 5
g

vR R
R

R
. (25) 

For completeness we give the contrast changes of the inverse Porod volume for polydisperse 

particles, which are described by the general dependence (Avdeev, 2007a): 

1

2 2 2

1
1

( ) ( )

c

p c

V E F D

V V
, (26) 

where: 

2 1
2 ( )

c e c
E V V , (27a) 

22 1 2 2
( )

c c e c
F V V V . (27b) 

In accordance with (24c) the D parameter is zero. The F parameter contains the average of the mean-

square fluctuation of SLD inside the particle, whose calculation together with the mean SLD requires 

the mean value of the squared SLD. From (5) one has: 

2

2 0
6

(2 1)(2 2 )(2 3)
. (28) 

Then, for parameters (27) one obtains: 

0E , (29a) 

3

2 2

6

3
0

4

R
F

R
, (29b) 

0D . (29c) 

Similarly, the explicit expression for the inverse Porod volume for the considered particle type has the 

form: 

23 2

26

1 3
1

4
p

R

V R
, (30) 

4.2. Basic functions 

Finally, we consider the approach of the basic functions for the particles with the SLD profile 

(3). According to Stuhrmann (Stuhrmann, 1995) the general form of the scattered intensity for 

monodisperse particles as a function of the contrast has the form: 

2
( ) ( ) ( ) ( ) ( )

s cs c
I q I q I q I q , (31) 
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where Ic(q), Is(q), Ics(q) are the so-called basic functions which traditionally denote the „shape 

scattering‟ (scattering at the infinite contrast), the scattering from the inhomogeneity distribution 

within a particle (scattering at the match point) and the interference function, respectively. 

The scattered intensity for the monodisperse particles with the SLD profile (3) can be 

expressed as: 

2

( )
s c

I q n W V , (32) 

where 

0

0

4 / (1 / ) s in ( )

R

W q r R r qr dr , (33a) 

3
3 sin( ) cos( ) /( )qR qR qR qR . (33b) 

Accordingly the basic functions take the forms: 

2
( ) ( )

s c
I q n W V , (34a) 

( ) 2 ( )
cs с c

I q nV W V , (34b) 

2 2
( )

c c
I q nV . (34c) 

As one can see, the asymptotic behavior of the scattered intensity at large q-values is sensitive 

to the absolute value of s. Thus, the form (2b) of the B-parameter is valid only at s ~ 0. An increase 

in s results in the contrast growth, and the contribution of Ic(q) with the squared contrast start to 

prevail. This leads to deviations in the exponent of the power law (2b) from (4+2 ) and finally the 

scattering is transformed to the Porod regime from homogeneous spheres (formally at infinite 

contrast). In the case of  ~ 0 (match point) the scattering is determined only by the Is function; 

again, the asymptotic scattering retains the power-law form, but the corresponding exponent is now 

determined by the interference between W and Ф functions in (34a). 

The presence of the solvent is formally equivalent to the situation when the particles with the 

effective SLD profile (r) s are located in a vacuum. For this reason, the addition of the constant 

graph to the profile (1) to combine directly the diffusive properties of the surface and the transition to 

the graphite SLD at r = R would disturb the power law in the same way as the solvent effect 

mentioned above. 

When the particles are polydisperse, Eq. 31 is averaged in the way: 

2
( ) ( ) ( ) ( ) ( )

s cs c
I q I q I q I q . (35) 

Here, it is taken into account that according to Eqs. 15, 16 the contrast does not depend on the particle 

size. In terms of the concept (Avdeev, 2007a) the modified basic functions for polydisperse particles 
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with the SLD profile (3) are equal to averaged basic functions (34) of the corresponding monodisperse 

particles.  

So, the considered approximation to the SLD profile for the particles with diffusive surface 

gives comparatively simple expressions for the scattering invariants and basic functions, which takes 

the diffusivity index  into account. 

5. Model calculations

5.1. Analysis of polydispersity 

First, we consider the possibilities of the approach proposed in Section 4.1 for the model 

curves corresponding to polydisperse particles with the SLD profile (3). To satisfy the smallness the 

-exponent is varied in following modeling in the range of 0 - 0.2. Also, we assume that the particle 

size distribution function is of the lognormal type with the typical parameters of nanoparticles, 

R0 = 5 nm, s = 0.3. One can see that at ρs = 0 the ρ0-value determines just the scaling factor of the 

scattering, so it is set unity in the calculations. A differential cross-section per particle (on the basis of 

Eq. 32 averaged with (13)) over a typical q-range of 0.01 - 5 nm
-1

 for both SAXS and SANS present-

day instruments is presented in Fig.2. In accordance with Eq.2 the power-law decrease in the 

scattering is observed at large q-values with the exponent values between –4.4 and 4.0. 

The model curves are then treated in two ways. First, to calculate the PDI index and 

characteristics of the size distribution function the scattering parameters are obtained by applying the 

unified exponential/power-law approximation (6) over the total q-range (Fig.2). Second, the forward 

scattered intensity G and radius of gyration Rg are derived from the analysis of the Guinier range, 

while the direct fitting of the power law to the curve at large q-values gives B and  (see inset in 

Fig.2). In both ways the found invariants coincide within the errors. As a result, with increasing  the 

PDIn index (11b) changes between 3.0 (at  = 0) and 3.5 (at  = 0.2). The PDIn-values are 

consequently used for determining the parameters of the particle size distribution in accordance with 

(14), and for all curves independently of  the values of R0 = 4.98 nm, s = 0.30 are derived in full 

agreement with the model parameters. 

5.2. Contrast variation 

Two principally different cases of the particles with the SLD profile (3) are considered to 

follow the changes in the scattering curves when varying the solvent SLD in the typical interval of 

( 0.5 - 6.5)×10
10

 cm
-2

 restricted by the fully protonated and fully deuterated solvents in the 

experiments on the SANS contrast variation. Again, the polydispersity of the particles is modeled 

according to lognormal size distribution (13). In the first case (Model I) ρ0 is equal to 3.0×10
10

 cm
-2

,

and the effective match point is achieved within the indicated interval of the solvent SLD. In the other 
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case (Model II) ρ0 takes the value of 10.0×10
10

 cm
-2

, which is beyond the possibly covered interval of

the solvent SLD in the experiment. The other parameters are the same for the two models:  = 0.1, R0 

= 5 nm, s = 0.35, n = 2.5×10
16

 cm
-3

. The scattering curves are calculated by Eqs. 11, 32 in a q-range of 

0.03 - 5 nm
-1

. 

The scattering curves of the two models calculated for several ρs-values are shown in Fig.3. 

The parameters G and Rg are obtained from the Guinier approximation in a region of 1 /
g

q R  and 

analyzed in Fig.4. The minima of the quadratic dependences of G on the solvent SLD (Fig.4a) 

correspond to the effective match points, which coincide well with the mean particle SLD values 

(calculated with Eq.4): 2.5138×10
10

 сm
-2

 against 2.5136×10
10

 cm
-2

 (Model I) and 8.3789×10
10

 cm
-2

 

against 8.3787×10
10

 cm
-2

 (Model II). In full agreement with Eq.19 there is no residual scattering in the 

match points (see Fig.4a). The obtained dependences of the squared radius of gyration on the inverse 

contrasts in the two cases are shown in Fig.4b. According to (25) the linear behavior is observed for 

both models. The results of the fitting of Eq.22 using Eqs.24 (B = D = 0) are given in Table 1, where 

they are compared with the values calculated by using the initial model parameters. One can see that 

they coincide within a 2% error. The fitting lines intersect the ordinate axis at one point that in the two 

cases gives the parameter 2 2 2
/

c c c
R V V , which is a dimensional characteristic of the particles. The 

difference in the slopes is due to the different values of the average SLD according to (24a). 

The important observation concerns the changes in the apparent exponent of the power law in 

Fig.3 with the contrast variation. The corresponding dependences for the two models are given in 

Fig.5a. It is clearly seen that at the fixed -values the power-law type asymptotic behavior satisfies 

(2a) only when 0
s

, which corresponds to the situation considered by Schmidt (Schmidt et al., 

1991b). In the case 0
s

there are significant deviations from (2a), which have some specific 

modulation over the contrast. When 
s

 (infinite contrast) the exponents for both models tend 

to 4 (Porod law), which is in full accordance with the results of Section 4.2. At the match points the 

deviation from the Porod asymptotic limits changes its sign, so that at 
s

 the apparent Ps 

approaches 4 from above, while at 
s

 from below. The latter situation is very important from 

the experimental viewpoint because the observed values of the exponent in the power-law type 

scattering in this case being less than 4 can be interpreted as an indication of the fractal surface. So, a 

careful analysis of the power-law scattering regime from non-homogeneous particles in solutions is 

required, when 
s
 exceeds . 

6. Experimental aspects: liquid dispersions of detonation nanodiamond

The systems where the considered approach can be applied to some extent are the liquid 

dispersions of detonation nanodiamond. DND particles are ultra-fine single crystals of cubic diamond 
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with diameters of 4-5 nm (according to X-ray diffraction), which are formed during an explosion of 

oxygen-imbalanced explosives (Poole et al., 2000; Roduner, 2006; Baidakova & Vul‟, 2007; Vul‟, 

2013). Such particles are of current interest both from the practical and fundamental viewpoints. The 

latter is due to the fact that the DND particles are characterized by a natural change from 3
sp

hybridization of carbon in the 3D diamond structure to a surface 2
sp -hybridized graphite-like state 

(Raty et al., 2003; Eidelman et al., 2005). The existence of the diamond lattice in 3D even at this 

limiting size scale is well supported by the X-ray diffraction (XRD) data (Shenderova et al., 2002; 

Baidakova & Vul‟, 2007; Ōsawa, 2008; Vul‟, 2013). At the same time, the 2
sp  hybrid bonds are 

reflected in various spectroscopic (UV-Raman, XANES, FTIR) (Osswald et al., 2006) and resonance 

(EPR, NMR) (Panich et al., 2006) methods. In some cases, a graphite-like shell comprising two-three 

graphene sheets is resolved directly in HRTEM images (Aleksenskii et al., 1999). If one takes into 

account a large difference in SLD of diamond and graphite (these values are used for showing core-

shell SLD profile in Fig.1), then DND particles are to be considered as strongly non-homogeneous 

from the viewpoint of SANS, which can be applied for studying the discussed spatial transition. 

DND powders are to be purified and disaggregated before the single crystals are placed in 

liquid media; the complete separation is properly verified by dynamic light scattering. The final 

dispersions are highly stable (presumably because of some charge distribution on the particle surface), 

which makes it possible to use the SANS contrast variation for these systems. The polyhedral nature 

of DND particles (Raty et al., 2003; Barnard, 2008) makes it possible to consider them as spheres in 

small-angle scattering experiments; the spherical approximation for polyhedrons is valid for qRg < 8 

(Feigin & Svergun, 1987) which is the case in the experiments referenced below. 

However, an extremely high specific surface area of the separated DND nanoparticles in 

solutions results in the new aggregate growth especially for concentrated samples with the particle 

fraction above 1 wt % required for SANS experiments. Here, we consider the data of such 

experiments obtained previously (Avdeev et al., 2009) for the concentrated (10 wt. %) liquid DND 

dispersions in water and dimethylsulphoxide (DMSO) synthesized at the NanoCarbon Research 

Institute (Nagano, Japan) by stirred-media milling together with powerful sonication in wet conditions 

(Krüger et al., 2005; Ōsawa, 2008), initial DND powder from Gansu Lingyun Nano-Material Co., 

Ltd. (Lanzhou, China). The scattering curves were obtained at the SANS-1 small-angle instrument at 

the FRG-1 steady-state reactor of the GKSS Research Centre (Geesthacht, Germany). The differential 

cross-section per sample volume (or scattered intensity) isotropic over the radial angle  on the large-

area detector was obtained as a function, I(q), of the modulus of momentum transfer, q = 

(4 / )sin( /2), where  is the incident neutron wavelength and  is the scattering angle. The 

measurements were carried out at a neutron wavelength of 0.81 nm (monochromatization /  = 

10%) and a series of sample-detector distances within a range of 0.7-9.7 m to cover a q-range of 0.04-
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2.3 nm
1
. H2O was used to calibrate the curves on the detector efficiency. Additionally, the SANS

experiment on a new series of the aqueous DND dispersion (3.6 wt. %) synthesized in the Ioffe 

Physical-Technical Institute RAS (St. Petersburg, Russia) according to the procedure described in 

(Aleksenskiy et al., 2011), initial DND powder from the Federal State Unitary Enterprise 

“Technolog” (St. Petersburg, Russia), has been carried out on the YuMO small-angle time-of-flight 

diffractometer at the IBR-2 pulsed reactor, Joint Institute for Nuclear Research (Dubna, Russia). A 

two-detector setup with ring wire detectors were used (Kuklin et al., 2005). The neutron wavelengths 

within a range of 0.05-0.8 nm and sample-detector distances of 4 and 16 m were used to obtain 

scattering curves in a q-range of 0.65-4 nm
1
. A vanadium standard was used for an absolute 

calibration of the intensity. The raw data treatment was performed by the SAS program with a 

smoothing mode (Soloviev et al., 2003). All measurements were made in 1 mm thick quartz cells 

(Hellma) at room temperature. 

During the SANS contrast variation experiments the initial samples based on the H-solvents 

were diluted twice with various mixtures of the corresponding H/D solvents (the corresponding 

mixtures were measured and subtracted as buffer solutions). Figure 6 represents all experimental data. 

The absence of secondary peaks and bands in the scattering curves reflects the polydisperse nature of 

the DND particles. Two scattering levels are distinguished corresponding to a particle level (large q-

values) and a cluster level (small q-values). Both of them reveal the power-law-type dependences 

(linear behaviors in the double logarithmic scale). The found exponents of about 2.3 (Fig.6a, b) and 

2.5 (Fig.6c) for the cluster level show that the clusters are mass fractals (Schmidt, 1991a). The 

influence of the structure-factor corresponding to the cluster-cluster interaction results in an effective 

Guinier-type regime at smallest q-values, which makes it possible to estimate the apparent radius of 

gyration of the clusters. The comparatively high absolute scattered intensities observed at this level 

can give rise to the question about the possible multiple scattering. However, one can see that with 

increasing volume fraction of a deuterated component in a solvent, , the curves at this level differ 

just by some scaling factors (up to 2.5), i.e. the character of the curves remains the same. This proves 

that the multiple scattering effect is negligibly small within the experimental errors. The particle level 

gives the exponent of about 4.14 (Fig.6a, b) and 4.12 (Fig.6c) corresponding to the particles with 

the diffusive surface in accordance with Eq.2a. The fact that the smoothed character of both levels 

retains at the contrast variation allows one to apply the exponential/power-law approximation (6) to 

the curves with different -values, but it should be extended for the two levels as follows (Beaucage, 

1996): 

2 2 2 2 *

2 2 *

( ) ex p / 3 ex p / 3

ex p / 3

P

g g N D

P s

N D g N D N D N D

I q G q R B q R q

G q R B q C

. (36) 
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Here, the „ND‟-index denotes the particle (nanodiamond) level; Ps corresponds to the particle surface; 

parameters without indexes correspond to the cluster level; renormalizations *
q , *

N D
q  are made with 

Rg, RgND, respectively. Also, Eq. 36 contains the residual incoherent scattering background, C, usually 

occurred in neutron scattering experiments. When fitting the SANS data all parameters in Eq.36 were 

varied independently to avoid possible artifacts because of constraints (Hammouda, 2010). The 

resulting fits of (36) are given in Fig.6. One can see that the scattering at the cluster level complicates 

the direct interpretation of the curves according to the equations given in sections 3, 4, which can be 

used now with some restrictions.  

As follows from the note in section 3, the analysis of the polydispersity can be made only for 

the solutions with 0
s

. The closest cases from the experimental solutions to this condition are the 

solutions with 10% of D2O ( 10 2
0.13 10 cm

s
) and 0% of D-DMSO ( 10 2

0.046 10 cm
s

), 

respectively. The found parameters of the particle level from the corresponding scattering curves are 

collected in Table 2 together with the determined parameters of diffusivity  and PDIn indexes (in 

accordance with Eq. 11b). Using the experimental parameters and the calculated PDIn indexes, one 

obtains (in accordance with Eqs.14) the parameters of the particle size distribution function in the log-

normal approximation (R0, s) and the corresponding calculated mean radii and standard deviations 

( R , σ), which are also presented in Table 2. Their values reflect well the fact that the DND particles 

are strongly polydisperse. The rate of the polydispersity differs for the systems from different 

producers, which follows from the comparison of the PDIn indexes as well as from the parameters of 

the effective log-normal distribution. The corresponding mean diameter of the particles, ~3 nm, is less 

than the characteristic size determined by X-ray diffraction (4.5 nm). In the last method the coherent 

scattering region, L, is defined from the peak broadening according to the Scherrer formula (Balzar et 

al., 2004): 

(2 ) co s( )
L

B
, (37) 

where  is the radiation wavelength; B(2θ) is the integral peak width; and 2θ is the scattering angle. 

For polydisperse crystallites L is determined by the ratio of the fourth and third moments of the size 

distribution function in the way (Scardi & Leoni, 2001): 

4

3

2 R
L

K R
, (38) 

where KB is the Scherrer constant, which depends on the crystallite shape and type of the crystalline 

lattice (Palosz et al., 2007) and lies in the range of 0.82 1.3 (Langford & Wilson, 1978). Thus, one 

has the following relation between the sizes obtained with different diffraction methods: 
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8 6
2 2 ( ) ~ 2 /

X R D g SA N S
R L R R R . (39) 

According to the equations of section 4.1 the analysis of the contrast variation should be 

given for the parameters GND, RgND. We found, however, that because of the effects of the cluster 

organization and the residual incoherent background the precision of these parameters is not sufficient 

to make reliable conclusions from their changes with the solvent SLD. Nevertheless, the mean particle 

SLD can be reliably estimated by using the cluster level, if one takes into account the fact that the 

branched aggregates form after the separated DND particles are dispersed in liquids. Thus, there is 

full access of the solvent to the particle surface (besides their contacts in the aggregates) and the 

formation of the voids free of the solvent (  = 0) is excluded. In this case, both the structure-factor of 

the particle correlation in the clusters (fractal power-law dependence) and the structure-factor 

corresponding to the cluster-cluster interaction (deviation from the power law at smallest q-values) are 

modulated by the particle form-factor dependent on the contrast. So, at one particle concentration (i.e. 

with one structure-factor for all solutions) the s-dependence of the scattering at the cluster level is the 

same as for the particle level. Here, it is analyzed by using the parameters G and Rg in Eq. 36 of the 

effective Guinier approximation to the initial parts of the curves. The main goal was to extrapolate the 

scattering to the forward scattered intensity G, which is required to find the match point. While in the 

general case the Guinier approximation is not so appropriate for the scattering from the interacting 

clusters with respect to the apparent radius of gyration, Rg, and there can be a significant systematic 

error in this parameter, still it does not show any change with the contrast within the experimental 

errors for the curves in Fig.7. Its experimentally found values are Rg = 18.3(1) nm and Rg = 

17.9(2) nm (DND in water of both series, respectively) and Rg = 16.1(3) nm (DND in DMSO) in the 

solutions with different s. This means that the structure-factor is certainly independent of the 

contrast, and the G parameter depends on s in the same manner as GND. One can use it well for 

determination of the particle match point, and, since G/GND ~ 100, avoid any possible uncertainties 

related to the signal/background ratio. 

The dependences G
1/2

 ~ s are shown in Fig.7 and give the mean SLD values 

10 2
10.5(5) 10 cm  and 10 2

10.8(6) 10 cm  (DND in water of the two series, respectively) and 

10 2
10.2(4) 10 cm (DND in DMSO), which agree very well with the values 

10 2
10.4(3) 10 cm  and 10 2

10.6(5) 10 cm  estimated from (4) by using the known SLD of 

diamond, 10 2

0
11.8(3) 10 cm , as revealed from its crystalline structure, and experimentally found 

. It is worth noting that if we use the s-dependence of the B-parameter in (36) like for G the 

corresponding values of the mean SLD are very close to those obtained above, namely, 
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210
cm10)5(7.10  and 10 2

10.9(7 ) 10 cm  (DND in water of the two series, respectively) and 

210
cm10)4(4.10  (DND in DMSO). 

Thus, one has very good consistency of the continuous profile (3) reflecting the diffusive 

character of the particle surface with the mean particle SLD, which is not reasonably achieved, if one 

uses the „core-shell‟ approximation. The fact that the experimental curves are obtained at s lying at 

one side of the match points explains the low sensitivity of the RgND parameter to the contrast; it lays 

within 3.0-3.4 nm and has the experimental error of about 0.5 nm for all solutions. To illustrate this 

point, in Fig.4a along with the model dependences of RgND ~ 1/  the interval of the inverse contrast 

covered in the discussed experiments is indicated. One can see that the relative change of RgND within 

this interval does not exceed several percent, which is within the experimental error. A widening of 

this interval towards lower  will result in the growth of the background effect and, as a 

consequence, larger errors in RgND. The similar situation takes place for the s dependence of the 

experimental parameter Ps shown in Fig.5b. It is reliably determined only in the vicinity of s = 0 and 

qualitatively repeats the results of the analysis of the model curves in Fig.5a.  

It should also be pointed out that as one can see, the aggregate level in DND solutions of 

different origins is rather reproducible with respect to the structural characteristics. Especially it 

concerns the observed fractal dimension of the aggregates, which suggests one mechanism of the 

cluster growth in this kind of systems. 

7. Conclusions

The smallness of the diffusivity exponent, , for the particles with diffusive interface makes it 

possible to introduce the continuous SLD profile within the particles and principally simplify the 

interpretation of the scattering data from polydisperse systems. Especially it concerns the SANS 

contrast variation experiments with H/D substitution, where the behavior of the scattering from such 

particles in solutions is similar to that from monodisperse non-homogeneous particles with some 

effective mean SLD. As a consequence, the scattering invariants show comparatively simple and 

transparent contrast dependences. Nevertheless, the effect of the additional coherent scattering from 

the solvent is significant for the observed power-law behavior with respect to the apparent exponent, 

and, hence, the region when this type of the scattering can be reliably analyzed is restricted by the 

vicinity of s ~ 0. Here, the analysis of polydispersity (as for homogeneous particles) can be 

additionally done in terms of the concept of the modified polydispersity index. 

The developed approach has been successfully probed in the structural characterization of 

liquid dispersions of detonation nanodiamonds, which show a deviation from the Porod law in SANS 
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towards the power-law-type scattering from diffusive interfaces. Again, the smallness of the 

experimentally observed -parameter for DND fits well a spatial transition from bulk diamond to 

surface graphite states of carbon within the nanoparticles, thus justifying the use of the continuous 

SLD profile in the analysis of the SANS data. As a result, the size characteristics of the DND 

nanoparticles including the size distribution function have been obtained. A strong and developed 

aggregation of the DND nanoparticles in concentrated solutions makes it possible to perform the 

contrast variation experiments with high precision against the residual incoherent background in 

SANS experiments. This analysis testifies strongly in favor of the concept of the continuous profile in 

DND and combines the diffusive properties of the particles and the shift of the mean particle SLD 

from diamond SLD detected by SANS, which cannot be done in the frame of the core-shell 

approximation. 

Table 1 Comparison of parameters of the functions Rg
2
(1/Δρ) obtained from the calculations using

the initial model parameters (calc) and from the treatment of the model scattering curves (scat). 

2 2 2
/

c c c
R V V , nm

2 A, ×10
-4

 

calc scat calc scat 

Model I 83.350 83,013 -9.118 -9.062 

Model II 83.350 83.29 -30,39 -30.18 

Table 2 Best parameters of the particle level (GND, RgND, BND, Ps) in Eq.36 fitted to the experimental 

curves at s ~ 0 and the characteristics of DND calculated using these parameters. 

Sample GND, 

cm
-1

 

RgND, 

nm 

BND Ps PDIn R0, 

nm 

s <R>, 

nm 

σ, 

nm 

DND in 

water 

(Fig.6a) 

5.7(2) 3.19(4) 0.628(4) 4.14(2) 0.07(1) 7.6(5) 1.36(5) 0.40(1) 1.48(6) 0.62(3) 

DND in 

DMSO 

(Fig.6b) 

6.8(2) 3.10(2) 0.756(2) 4.14(2) 0.07(1) 6.9(3) 1.41(3) 0.40(1) 1.52(4) 0.61(2) 

DND in 

water, 

new series 

(Fig.6c) 

3.9(5) 3.30(8) 0.423(9) 4.12(4) 0.06(2) 9(1) 1.2(1) 0.43(2) 1.3(1) 0.58(6) 
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Figures 

Figure 1 SLD profiles (r) of spherical particles (outer radius R restricts the solvent inaccessible 

volume) with diffusive boundary of different thickness d are compared with „sharp‟ Porod and „core-

shell‟ interfaces.  = 0.07 << 1. 0 corresponds to SLD of diamond. The SLD of the shell in the 

„core-shell‟ approximation corresponds to the SLD of graphite. 
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Figure 2 Model scattering curves (points) from polydisperse particles with diffusive interface (3) at 

ρs = 0 when varying -exponent. The solid lines reflect the unified exponential/power-law 

approximation (6). For convenience two curves for different -values are shown. The inset shows a 

power-law decrease at large q-values for several -values with restricting curves (dashed lines) 

corresponding to the minimal and maximal exponent in the power-law for the considered -interval. 
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Figure 3 Changes in the scattering curves for Model I (a) and Model II (b), with the contrast 

variation (see text). The legends show the solvent SLDs indicated in units of 10
10

 cm
-2

. The solid lines 

follow the power law corresponding to Eq.2a. 
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Figure 4 Guinier parameters under model contrast variation. (a) Forward scattered intensity as a 

function of the solvent SLD (points) approximated by Eq.18 (solid lines) for the two models. The 

found match points (shown by arrows) are used as  for definition of the contrast in the 

corresponding cases. (b) Squared radius of gyration as a function of the inverse contrast (points) 

approximated by Eq.22 using Eqs.24 (solid lines) for the two models. The vertical dashed lines 

restrict the interval covered in SANS experiments (Section 6). 
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Figure 5 (a) Parameter Ps (found from the model curves) as a function of the solvent SLD for the 

two considered models at the same  = 0.1. The two-side arrow marks the only case ( s = 0) when Ps 

= 4+2  (Schmidt asymptotic limit). The dashed-line circle shows the region covered in SANS 

experiments (SANS). The one-side arrows mark the match points of the models. (b) Experimentally 

found dependences of Ps-parameter on the solvent SLD for the two kinds of solutions in the vicinity 

s ~ 0. 
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Figure 6 Experimental SANS curves for 5% DND dispersions in water (a) and DMSO (b) and 1.8 % 

DND dispersion in water of the new series (c) at different contents of the deuterated component in the 

solvents. For convenience three curves for each of the systems are presented. The inset contains the 

initial parts of all measured curves. The fitting solid lines correspond to Eq.36. The power-law 

behaviors for the cluster level (small q-values) and particle level (large q-values) are distinguished. As 

an example, the exponential/power-law approximation to the particle scattering level is shown 

(dashed line) for the lowest curves. 
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Figure 7 Experimental dependences G
1/2

 ~ s for the considered solutions. Found match points are

indicated in units of 10
10

 cm
-2

. 
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