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Abstract The method of conditional moments is generalized to include evaluation of the ef-
fective elastic properties of particulate nanomaterials and to investigate the size effect in 
those materials. Determining the effective constants necessitates finding a stochastically av-
eraged solution to the fundamental equations of linear elasticity coupled with sur-
face/interface conditions (Gurtin-Murdoch model). To obtain such a solution the system of 
governing stochastic differential equations is first transformed to an equivalent system of 
stochastic integral equations. Using statistical averaging, the boundary-value problem is then 
converted to an infinite system of linear algebraic equations. A two-point approximation is 
considered and the stress fluctuations within the inclusions are neglected in order to obtain a 
finite system of algebraic equations in terms of component-average strains. Closed-form ex-
pressions are derived for the effective moduli of a composite consisting of a matrix and ran-
domly distributed spherical inhomogeneities. As a numerical example a nanoporous material 
is investigated assuming a model in which the interface effects influence only the bulk modu-
lus of the material. In that model the resulting shear modulus is the same as for the material 
without surface effects. Dependence of the bulk moduli on the radius of nanopores and on the 
pore volume fraction is analyzed. The results are compared to, and discussed in the context of 
other theoretical predictions. 

Keywords: spherical nanoparticles, composites of stochastic structure, effective properties, 
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1. Introduction 
 
Surface residual stresses at the interface between matrix and inclusions have a significant 
effect on the effective properties of particulate nanomaterials, wherein the size of the nano-
particles (nanoinhomogeneities) is at the atomic scale. Various approaches can be adopted to 
quantify that effect. Studies of the size dependent behavior of particulate nanomaterials can 
be conducted by direct atomistic computer simulation (see, e.g., Garg and Sinnott, 1998; 
Garg et al., 1998b; Robertson et al., 1992). Miller and Shenoy (2000) developed a continuum 
model which accounts for surface elasticity to describe the size dependence of the elastic ri-
gidities of nanosized structural elements. Further, they presented the bulk and surface elastic 
properties of aluminum and silica, calculated from empirical atomistic potentials. 

The model of elastic surfaces developed by Gurtin and Murdoch (1975, 1978) and Gurtin et 
al. (1998) is employed in many recent publications on nanocomposites (see, e.g., Gurtin and 
Voorhees, 1993; Kienzler and Herrmann, 2000; Maugin, 1993, 1995; Steinmann, 2002, 
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2008). The Gurtin-Murdoch model introduces the size-dependence of the overall properties 
of nanocomposite materials through the inclusion of residual surface stresses and additional 
elastic properties at the interface between the matrix and the inhomogeneities. The influence 
of the resulting interface stress jump is extremely small if the inhomogeneities are sufficient-
ly large (and, therefore, are neglected in classical mechanical analyses of composites). How-
ever, it becomes significant if the curvature radii of the inhomogeneities are in the range of 
nanometers (below 50 nm). By using Gurtin and Murdoch’s theory, several authors modified 
the known deterministic micromechanical models and introduced the surface elasticity and/or 
surface tension into relationships for homogenized effective properties of nanocomposites 
(McBride et al., 2011, 2012; Mitrushchenkov et al., 2010, among others).  

Although the Gurtin-Murdoch surface model has been proposed more than 30 years ago, the 
3D theory addressing the problem of the effective properties of the particulate nanocompo-
sites with Gurtin–Murdoch interfaces is still not sufficiently well developed and analyzed. 
The approximate approaches used for evaluating effective elastic moduli of particulate nano-
composites with Gurtin–Murdoch interface include the “dilute”, or non-interacting, model 
(Yang, 2004) and various self-consistent schemes (see Chen et al., 2007; Duan et al., 2005c, 
2007, among others). The variational bounds on the bulk modulus of a nanocomposite with 
spherical inhomogeneities and interface effects have been obtained by Brisard et al. (2010). 
Most of those publications use a “single inhomogeneity in an unbounded solid” model (see 
Cahn and Larché, 1982; Duan et al., 2005a,b; He and Li, 2006; Lim et al., 2006; Sharma and 
Ganti, 2004). Consequently, these results are only justified for composites with a low content 
of dispersed phase particles. In addition, in all of these papers surface tension is neglected.  

Recently, Kushch et al. (2011) have developed an approach based on multipole expansion 
and obtained a solution of the elasticity problem for an infinite space containing multiple in-
teracting spherical inhomogeneities with the complete Gurtin and Murdoch interface model. 
This approach can be regarded as the micromechanical, finite cluster model of nanocompo-
sites. The analogous finite cluster model was developed and used by Mogilevskaya et al. 
(2008, 2010a,b) to study the effects of surface elasticity and surface tension on the overall 
transverse elastic behavior of unidirectional fiber-reinforced nanocomposites. The representa-
tive unit cell model of nanocomposites is developed further by Kushch et al. (2013). To ob-
tain a complete solution of the problem, the theory of periodic multipoles has been modified 
and adopted. In the approach the displacement vector within the matrix domain is written as a 
superposition of vector periodic solutions of the Lamé equation. Some of the particulate 
nanocomposites considered in those publications had a random (or quasi-random) structure. 
Independent of that structure, however, if the effective properties are of interest in those con-
tributions, the elastic fields in the entire domain (matrix and inhomogeneities) are found first. 
Subsequently, either averaging of the obtained strain and stress fields or the equivalent inho-
mogeneity approach (in which the local elastic fields were also used) was employed to find 
the overall properties of the material.  

In all of the above publications analysis of nanocomposites with randomly distributed parti-
cles (or fibers) was essentially based on deterministic calculations of just one, or more, reali-
zations of particle distribution. Such approaches are valid, in particular if the results obtained 
from analyses of many specific realizations of particle distribution were evaluated statistical-
ly. However, a computational approach to the problem does not really permit to easily dis-
cern how various parameters of the problem affect the overall mechanical properties of the 
nanomaterial at hand. That requires a significant post processing effort and parametric studies 
leading to multiple diagrams and charts, but even with those diagrams the functional depend-
ence of the effective properties on the data of the problem is elusive. 

In the current work random particulate nanocomposites are considered. The statistical ap-
proach employed is different than the existing techniques presented in the literature on that 



subject. To this end, the method of conditional moments will be generalized to cover the case 
of particulate nanomaterials. The method of conditional moments proposed by Khoroshun 
(1978) and further developed by Khoroshun et al. (1992, 1993),  Nazarenko et al. (2009), is a 
statistical method dealing with constructing the statistically averaged solution and determin-
ing the effective properties of composites with a stochastic structure.  If the structure is sto-
chastic, one can use the ergodicity property and determine the overall properties of the mate-
rial without having to find any local fields in the composite. Instead of finding the effective 
properties through macro-volume averaging of the local elastic fields, the solution process 
begins by statistical averaging of the governing equations themselves at one micro-point.  By 
eliminating the need to find the local elastic fields the present approach considerably simpli-
fies the formulation and the solution of the problem. Still, the approach captures a very sig-
nificant amount of information about the nanocomposite, including information about the 
shape and orientation of nanoparticles (anisotropy) and interaction between them.  In some 
cases (including the example considered in this work), the approach presented here gives a 
possibility to obtain closed-form expressions for the effective properties of a material with 
Gurtin–Murdoch interface conditions.  

In this work the problem of an infinite solid subjected to a uniform loading (at infinity) and 
containing stochastically distributed interacting spherical nanoinhomogeneities with interface 
residual stress and elasticity is solved by method of conditional moments. This approach is 
applied to the boundary value problem and, in general, leads to an infinite system of linear 
algebraic equations. As in most mathematical formulations of problems leading to infinite 
system of equations, if one solves such a system, the result constitutes the exact solution of 
the problem. In practice such infinite systems have to be truncated, which introduces a certain 
amount of approximation dependent on the degree of that truncation. In the current contribu-
tion, the finite system of equations is obtained by employing a two-point approximation and 
by neglecting the stress fluctuations within inclusions. The unknowns in that system are the 
statistical component-average strains. As a numerical example a nanoporous material is in-
vestigated assuming that influence of the interface effects on the effective bulk modulus of 
the composite is of only interest. Within the framework of such a model the resulting shear 
modulus is the same as for the material without surface effects. The dependence of the bulk 
moduli on the radius of nanopores (for certain fixed pore volume fractions) and on the pore 
volume fraction (for certain fixed radius of nanopores) are analyzed. 

 

2. The classical problem of effective constants 

 

2.1 Basic classical relations for a micro-point  
 
We consider a representative macro-volume V consisting of a matrix with randomly distrib-
uted inclusions. 
 
For linear-elastic materials the problem is described by the following set of equations: 
 

 equations of equilibrium: 

 0x )(divσ , (2.1) 

 Hooke’s law: 

 )()()( x:xCx εσ  ,   (2.2) 

 linear kinematic relation: 



  )(sym )( xux ε , (2.3) 

where the fourth-order tensor of elastic constants )(xC  is a random, statistically homogeneous 
function of coordinates with a finite scale of correlation and linked to the inclusion and to the 
matrix properties as follows: 

    )()()( 21 xCxCxC zHzH  . (2.4) 

Here, H  is the Heaviside function and 1C  and 2C  denote the values of the tensors of elastic 
moduli in the inclusions and in the matrix, respectively. The function )(xz  is defined as fol-
lows: 
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where 1V  and 2V  are the domains of the inclusions and the matrix, respectively. 

Insertion of Eqs. (2.2) and (2.3) into Eq. (2.1) yields  

    0xu:xC  )(sym)(div . (2.6) 

It is customary to decompose the random fields )(xC  and )(xu  into fluctuations, marked by 
the superscript “0”, and averages: 

 cCxCxC  )()( 0 ,    xxuxu  ε)()( 0 . (2.7) 

The tensor cC  can be represented by constant components as follows: 
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with 2211 CCC cc   and      11
22
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  CCC cc , where 1c  and 12 1 cc   denote the volume 
fractions of the inclusions and of the matrix, respectively, i.e.,  2111 VVVc  . Although cC  
can be chosen in a number of different ways (and each choice may lead to a different result), 
it has been shown in the existing literature (see Khoroshun 1978; Khoroshun et al., 1993, 
where the present and other choices for cC have been discussed) that the definition of cC  
specified in Eq. (2.8) is, in a sense, beneficial.  

Upon inserting the Eq. (2.7) into (2.6), equation (2.6) can be rewritten in the following equiv-
alent form: 

      0x:xCxu:C  )()(div)(symdiv 00 εc . (2.9) 

In the equation above, the first term only contains one random function (it is linear from the 
point of view of stochastic analysis), whereas the second contains a product of two random 
functions (stochastically nonlinear). This split is of importance in the subsequent conversion 
of the stochastic differential Eq. (2.9) into a stochastic integral equation.  

The boundary conditions on the surface of the macro-volume are 

 0xu S)(0 . (2.10) 

The characteristic dimensions of the macro-volumes and macro-surfaces must be significant-
ly larger than those of the inclusions. Therefore, in the subsequent development we will con-
sider them as infinite and the boundary conditions will take the form: 

 0xu )(0  (2.11) 



It is noted that as the macro-volumes increase, the concentrations are kept constant as are the 
average distances between the inclusions. Thus, with the increase of those volumes the num-
ber of the inhomogeneities also increases and the structure of the material remains un-
changed.  

By using Green’s function, the solution of the system of differential equations (2.9) can be 
rewritten in terms of an integral over the infinite region V (see Khoroshun 1978, Willis 
1977): 
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where β  is an arbitrary constant, and the Green's function )(xG  satisfies the following equa-
tion: 

   0IxxG:C 
2

)(δ)(div c ,  0xG )( . (2.13) 

Here,  xδ  denotes the Dirac delta function and 
2

I  is the identity tensor of second rank in the 
three-dimensional space. Taking into account the linear kinematic relations (2.3) as well as 
Eq. (2.12) and applying Gauss’ theorem leads to the following non-linear stochastic integral 
equations (i.e., integral equations that contain a product of stochastic functions of coordi-
nates) for the random strain field: 

  )( )()()( 0 y:yCyxKx εεε  . (2.14) 

Formally, this is a Fredholm equation of the second kind, also referred to as Lippmann-
Schwinger equation (see Kröner, 1977). In the equation above, the integral operator )( yxK   
is the integral operator, involving Green's function defined by equation (2.13) and associated 
with an elastic body with a constant elastic-moduli tensor cC  (Khoroshun 1978; Khoroshun 
et al. 1993).  

Some comments about the preceding development and about the specific form of the operator 
)( yxK  of Eq. (2.14) used in this work are now in order. For a finite volume V the operator 
)( yxK   would act according to the rule:  
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where the first integral is taken over the entire region V, the second over the surface of that 
region, n  represents the unit vector orthogonal to the surface S  (bounding the volume V) and 
pointing away from V. The influence of the boundary integral can be neglected (Willis 
(1977); Khoroshun (1968, 1978) among others) if β  is assumed to be the mean (or expected) 
value of )(yψ , that is when ψβ  , and if the volume V is large. Then )(yψ  is oscillatory 
around ψ  and the mean value of ψyψ )(  equals zero. Invoking the Saint-Venant’s principle, 
its oscillatory boundary values influence the result of the operation of Eq. (2.15) only in a 
narrow region adjacent to the boundary. Consequently, for large V, the averaging process 
performed later to obtain the effective properties of the material is accurate without the sur-
face integral in Eq. (2.15). Clearly, neglecting the surface integral is particularly justifiable 
when volume V is taken to be infinite, which is done in this work. This reasoning is reflected 
in the transition from the boundary condition given in Eq. (2.10) to that of Eq. (2.11), and, 
subsequently, in the boundary condition for the Green’s function given in Eq. (2.13). As a 
result the following form of Eq. (2.15) used in this work is arrived at: 

      y
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where, again, ψ  is taken as a mean value (expectation) of )(yψ and the Green’s function G  
corresponds to the infinite domain V.  

An important issue in the preceding development is integrability of the function appearing 
under the integral sign in Eq. (2.15). In this regard a rapid decay of the second derivatives of 
the Green’s function G  is one very important characteristic of that function. However, for the 
integration of Eq. (2.15) to be meaningful the argument )(yψ of the operator K  in Eq. (2.15) 
is required to have certain additional properties. At this stage of development the function 

)(yψ  is not known, and one can only assume (and subsequently verify) that it does possess 
those required properties. However, in the subsequent developments it will be shown that, in 
addition to allowing elimination of the surface integral in Eq. (2.15), in the method of condi-
tional moments adopted herein, the term ψ  present in Eq. (2.15a) leads to integrands which 
are integrable over R3. 

 

2.2 The Method of conditional moments 

 

The integral equation (2.14) can be rewritten in the following form:  

   




 )2()2(0)2()1()1( εεε :CxxK ,  (2.16) 

where: 

  )1()1( xεε   ,   )2()2( xεε   ,  and  )2(0)2(0 xCC   . (2.17) 

Employing conditional statistical averaging (Khoroshun 1978; Khoroshun et al., 1993) to Eq. 

(2.16) with respect to the two-point conditional density 




 )1()2()2()1( ,,


Cεεf , i.e., the density of 

strain distributions at the points )1(x , )2(x  and the elasticity moduli at point )2(x  provided that 
point )1(x  belongs to the  -th component,  2,1 , we obtain the following system of alge-
braic equations: 
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where kC  is the elastic modulus tensor in the k -th component of the nanocomposite and 0
kC  

is defined as 

 ckk CCC 0 . (2.19) 

The function  )1()2(
kf  denotes the probability that the point )2(x  belongs to the k -th compo-

nent, provided the point )1(x  belongs to the  -th component, and )1()2()2( ,kε  is the expectation 

value of the strain tensor at point )2(x , provided that the points )2(x  and )1(x  belong to the k -th 
component and to the  -th component, respectively. 

In order to solve this system, the two-point conditional moment )1()2()2( ,kε  must be deter-

mined. For this purpose, Eq. (2.16) is averaged over the three-point conditional density  
 )1()3()2()2()1( ,,, kf Cεε   to obtain the following system of algebraic equations: 
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By continuing this process, one obtains an infinite system of equations defining the condi-
tional moments: 
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To solve the obtained system, it is necessary to specify the conditional multipoint probability 
functions 
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In the description above, the concept of a component is interpreted more generally by includ-
ing a set of structural elements not only with identical physical properties but also with iden-
tical parameters such as shape, orientation, dimensions, etc. (i.e., unidirectional, uniformly 
distributed, …).  It is noted that conditional multipoint probability functions may serve to 
characterize all such features of inclusions. 

If the infinite system just described could be solved, the resulting conditional moments of Eq. 
(2.21) would completely and exactly characterize the analyzed nanocomposite. In reality, the 
process of constructing successive equations of the problem has to be terminated at some 
step. However, this requires additional conditions to close the truncated system of equations. 
To this end, one can take, for instance, one of the following conditions: 

 0,,, )()2()1()1(

21
i

i ε  ,  εε )()2()1()1( ,,,
21

i

i   ,  )1()1()()2()1()1(

121
,,,  εε i

i
 . (2.23) 

In this work, to obtain a finite system of algebraic equations, a two-point approximation is 
used and the closure of the system is achieved by imposing the condition: 
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For a two-point approximation it is necessary to specify the two-point conditional probabili-

ties (two-point conditional distribution functions)  )1()2(
kf . With that specification it is suffi-

cient to only consider Eq. (2.18) and the additional condition )1()1()()2()1()1(

121
,,,  εε i

i
 , which 

implies that the strain fluctuations within each component are neglected.  In this case, the 
following system of algebraic equations in terms of component-average strains will result: 
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where 
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 kk fp  xx . (2.26) 

In order to evaluate Eq. (2.25) we specify the two-point conditional probabilities 
 )2()1( xx kp , which characterize the shape and arrangement of the inclusions, and construct 

the tensor of elastic moduli cC  of a reference body.  This tensor is present in the equations of 
two-point approximations due to neglecting moments of higher order.  The choice of the ten-
sor cC  determines in many respects the closeness of the calculated values of the effective 
constants to the true values.  It is known that when one chooses 0cC  or cC  the Reuss 
and the Voigt bounds will result, respectively (Khoroshun 1978). By assuming that cC  is 
equal to the tensor of elastic constants of the components with the maximum and minimum 
rigidities, we arrive at the upper and lower Hashin-Shtrikman bounds (Hashin and Shtrikman 
1963).   



 
3. The problem of effective constants accounting for Gurtin-Murdoch conditions  
 
3.1 Gurtin-Murdoch equations for the matrix-inhomogeneity interface 
 

In order to investigate the interface effect on the overall elastic properties of a composite with 
nanoparticles, further governing equations in addition to those of classical elasticity, are 
needed. Those include the Gurtin-Murdoch equations (see Gurtin and Murdoch, 1975, 1978) 
describing the kinematic and equilibrium compatibility conditions between the matrix and the 
nanoinhomogeneities at the interface IS , which can be written as: 

 0xu  )(
IS][ ,     0xxnx  )(div )()(   SSS II

σσ ][ . (3.1) 

The unit vector n  is normal to the interface. This vector can point in any of the two possible 
directions as long as all of the subsequent developments are consistent with a particular 
choice. In the current contribution, it is assumed that at each interface the normal n  points 
away from the inclusion. The square brackets indicate the jump of the field quantities across 
the interface, defined as their value on the side towards which the normal n  is pointing minus 
their value on the side from which it is pointing. Thus, the first of the two equations in Eq. 
(3.1) represents continuity of the displacement vector across the interface (coherent interface) 
and the second describes equilibrium conditions of the interface itself. The additional equa-
tions also include the following definition of the interface/surface stress tensor Sσ , present in 

the term SS I
σdiv  denoting the surface divergence of the surface tensor Sσ  (Gurtin and Mur-

doch, 1978): 

       )()(2)(tr)( 0000 xuxIxIx
ISSSSSSSS   εεσ . (3.2) 

In the equation above, Sε  is the interface/surface strain tensor, SI  represents the identity ten-

sor in the plane tangent to the surface, 0  is the magnitude of the deformation-independent 
surface/interfacial tension (assumed “hydrostatic” and constant in Gurtin-Murdoch model), 
and S , S  are surface Lamé constants. 

It is convenient to introduce the projection tensor P  employed by Gurtin and Murdoch 
(1975): 

 nnI 
2

P , (3.3) 

where 
2

I is the bulk identity tensor of second rank. P  maps a tensor field from the bulk to the 
plane with normal n . Thus, for an arbitrary vector field v , the surface gradient and surface 
divergence read (see Gurtin et al., 1998): 

   P vvS ,     vv SS  tr)(div  . (3.4) 

 
3.2 Bulk-surface relations for a micro-point  
 

Inserting Eq. (2.2) into (2.1), taking the divergence and accounting for the stress jump across 
the particle/matrix interface of Eq. (3.1) we obtain: 

     0xxnxx:xCx  )()()()()(div)(div z][σεσ ,    
ISz  x0x)( . (3.5) 

Here    is the Dirac delta function, while 0x )(z  defines the interface. In classical compo-
site material with large inhomogeneities, the last term in Eq. (3.5) is absent since the jump in 



the normal traction is negligibly small. In the present case of nanoinhomogeneities whose 
curvature radius is small, this term can be interpreted as a body force applied along the inter-
face. 

Inserting Eq. (2.3) into Eq. (3.5) and taking into account the second condition in (3.1), we 
rewrite Eq. (3.5) as: 

      0xxxu:xC  )(div)()(sym)(div  SSz σ  . (3.6) 

Upon inserting the Eq. (2.7) into Eq. (3.6), separating the linear part of the differential opera-
tor in (3.6) and using Green’s function, the following formula defining the fluctuations in the 
displacement field within the entire region V is obtained: 

    
yy S

ySSy
V

SV d)(div)(d-)( )(div)()( 00 yyxGβy:yCyxGxu σε . (3.7) 

This expression (with β  playing the same role as in Eq. (2.12)) relates the displacement field 

)(0 xu  to the unknown strain field )( xε  and the interface values of the displacements which 

enter the definition of )(xSσ , as seen in Eq. (3.2). The first integral in Eq. (3.7) is the classical 
part (see Eq. (2.12)), while the second integral represents the additional contribution of the 
surface forces, present because of the particular model of the interface adopted herein.  

Inserting Eq. (3.7) into the linear kinematic relations (2.3), as well as accounting for Eq. (2.7) 
and employing Gauss’ theorem, leads to the following stochastic integral equation for the 
strain field: 

  



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




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
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ISSx Sd)(div)(sym)( )()()( 0 yyxGy:yCyxKx σεεε , (3.8) 

where )( yxK   acts according Eq. (2.15a).  

Under the assumption that the surface gradient of displacements is negligible, and with the 
help of the surface projection tensor introduced earlier, the surface divergence of the surface 
stress tensor can be written in the following form  

  )()()()(div)(div 0 xIxxx:Cx SSSSS  PP εσ ,  (3.9) 

where tensor SC  is the standard, two-dimensional tensor of surface isotropic elasticity result-

ing from Eq. (3.2), with the effective Lame constants 00 ,   S
eff
SS

eff
S . Replacing 

the surface divergence present in Eq. (3.8) by the right-hand side of the above formula gives 
the following equation 

  )( )()()( 0 y:yCyxKx εεε    

  
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explicitly showing that Eq. (3.10) is a stochastic integral equation with the strain field as the 
unknown random function.  

The influence of the surface displacement gradient present in Eq. (3.2) (and neglected in Eq. 
(3.9)) on the effective properties of nanocomposites definitely deserves further and more rig-
orous investigations. From the point of view of the approach presented in this work, however, 
its retention in Eq. (3.9) introduces the second unknown random function, displacement )(xu , 
which is related to strains and which requires a different approach to the problem. This will 
be undertaken in the future. Still, aside from this technical difficulty, there exists some evi-



dence indicating that the inclusion of the surface displacement gradient in Eq. (3.9) may not 
affect the effective properties in any meaningful way. That evidence can be found in the 
analysis of Mogilevskaya et al. (2008, 2010a,b) which shows that the changes in the local 
elastic fields (stresses and strains) due to inclusion (or omission) of surface displacement gra-
dient is essentially imperceptible. Some changes can be seen only in a very rare situation 
when two neighboring inhomogeneities, one significantly smaller than the other, are in a very 
close proximity to one another. Then, the smaller of the two constitutes some kind of stress 
concentrator on the surface of the larger inhomogeneity, and even then the changes in the 
values of strains and stresses are small and very localized. Thus, in a typical nanocomposite 
containing particles of comparable size, the local elastic fields – and, thus, their averages 
which are used to define the material effective properties - are not likely to be significantly 
affected by inclusion of surface displacement gradient. This observation provides a physical 
justification for neglecting the surface displacement gradient in Eq. (3.9). 

Irrespectively of the existing evidence justifying complete removal of the surface displace-
ment gradient in Eq. (3.9) presented in the preceding paragraph, it is easy, and always possi-
ble, to include its symmetric part in the present development. This part, arguably, constitutes 
the dominant and the most important piece of the surface displacement gradient (with the 
remaining part being the local rotation of the surface). As shown in Mogilevskaya et al. 
(2008), the symmetric part of that gradient gives surface strains and its inclusion in Eq. (3.2) 
in place of the entire surface gradient would eliminate the last term but it would change the 
coefficient multiplying the strain tensor Sε  in that equation from  02  S  to  02  S . With 
such partial inclusion of the surface deformation gradient, the general form of Eq. (3.9) and 
the approach adopted herein would remain intact.  

In this work, the surface displacement gradient has been neglected completely.  The principal 
reason for that was that it is the first work including surface effects in the analysis of nano-
composites with random structure and based on the conditional moments. Thus, it was 
deemed to be important to compare the results obtained by the present method with those 
obtained by other similar techniques. Here, the results obtained by the proposed method of 
conditional moments will be compared with those of Duan et al. (2005c), which is similar in 
the sense that it also employs an averaging technique (although of a different kind) and does 
not include the last term of Eq. (3.2). 

 

3.3 Spherical nanoinhomogeneities 
 

We consider a matrix with randomly distributed spherical inclusions under a homogeneous 
load at infinity. Furthermore, we consider a model in which the emphasis is placed only on 
the contribution of the surface properties to the effective bulk modulus of the composite. 
With that in mind, one plausible assumption is that the state of strains in the inhomogeneities 
is nearly purely volumetric. Then, the surface strains represent “isotropic” stretch (or contrac-
tion); the longitudinal strains at the interface (and elsewhere in the nano-inhomogeneities) are 
identical in all directions. Under those conditions the expression for the surface stress tensor 
reduces to 

 )()( xIx SS sσ   (3.11) 

with 

    )()(tr 10 xx PP  εSSs  ,  (3.12)  

being a constant specifying the magnitude of the total interface stress. It is noted that Sharma 
and Ganti (2004) arrive at a similar result using different arguments. Also, it needs to be em-



phasized that, even though the second term of Eq. (3.12) does not include the surface ten-
sion 0 , under the assumption that strain field within the inhomogeneities is nearly purely 
volumetric, this equation represents all details of the Gurtin-Murdoch formula of Eq. (3.2). 
The residual stress 0 , which is present in those terms of Eq. (3.2) which contain the surface 
strains, cancels out as a result of this particular assumption. Finally, even though the method 
used in this work leads to a complete tensor of material constants, it is anticipated that the 
shear modulus resulting from the model introduced herein will be the same as for a composite 
without surface effects. 

With parameter s  of Eqs. (3.11) and (3.12) constant, evaluation of surface divergence of the 
surface stress tensor reduces to the surface divergence of the surface identity tensor (see App. 
A): 

 )(2)(div xnxI SS , (3.13) 

where  is the mean curvature of the inclusions (i.e., the curvature of the spheres in the pre-
sent case with an appropriate sign, depending on the orientation of vector n ). Consequently, 
in the case of a nanocomposite with spherical inclusions, Eq. (3.10) yields: 
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Applying Gauss’ theorem, the surface integral is converted into a volume integral 
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The second integral in the above equation can be transformed further to yield the following 
expression containing the classical Eshelby tensor (i.e., the term in the curly brackets) for the 
reference medium (see Mura, 1987): 

  )( )()()( 0 y:yCyxKx εεε   
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1- d)(sym2 I:yxG:C:C
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The tensors 0C  and cC  in Eqs. (3.14)-(3.16) are determined by Eqs. (2.7), (2.8).  

 

3.4 Application of the method of conditional moments 

 

Employing conditional averaging (Khoroshun 1978) in Eq. (3.16), limiting the analysis to a 
two-point approximation, and performing some necessary transformations, the following sys-
tem of linear algebraic equations is obtained from which the component-average strains can 
be computed 

      
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0
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0 tr2 I:S:C:C:K cSS
k

kk
νk PP  
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1εεεε  ,   2,1 .  (3.17) 

The tensor S  is the classical Eshelby tensor (see Mura, 1987) and the tensor 0
kC  is defined by 

Eq. (2.19); the operator νkK  is defined as follows: 

 )()( yxyxKK  k
νk p ,  (3.18) 



where )( yx kp  denotes the conditional probability that point y  belongs to the k -th compo-

nent if point x  belongs to the  -th component or, in other words, the transition probability 
from the  -th condition to the k -th condition (Khoroshun 1978; Khoroshun et al., 1993) and 
Integral operator )( yxK   acts according to the rule (2.15a).  

Some comments of general nature may be of interest before further specification of the opera-
tor νkK  defined in Eq. (3.18). To this end it is first noted that the transition probabilities satis-
fy the following conditions: 

   1
2
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
k

kp x ,     xx  kkk pcpc  , (3.19) 

     kkp 0 ,    kk cp  ,   2,1, k . 

Eq. (3.19)1 states that each point belongs either to  -th component or k -th component of the 
system, whereas Eq. (3.19)2 is the result of a simple transformation based on the fact 

that    cf )1( ,  1
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1
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and on the theorem of total probability stating that 
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k fff 


  .  In the preceding expression  )1(
f ,  )2(

f  denote the probabilities that 

the points )1(x , )2(x  belong to the  -th component of the system  and c  denotes the volume 
fraction of that component.  Eq. (3.19)3 represents the fact that a point x  can belong only to 
one component, and finally, Eq. (3.19)4 follows from the condition that there is no long-range 
order in the composite.  

From the properties expressed by Eq. (3.19) the following form of representation for the tran-
sition probabilities can be deduced (Khoroshun et al., 1993) 

   )()( xx kkkkk Φccp    ,  (3.20) 

where the functions )(xkΦ  possess the following properties   

    xx  kk ΦΦ  ,      



2

1k
kkΦcΦ xx   ,    

   10kΦ  ,    0kΦ  ,   2,1, k . 

For a two-component composite the above properties further imply that  

          xxxxx ΦΦΦΦΦ  22211211 . 

An example of a specific correlation function )(xΦ  (which only depends on the distance be-
tween points) for a composite with randomly distributed spherical inclusions of radius 0R  can 
be specified on the basis of probability theory (see in Khoroshun et al., 1993; Nazarenko et 
al., 2009). This correlation function has the following form: 
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It can be verified that in the process of statistical averaging the correction term 
)( )()( 0 y:yCyψ ε  of Eqs. (2.14) and (2.15a) becomes )(kp . Thus, the operator νkK  of Eq. 

(3.18) takes the following form: 

        Vppp kk

V

xxk
νk d)(-)()(sym)()(  xxGxxKK  



        x

V

xxkk VΦc d)(sym xxG   ,  (3.22) 

since, in view of Eqs. (3.20) and (3.21),   kk cp   and   )()(-)( xx Φcpp kkkk    .  

Considering that the second gradient of the Green function G  behaves as 3r  with r , 
while function Φ  of Eq. (3.21) is integrable when raised to any power 1p  , the convolution 

)()( xxK kp  is defined by integration of a function integrable over R3.  

Taking into account Eq. (3.21) the operator νkK  can be represented by  

   LK kk
νk c  ,  (3.23) 

where L is an isotropic rank four tensor. It is determined in terms of two scalars a  and b   

  jkiljlikklijijkl baL   ,  (3.24) 

with 
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and with c , c  being the Lamé constants of the reference medium (Khoroshun et al., 1993).  

The tensor L  is the classical Hill tensor, which is a product of the inverse of the elasticity 
tensor and the Eshelby’s tensors as given, for instance, by Mura (1987). As mentioned earli-
er, in the present work the elastic constants defining that tensor are related to the properties of 
the reference medium. 

Having outlined some general issues related to the evaluation of the operator νkK of Eq. 
(3.18), certain details of this evaluation will be presented next.   

Correlation function )(xΦ  of Eq. (3.21) and, as a consequence, the two-point transition prob-
abilities )(xkp  of Eq. (3.20) depend only on the norm of vector x  (and not on its direction). 

Under those conditions the operator )( yxK   of Eq. (3.22) can be decomposed as follows 

 )()(ˆ)()()()( yxyxK00KyxyxK  kkk ppp  . (3.26) 

The integral operation )(ˆ yxK   in the above equation extends over the entire domain, exclud-
ing the points yx   and Sy  ( S  being the surface of the macrovolume). Furthermore, if the 
correlation function only depends on the distances  yx   between two points, then the inte-

gral operator )(ˆ yxK   of Eq. (3.26) yields   0)(ˆ  yxyxK Φ  (see Eshelby 1957; Willis 

1977; Khoroshun 1978; Buryachenko 2001; among others). Then, the relationship for the 
operator νkK  can be represented by Eq. (3.23)-(3.25) independently of the specific form of 
 yx Φ . 

In summary, for the case of a composite with isotropic components and randomly distributed 
spherical inclusions the explicit representation of the correlation functions is not needed and 
the method of conditional moments is equivalent to the method of moments by Khoroshun 
(1967, 1968). Further, it is identical with the statistical assumptions later introduced by Willis 
(1977). 

Taking into account Eq. (3.23), the system of linear algebraic equations (3.17) can be rewrit-
ten in the following form:  

        
2

-1
102

0
21

0
121 tr2 I:S:C:C:C:L cSSc PP  εεεεε  .    (3.27) 



This last equation (3.27) can be simplified using the fact that 01 R for spheres, where 0R  
is their radius (the minus sign is due to the assumption that the normal to the interface vector 
n  is pointing away from the inhomogeneities).  Furthermore, it is noted that an isotropic rank 

four tensor cC  can be written in terms of Lamé constants 

    jkiljlikcklijcijklcC   .   (3.28) 

As shown by Sharma and Ganti (2004) (and as follows from Eq. (B.7f) and the definition of 

tensors DH,,I,C
2

c in Appendix B), the following relation holds 
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22
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in which cK is the bulk modulus of the reference medium. By inserting Eq. (3.28), and Eq. 
(3.29) into Eq. (3.27), taking into account that 2211 εεε cc  , and noting that for isotropic 
spherical inclusions (see Mura, 1987):  
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we can eliminate 2ε  from Eq. (3.27) to obtain 
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where c  is the Poisson’s coefficient of the reference medium and 

 cCCC'  4 ,   12214 CCC cc  .    (3.31) 

In view of Eq. (2.8) the new tensor C'  defined in the above equation is isotropic and can be 
characterized by two constants 'K  and ' (cf. Appendix B) which are dependent on the con-

stants defining 2C  and 1C  and on the concentration of the constituents.  

Noting that 1

222
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  IIIε , the relationship between the mean strain in the inclusions 1ε  

and the mean strain in the macroscopic volume ε  reads as follows:   
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Using the relationships for macro stresses 222111 εε :C:C cc   and Eq. (3.32) for the averaged 
strain in the inclusions and the averaged strain in the macroscopic volume, we can write the 
constitutive equation for the macro-volume in the following form: 
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The relationship for determination of the effective stiffness tensor (which depends on the 
radius of nanoparticles) can be deduced to be: 
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where 3C  is 

 213 CCC  .      

The relationship (3.33) between the macro stresses and the macro strains depends on the ra-
dius of the nanoparticles. The radius is also included in the expression for the effective stiff-
ness tensor (3.34). It is interesting to note that the second term in the right hand side of Eq. 
(3.33) is the only term containing the strain-independent surface tension on the ma-
trix/nanoparticles interface. Surface tension is not considered in the investigations of Duan at 
al. (2005), Chen at al. (2007) and Brisard at al. (2010) with whose results the results obtained 
herein are compared. This part of Eq. (3.33) vanishes in the absence of surface tension be-
cause none of the two terms of the right hand side of Eq. (3.12) contains both surface tension 
and surface elasticity at the same time. In other words, in Eq. (3.12) the effects of surface 
tension and surface elasticity are separated. As explained following Eq. (3.12), this separation 
is present in Eq. (3.12) in spite of the fact that the Gurtin-Murdoch material surface model is 
used here without any simplifications – it occurs only because of the special model of the 
problem introduced in this work. It is also interesting to note that, in the present approach, the 
split between the two terms in Eq. (3.33) emerges naturally and the identification of the effec-
tive properties is unambiguous. Finally, it is noted that if the radius of a spherical particles 0R  

is large, then  0][ 0  RSS   and Eqs. (3.33), (3.34) reduce to the classical ones without the 
interface effect (Nazarenko et al., 2009): 
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The constitutive equation for the macro-volume (3.33) and the relationship for determination 
of the effective stiffness tensor  (3.34) obtained by the method of conditional moments func-
tions take into account a random distribution of nanoparticles in the matrix and interactions 
between nanoparticles in the framework of two-point approximation. This formulation, com-
bined with the particular model used in this work, accounts also for volumetric contribution 
of the surface stresses due to the nanosize of the particles in the composite. 

As shown in Appendix B, the following closed-form scalar expression for the effective bulk 
modulus can be extracted from a more general tensorial formula of Eq. (3.34)  
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In this expression 1c  , 1K  and 2c  , 2K  are the volume fractions and bulk moduli of the inclu-
sions and of the matrix, respectively; cK  is the bulk modulus of the selected reference medi-
um;  K  depends on a and b of Eq. (3.25) (as seen in Eq. (B.7a)) and, therefore, on the proper-

ties of the reference medium as well;  
03

4ˆ
R

K SS
S

 
  can be interpreted as an apparent in-

crease in the bulk modulus of the inhomogeneities associated with presence of the material 
surface surrounding them. Formula (3.36) appears different that the one presented in the pa-
per by Duan et al. (2005c). 

When 0ˆ SK (no surface effects) the following expression is obtained from Eq. (3.36) 
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which, noting that  cc
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 , is further transformed to yield 
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Expression (3.38) is identical to the relationship obtained by the method of moments (see in 
Khoroshun et al. 1993) for the bulk modulus of the material with the same stochastic struc-
ture as the one considered here. This constitutes a confirmation that Eq. (3.34) obtained by 
the method of conditional moments is correct. 

The additional variable SK̂ in the expression for the effective bulk moduli given in Eq. (3.36), 
occurs due to introduction of the Gurtin Murdoch surface model, and is identical to the cor-
rection term obtained by Duan et al. (2005c), Chen et al. (2007) and Brisard et al. (2010), 
who in their solutions used the same surface elasticity models (albeit without surface ten-
sion). However, the relations for determination of the effective bulk moduli are different here 
than in those papers, which can only be attributed to differences in the approaches used in the 
respective analyses. 

We would like to note that, when matrix is selected as the reference medium, Eq. (3.38) coin-
cides with the upper Hashin-Shtrikman bound presented in Hashin and Shtrikman (1963). 
Brisard et al. (2010) extended the Hashin-Shtrikman bound formula to include surface elas-
ticity. In their work the same parameter SK̂  that appears in Eq. (3.36) is introduced as a cor-
rection to the bulk modulus of the inclusions. This leads to Hashin-Shtrikman bounds ac-
counting for surface elasticity which are formally identical with those without surface effects 
but with the real bulk modulus of the inclusions replaced with their modified bulk modulus. 
In the present manuscript parameter SK̂  appears as a result of averaging of the stochastic in-
tegral equation (3.16). Comparison of Eq. (3.36) with Eq. (3.37) reveals that the former can-
not be obtained by replacing 1K  with SKK ˆ

1  in Eq. (3.37), as is possible in the case of Hash-
in-Shtrikman bounds by Brisard et al. (2010). This is another yet indication of the (somewhat 
expected) fact that the stochastic averaging introduced here by the method of conditional 
moments accounts for interactions between the inclusions, or between various constituents of 
the composite, in a different, more complicated way than other methods. 

Finally, it is noted that in Appendix B a scalar formula for the effective shear modulus is also 
derived. As expected, the specific modeling assumptions introduced in this work lead to the 
expression for the effective shear modulus which is unaffected by the interface properties and 
coincides with that obtained earlier by Khoroshun (1978), Khoroshun et al., (1993). 

 

4. Numerical results 
 

The relationship for the effective properties of a composite material containing randomly 
distributed spherical nanoparticles derived in the preceding sections is used to analyze a ma-
terial containing spherical pores ( 011  K ), as illustrated in Fig.1.  

 



 

Fig.1: Macro-volume of a material with randomly distributed spherical pores. 

The numerical results are presented for an aluminum matrix with the following properties: 
GPa2.752 K  and 3.02  . The free surface properties used in the present work are the same 

as those in Duan et al. (2005c). In their work two sets of surface properties are used, corre-
sponding to the surfaces oriented along two different crystallographic directions: A: 

N/m48912.3S  and N/m2178.6S  for surface [100] and B: N/m842.6S  and 
N/m3755.0S for surface [111].  

In Fig. 2 the normalized bulk modulus clKK /*  for different surface properties is presented as 

a function of the cavity radius 0R  (nm), for the pore volume fraction c1=0.5. The subscript 
“cl” is used to represent the results for the classical solution, i.e., the solution without inter-
face stress. The normalized bulk modulus clKK /*  calculated for different void volume frac-

tions for two different void radii is shown in Fig. 3. The surface effect on the effective bulk 
modulus becomes negligible if the radius of the cavity is larger than about 20 nm. As ex-
pected, this numerical illustration indicates that the surface effect is particularly significant 
for smaller sizes of pores. Depending on the type of the material surface, the effective proper-
ties of the above porous material can be stiffer or less stiff. For a close-packed aluminum 
surface Al [111] the material becomes stiffer for smaller pores, while for the less dense sur-
face Al [100] the bulk modulus decreases with the pore size. 

The variation of the normalized bulk modulus clKK /*  with the void volume fractions calcu-

lated by the method of conditional moments (solid line – surface A, and dot-dashed line – 
surface B) for the material containing spherical cavities of radius 50 R nm, is shown in Fig. 
4. For comparison, the normalized bulk modulus for the same material, obtained on the basis 
of self-consistent scheme by Duan et al. (2005c) is also shown in Fig.4. Both approaches use 
a Gurtin-Murdoch surface model and the same values of the model parameters. Even though 
Duan et al. (2005c) use the Gurtin-Murdoch model without surface tension 0  and in the pre-

sent approach 0  is included, the bulk modulus formula developed here does not contain sur-
face tension either, which is a result of the approach adopted. Thus, although different in their 
approaches, those two formulations are comparable.  

Fig.4 shows that the normalized bulk moduli obtained by different approaches are very simi-
lar for small volume fraction of pores, smaller than 3.01 c , which provides an evidence that 
the Gurtin-Murdoch surface model has been successfully introduced to the method of condi-
tional moments. For higher value of volume fraction the values of those moduli differ by a 
larger amount. 

The relationship for the effective stiffness tensor of Eq. (3.34) is obtained by the method of 
conditional moments within the framework of the two-point approximation. As mentioned 
earlier, for the case of composite with isotropic components and randomly distributed spheri-
cal inclusions the method of conditional moments is equivalent to the method of moments by 
Khoroshun (1967, 1968). It is also identical with the statistical assumptions introduced by 
Willis (1977) and with Mori-Tanaka approach used by Duan et al. (2005c). The difference 
between the results calculated by the method of conditional moments and by Duan et al. 



(2005c) can be explained by the fact that Duan’s results are obtained on the basis of the 
Eshelby solution for a single inclusion in an infinite medium with subsequent application of 
self-consistent technique. In the method of conditional moments the statistical averaging is 
performed on the exact governing integral equations for composite with randomly distributed 
spherical inclusions (which account for all possible interactions); the solution for macro-
parameters emerges naturally from such averaging process.  

 

Fig.2: Dependence of the normalized bulk modulus clKK /*  on the radius of a spherical cavi-

ty 0R (nm) for the void volume fraction 5.01 c . 

 

Fig.3: Dependence of the normalized bulk modulus clKK /*  on the void volume fraction 1c . 

Nanoparticles can have various shapes and can be anisotropic (like nanotube fibers, for ex-
ample). Application of the method of conditional moments to analyze materials containing 
inhomogeneities with those, more complex geometric and mechanical characteristics is likely 
to be more interesting and more important. It is also likely to be more effective than other 
methods, given its past success in analysis of composites with anisotropic components and 
spheroidal or ellipsoidal inclusions without surface effects. 



Comparison of the results derived by the method of conditional moments with the calcula-
tions done via other methods and experiments was presented in Nazarenko et al. (2009) and it 
shows that the method of conditional moments can successfully be used for composites in the 
case of high contrast in the properties of the constituents, anisotropy of components and high 
volume fraction of inclusions. 

 

Fig.4: Dependences of the normalized bulk modulus clKK /*  on the void volume fraction 1c  

for the radius of a spherical cavity 50 R (nm). 

 
5. Conclusions 
 

A mathematical model for investigation of the effective properties of a material with random-
ly distributed nanoparticles, which requires a special treatment of the surface between matrix 
and nanoparticles, has been proposed.  The surface effect is introduced via Gurtin-Murdoch 
equations (Gurtin and Murdoch, 1975, 1978) describing properties of the ma-
trix/nanoparticles interface, which are added to the system of stochastic differential equations 
formulated within the framework of linear elasticity.  

In the current work, the problem of finding the effective constants is ultimately reduced to 
finding a stochastically averaged solution of a system of stochastic differential equations 
based on the fundamental equations of linear elasticity which are coupled with sur-
face/interface elasticity fully accounting for the presence of surface tension. In the process of 
deriving that solution, use is made of Green’s function to first transform this system to a sys-
tem of statistically non-linear integral equations. Instead of seeking the solution for the local 
elastic fields and averaging them in order to find the effective properties of the material, in 
this approach the first (or preliminary) step of the analysis is the statistical averaging per-
formed on the governing integral equations themselves. Theoretically, this leads to an infinite 
system of linear algebraic equations in terms of multipoint conditional moments. This system 
can be truncated at any level of approximation. In this work, a finite system of algebraic 
equations for component-average strains is obtained by neglecting the stress fluctuations 
within the inclusions and restricting the derivation to a two-point approximation. Two-point 
conditional probabilities which are included in this system characterize the shape of nanopar-
ticles and their arrangement, albeit only in an approximate manner. As explained in the paper, 
at that level of approximation, and for the particular application considered here, the method 



of conditional moments used here coincides with the method of moments introduced by 
(Khoroshun 1967, 1968). 

For the sake of numerical illustration of the approach, a nano-porous material consisting of an 
isotropic matrix and spherical nanocavities has been chosen. The bulk modulus of such a ma-
terial has been analyzed for varying volume content and varying radius of the nanocavities 
within the specific model which focuses on the influence of the interfaces on the effective 
bulk modulus of the composite.  

The size effect introduced due to addition of the residual stresses and elasticity on the ma-
trix/nanoparticles interface (surface of nanocavities in the chosen numerical example) is ac-
counted for in the expressions for effective bulk moduli of the composite. The numerical ex-
ample shows that the proposed statistical approach is capable to reveal that even in random 
nanocomposites the surface effect is significant for smaller sizes of pores. It is also able to 
capture the qualitative influence that a particular type of the material surface between matrix 
and nanoparticles has on the effective properties of porous aluminum with random distribu-
tion of pores. Comparison with results obtained on the basis of the self-consistent scheme 
shows that the method of conditional moments is comparable in accuracy and can be success-
fully used for investigation of particulate nanomaterials. A higher discrepancy for larger vol-
ume fractions is probably associated with inadequacies of both methods as each of them in-
troduces some, although different, approximations to make the solution possible. Those ap-
proximations are very likely to play a more significant role for higher levels of pore concen-
tration.  

Even though random composites can be analyzed using other techniques, including various 
increasingly popular numerical techniques (such as finite element method and methods based 
on the boundary integral formulations), the method of conditional moments has its distinct 
merits. One of them is its elegant treatment of truly random composite structures. The other is 
its ability to provide closed-form expressions for the effective properties of nanocomposites 
from which the influence of different problem parameters can be inferred, at least qualitative-
ly. These features alone have an important intellectual value.  

 

Appendix A. Surface divergence of the surface identity tensor field. 

 
A1. Background  

Let’s assume that the surface of interest is locally parameterized by  ,  2,1 ,  that is the 

position vector of a point on that surface is expressed as  r . Then, one can define a couple 
of vectors G   

  
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r

G
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 ,  (A1) 

which forms the vector basis in the linear space tangent to the surface S, called the natural 
basis. Another basis in the same tangent space, denoted by ΔG  and called dual or reciprocal, 
is defined via the following orthogonality condition 

 
 Δ

Λ GG , (A2) 

where the symbol “•” represents the “dot” (or “inner”) product of vectors and 
 is the 

Kronecker “delta”.   



The bases G  and ΔG  are functions of  and their derivatives can be expressed by the well-
known Gauss-Weingarten formulas (see Itskov (2007), for example). For the natural basis 
these formulas are (cf. Eq. (A1) for notations) 
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with a unit vector n normal to the surface. Here, an index repeated in the subscript and super-
script position implies summation, 




  GG ,  are the so-called Christoffel symbols (of 
the second kind) and nG   ,B  are the components of the local curvature tensor. Eq. (A3) 
together with Eq. (A1) implies that   BB  whereas the definition of the Christoffel sym-

bols and Eq. (A1) imply the following symmetry property 



   . The analogical formu-

las for the derivatives of vectors of the dual basis are 
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where 
B  are the so-called mixed components of the local curvature tensor. 

As in other situations, tensors in the tangent space represent linear transformations of the vec-
tors in that tangent space into vectors in the same space. They can be represented as linear 
combinations of dyadic product of some vectors in that space. If a tensor is represented by a 
single dyadic of two vectors, e.g., baT  , it operates on a vector v  as follows 

 v)a(bvb)(avT  .   (A5) 

Any tensor in the tangent space can be represented by a linear combination of dyadic com-
posed of vectors of the basis G alone, G alone, or a combination of those two sets of vec-
tors. For example, the curvature tensor B (components of which appear in Eqs. (A3) and 
(A4)) can be represented in several ways shown below (as well as many other ways) 
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In the above equation double summation is implied and the (indexed) coefficients multiply-
ing the dyadic are various components of the tensor B . They all can be different, but they are 
related to each other by transformation formulas involving the so-called Gram matrices relat-
ed to the natural or dual bases. Those matrices are defined as follows 

   GGG ,      GGG .    (A7) 

As an example of the relationship between various components of the curvature tensor B one 
can present the following  

 



  GBB     (A8)  

Components of tensor B appearing in the above equation are present in Eqs. (A3) and (A4). 

 
A2. Surface identity tensor field and its surface divergence. 

With the above background information it is easy to see that the surface unit tensor at each 
point of the surface can be (for example) defined as follows 

 
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It is so because, for any vector v , which can always be represented as 
 Gv v , 
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Surface divergence of a tensor field T of any rank, defined on surface S, is described by the 
following general formula (see an analogical formula for volumetric divergence in Itskov 
(2007)) 

 
  GTT ,divS .  (A11) 

Applying this formula to the field of the surface unit tensors of Eq. (A9) yields  
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With the use of Eqs. (A3) and (A4), the above formula is transformed further  
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where, in the last couple of transformations, a change of (dummy) indices was introduced, the 
relationships of Eqs. (A7) and (A8) were utilized, and orthogonality of n  and G  was taken 
into account. Considering that the mean curvature of a surface is defined as 
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1B ,  it follows that 
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which is the formula used in the main body of the paper.  

 
Appendix B. Scalar formulas for the effective material properties. 
 
B1. Some basic operations on rank four isotropic tensors. 

The operations presented here are standard, but they are reiterated here for a more detailed 
explanation of some transformations used in the main body of this paper. 

Considering that both the matrix and the nanoinhomogeneities are assumed isotropic and 
linearly elastic, all tensors involved in the tensorial form of the formula for the effective elas-
tic properties, Eq. (3.34), are isotropic fourth order tensors. Thus, for example,  
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where 2211 ,,,  are Lamé constants characterizing the bulk material of the nanoinhomoge-

neities and the material of the matrix, respectively, 
2

I and 
4

I are the rank two and rank four 
identity tensors, and the operation (12) represents the “swap” (or transposition) on the first 
and the second position of the following tensor. To be more specific, if iG  and iG , i=1,2,3, 
denote a vector basis and its reciprocal (or dual) vector basis (cf. Appendix A)  
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It is noted that the tensor L  of Eq. (3.24), which is not a constitutive tensor, also has the form 
of Eq. (B.1), and that all linear combinations of tensors having that form (such as those pre-



sent in Eqs. (2.8) or (3.31)) are tensors possessing the same form, with the same linear com-
bination of the parameters   and  . 

It is clear that, if the tensors like those presented in Eq. (B.1) operate on second rank non-
symmetric tensors, their part containing the swap (12) is needed to yield the symmetric sec-
ond order tensor as the outcome of this operation. Given that, in this particular application, 
the second order tensors on which all fourth rank tensors entering Eq. (3.34) operate are 
symmetric, the swaps included in Eq. (B.1) are not needed. Thus, in the present case, Eqs. 
(B.1) may be cast in the following equivalent forms, a common practice in describing prob-
lems of linear elasticity, 
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where     ,3/23,3/23 222111   KK are the bulk moduli of the corresponding materials 
and the fourth rank tensors H  and D , interpreted as operators, are projectors of the second 
order tensors on their volumetric (or hydrostatic) subspace and deviatoric subspace, corre-
spondingly (cf. Brisard et al. 2010 or Duan et al. 2005). It can be verified, either directly by 
employing Eqs. (B.2) or simply by interpretation of the operations of the projection, that 

 DD:D0,H:DD:HHH:H  .  (B.4) 

All rank four tensors present in Eq. (3.34), have the form expressed in the rightmost part of 
Eq. (B.3). For tensors possessing such representation extremely convenient formulas for the 
superposition of the operations those tensors represent (i.e., their multiplication, or double 
contraction) and for their inversion are deduced when the properties of Eq. (B.4) are taken 
into account. For the superposition one has 
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and for the inversion (illustrated here only for tensor 1C ) 
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So, in the case of multiplication the corresponding constants have to be multiplied whereas in 
the case of inversion they need to be inverted; otherwise the form of the resulting tensor re-
mains unchanged. These formulas greatly facilitate further evaluation of Eq. (3.34). 

 
B.2. Development of the scalar formulas for the effective material properties. 

It is first noted that tensors involved in Eq. (3.34), and defined in the main body of the paper, 

can be presented in the following forms (C of Eq. (2.8)) with the help of Eq. (B.6)) 

 









422422
IIIIIIIL baba 2)12(

4
   

  
DHIIIII

22422
bKb

ba
23

3

1
2

3

1

3

233





















 ,   (B.7a) 

     DHDHC3 332121 2323   KKK ,   (B.7b) 

     DHDHC4 4421122112 2323   KccKcKc ,   (B.7c) 
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 DHCc ccK 23   ,   21

__

c CC,CC     and   12c CC,CC  ,  (B.7f) 

     DHDHC' ''
21122112 2323   KccKKcKc cc .  (B.7g) 

The meaning of the new symbols introduced at the rightmost part of the above equations is 
easily inferred from those equations, except that for the symbols in Eq. (B.7g) two possibili-
ties exist, depending on which of the two conditions specified in Eq. (B.7f) characterizes the 
material under consideration. In either case, all of those variables are related to 12211 ,,,, cKK   

and 12 1 cc  . 

Furthermore, as can be seen in Eq. (B.3), 
4

IDH  , so the rank four unit tensor, present in Eq. 
(3.34), can also be represented in the same form as all of the other tensors in that equations, 
specified earlier in this section. With that observation, evaluation of Eq. (3.34) is easy if use 
is made of Eqs. (B.5), (B.6) and (B.7). It leads to the following formula for the tensor of ef-
fective elastic constants 

 DHC *** 23  K ,   (B.8) 

where *K  depends only on the K’s defined in Eqs. (B.3) and (B.7), and  *  depends only on  
μ’s in those equations (although K and b(=μ) of Eq. (B.7a) are further dependent on cK  and 

c  , in view of Eq. (3.25).  

In what follows both the scalar formulas for the effective bulk modulus *K and for the effec-
tive shear modulus * will be developed. However, due to the assumptions made in this work, 
which were designed only to estimate the influence of the surface effects on the bulk modu-
lus, no influence of the surface properties on the effective shear modulus * is expected. In 
the subsequent development the following (easily verifiable) identity will be used 
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in which SK̂ and S̂ , evaluated taking into account definition of tensor L given in Eqs. (3.23), 
(3.24) and (3.25), are 

  SSS R
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Then, the expression in the rightmost bracket of Eq. (3.34) can be transformed to the follow-
ing form 
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After a similar evaluation of the expression that in Eq. (3.34) is inverted, after its inversion 

(in accord with Eq. (B.6)), its combination with, DHI
4

  and, finally, after its contraction 
with the tensor of Eq. (B.11), the formula presented in Eq. (B.8) is arrived at, with the follow-
ing scalar expression for the effective bulk modulus  
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We recall that in the above expression K  depends on a and b of Eq. (3.25) (as seen in Eq. 
(B.7a)) and, therefore, on the properties of the reference medium; SK̂  is defined in Eq. 

(B.10); and cK  is equal to either K  or K , depending on which of the conditions specified in 
Eq. (B.7f) is satisfied. 

The scalar formula for the shear modulus that is obtained within the framework of the model 
constructed in this work is found to be: 

  
 c2112

2121*
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As expected, this formula does not include the interface effects and coincides with the one 
developed by Khoroshun (1978), Khoroshun et al., (1993).  
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