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SUMMARY

Multiscale approaches based on homogenization theory provide a suitable framework to incorporate information
associated with a small scale (microscale) into the considered large scale (macroscopic) problem. In this connec-
tion, the present paper proposes a novel computationally efficient hybrid homogenization method. Its backbone is
a variationally consistent FE? approach in which every aspect is governed by energy minimization. Particularly,
scale bridging is realized by the canonical principle of energy equivalence. Since a direct implementation of the
aforementioned variationally consistent FE2 approach is numerically extensive, an efficient approximation based
on Ritz’s method is advocated. By doing so, the material parameters defining an effective macroscopic material
model capturing the underlying microstructure can be efficiently computed. Furthermore, the variational scale
bridging principle provides some guidance to choose a suitable family of macroscopic material models. Com-
parisons between the results predicted by the novel hybrid homogenization method and full field finite element
simulations show that the novel method is indeed very promising for multiscale analyses.

1 Introduction

The macroscopic mechanical response of materials is generally defined by the underlying microstructure
which, in turn, is related to the atomistic and electron structure. Although a direct phenomenological
description at the macroscale is possible in principle, such a procedure shows several problems. On the one
hand, it is at best a projection of some microscale constitutive model. Consequently and common to all
projection techniques, significant information is lost and, thus, important features cannot be captured. On
the other hand, a direct macroscopic approach often leads to very complicated equations involving higher-
order tensors which cannot be interpreted in a straightforward manner from a physics point of view, cf.
[1]. A full field simulation reflecting all features of the smallest scale involved is not an alternative either,
since the size of the resulting set of equations associated with the considered macroscopic engineering
problem is usually too large, resulting in prohibitive numerical costs.

As a compromise between the aforementioned limiting cases, multiscale approaches based on homog-
enization concepts represent a promising avenue to assert the macroscopic behavior of a system showing
a complex microstructure, cf. [2, 3]. Comprehensive overviews concerning numerical implementations of
multiscale approaches can be found in [4-7] and references cited therein. Common to most homogeniza-
tion methods is that a representative volume element (RVE) is considered within such approaches. This
element is subjected to some boundary conditions reflecting the macroscopic loading. Subsequently, the
boundary value problem (bvp) characterizing the RVE’s mechanical response is solved and the macro-
scopic response (stress or strain) is computed by some averaging technique, cf. [2, 3].

Finding the solution of the bvp associated with the RVE certainly is computationally extensive. In
the case of linear problems, the deformation within the RVE can fortunately be determined analytically.
In this connection, the eigenstrain method going back to Eshelby is noteworthy, see [8, 9]. This mean field
theory represents the cornerstone of most analytical homogenization methods. For instance, extensions of
Eshelby’s ideas led to the well-known self-consistent method proposed by Budiansky and Hill, cf. [10, 11]
as well as to the Mori-Tanaka method, see [12]. Other analytical homogenization approaches as well
as the classical bounds of Voigt/Taylor- (also known as the Cauchy-Born hypothesis in the context of
atomistic models) or of Sachs/Reuss-type can be found in the excellent overviews [2, 3] and references cited
therein. It bears emphasis that the classification as analytical method does not imply that computations
are completely avoided. A representative example is given by the so-called viscoplastic self-consistent
(VPSC) model [13].
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Although the aforementioned analytical homogenization concepts are very appealing from a practical
point of view, since numerically extensive computations are not required, their range of application is
relatively narrow. This is mostly due to the underlying assumptions. For instance, the frequently consid-
ered superposition principle is only valid for linear problems, cf. [3]. By way of contrast computational
homogenization schemes do not show this constraint. Among those, the so-called FE? approach originally
proposed in [14, 15] is probably the most frequently applied one. For a recent and comprehensive overview,
the interested reader is referred to [6]. In contrast to analytical methods, the bvp problem governing the
mechanical response of the microscale is numerically solved by a finite element approximation within FE?
approaches. On the one hand, that leads to a very general framework which can be applied to almost any
material model including those showing a highly nonlinear stress strain response and dissipation. More
explicitly, almost no restrictions associated with the constitutive model at the microstructure exist. On
the other hand, this broad range of application comes along with a high computational complexity. Par-
ticularly, the computation of the algorithmic tangent at the macroscale necessary for an asymptotically
quadratic convergence slows down the algorithm. For this reason, large scale FE? approaches are often
not practical, although a parallel implementation is relatively straightforward.

As a compromise between numerical efficiency (closed-form solutions of analytical homogenization
methods) and a broad range of applications (numerical homogenization approaches such as the FE?
method), hybrid methods are promising. One such method is the non-uniform transformation field
analysis (NTFA) originally proposed in [16]. In contrast to classical analytical homogenization concepts,
the key idea within the NTFA is the approximation of the most relevant deformation modes at the
microscale. Focusing on plastic deformation, the plastic strain field was thus considered in [16] and
decomposed into time-constant modes and time-varying amplitudes the rates of which are, in turn,
computed from suitable evolution equations. Consequently and in line with the classical finite element
method, the approximation of an infinite-dimensional field by a suitable finite-dimensional approximation
is one of the key ideas of the NTFA.

The hybrid method which will be discussed in the present paper is also based on a finite-dimensional
approximation. The starting point is a variationally consistent FE? approach [5, 6], the backbone of which
is a variationally consistent description of the constitutive models at the microscale, cf. [5, 17-20, 20—
22]. Without going into too much detail, every single aspect is naturally driven by energy minimization
within the resulting approach. For instance, energy stability of the RVE naturally yields the updated state
variables as well as the fluctuation field at the microscale. Furthermore, this minimization naturally leads
to an effective macroscopic potential which defines the macroscopic stresses. Recently, the aforementioned
variationally consistent FE? approach has also been employed in order to derive an efficient mean-field-
based homogenization concept, cf. [23]. However, besides the underlying variational homogenization
approach, the method discussed in the present paper differs significantly from that proposed in [23]. For
instance, almost no assumptions regarding the constitutive response are required. By way of contrast,
the scheme elaborated in [23] relies heavily on the structure of von Mises plasticity theory - although the
approach in [23] could in principle also be applied to other constitutive models.

Although the scheme [5, 6] is mathematically and from a physics point of view very elegant, a straight-
forward implementation shows the same numerical complexity as standard FE? approaches. For this
reason, a novel variationally consistent approximation is proposed in the present paper. More precisely
and analogously to Ritz’s method, the key idea is a finite-dimensional approximation of the infinite-
dimensional space of effective macroscopic material models. With this approximation, the material
parameters defining the considered effective macroscopic material follow naturally from the underlying
minimization principle. Thus, and in contrast to classical FE? approaches, a closed-form approximation
for the effective material model is obtained by the principle of energy equivalence. The choice of the
finite-dimensional approximation certainly influences the resulting model. However, it will be shown that
the underlying variational principle provides some guidance to choose a proper approximation. This will
be confirmed by comparisons between the results predicted by the novel hybrid homogenization method
and those related to a full field finite element simulation.

Certainly, the idea to identify material parameters of a macroscopic phenomenological model from
numerical analyses of representative volume elements is not new, but can be found, e.g., in [24-26]. While
in [24, 25] the model parameters of macroscopic yield functions have been determined by a standard least
square fit in which the predictions of a macroscopic model were compared to those of a microscopic model
(RVE), the parameters of an interface model were identified in [26] by minimizing the error between the
averaged stresses (homogenized) resulting from a representative volume element (Gurson model) and
those associated with a macroscopic cohesive zone model. The same least-squares fitting approach is also
often applied, if the parameters of a macroscopic phenomenological model are to be determined based on
experimentally measured data, cf. [27, 28], i.e. , conceptually, it is not important, if the material response
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is known due to real or virtual experiments (representative volume elements). In any case, the crucial
point is the definition of the objective function to be minimized (the error). Usually, an ad-hoc heuristic
approach is followed. By way of contrast, the novel approach based on energy minimization, which will
be discussed in this paper, derives consistently from a variational FE? approach. In this respect, it
bridges the gap between consistent FE2 methods and classical ad-hoc material parameter identification
procedures, i.e., an ad-hoc definition of an objective function is not required.

This paper is set up as follows: Section 2 deals with finite strain plasticity theory and its variationally
consistent reformulation. Within the resulting model, all unknown variables such as the plastic strains
follow naturally from minimizing the stress power. Subsequently, an overview about computational
homogenization concepts is given in Section 3. In this connection, focus is on variationally consistent
FE? approaches based on the principle of energy equivalence. The aforementioned efficient approximation
based on Ritz’s method is elaborated in Section 4. It represents the main novel contribution of the
present paper. The applicability as well as the performance of the novel homogenization concept are
finally analyzed in Section 5.

2 A variational formulation of finite strain plasticity theory

The hybrid homogenization method to be discussed in the present paper represents a general framework
which can be applied to a broad range of different constitutive models. A variational structure is the
only requirement for this method. More precisely, the underlying constitutive models have to be based
on energy minimization. However, according to [5, 17-20, 22|, this constraint is only relatively weak
and thus fulfilled for most of the relevant material models. For instance, all models falling into the
class of standard dissipative solids in the sense of Halphen & Nguyen [29] are covered. Recently, it
was shown that even models based on non-associative flow rules or evolution equations can sometimes
be rewritten in a variationally consistent form, cf. [21, 30]. For that purpose, a generalized principle of
maximum dissipation related to generalized standard materials was considered in [21, 30], see also [31, 32].
Other examples for constitutive models based on energy minimization include, among others, those for
deformation-induced twinning [33, 34], thermomechanically coupled phenomena [35, 36], the evolution of
microstructures [37-39] or gradient-enhanced continua [40, 41].

According to the cited papers and references therein, the existence of a minimization principle is not
a very strict requirement. For this reason, the paper could be written without specifying the precise
form of the functional to be minimized. However, some important aspects concerning the numerical
implementation could not be discussed in detail in this case. For this reason, the authors have chosen a
well-known constitutive model as a prototype which shows a variational structure. To be more precise,
finite strain plasticity theory shall be considered in the following.

2.1 Fundamentals

The fundamentals of plasticity theory at finite strains as well as the used notations are briefly introduced
here. A summary of the most important equations is given in Tab. 1. According to that table, the
yield function, the flow rule and the evolution equations are defined with respect to the intermediate
configuration. Hence, the principle of material frame indifference is automatically fulfilled. Furthermore,
associative evolution equations and an associative flow rule are adopted for the sake of simplicity. However,
and as shown in [21, 30], variational principles can even be derived for some models not obeying the
classical normality rule. The only technical requirement for rate-independent models is the positive
homogeneity of degree one of the equivalent stress measure (see Eq. (4)). This technical point will be
discussed later.

2.2 A variational reformulation

In line with the previous subsection, the fundamentals associated with the variational structure of finite
strain plasticity theory are given here in a nutshell. The most important aspects are summarized in
Tab. 2. For the sake of completeness, the equivalence between the classical formulation of finite strain
plasticity according to Tab. 1 and the variational reformulation presented in Tab. 2 is briefly discussed.
For that purpose, energy minimization of the stress power £ with respect to the plastic multiplier A is
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e Multiplicative decomposition of the deformation gradient F' into the elastic part F*° and the plastic
part FP, cf. [42, 43]
F=F° - F? with detF°®>0 and detF? >0 (1)
e Additive decomposition of the Helmholtz energy ¥
U = 0(C°) + UP(a), with C°:=F°".F® (2)
Here, o € R™ is a set of internal strain-like variables associated with hardening.
e Stress tensors following from the second-law of thermodynamics
P =0pV, ¥=2C° 0c-¥ (3)
In Eq. (3), P denotes the Kirchhoff stresses and X are the Mandel stresses with respect to the
intermediated configuration.
e Space of admissible stresses Sy defined by a convex yield function ¢ which is based on a positively
homogeneous function 3°? of degree one
S2 = {(2,Q) e R | $(2,Q) =T°(%,Q) — Qo < 0} (4)
where @ := —0, VP € R" is the stress-like internal variable conjugate to a.
e Associative flow rule and evolution equations
LP=F" . F*7' =)\ 8s¢, a=Adgo (5)
Here, A denotes the plastic multiplier and the superposed dot represents the material time derivative.
e Karush-Kuhn-Tucker optimality conditions
A>0, ¢<0, A¢=0 (6)
e Dissipation inequality and its reduced form
D=P:F-9=%:LP—-UP=XQy>0 (7)
Table 1: Fundamental equations defining associative rate-independent plasticity theory at finite strains

Stress power for admissible states

EFNM)=P:F=V+\Q (8)
Here, M := 0s¢ denotes the flow direction.
Variational principle defining the rate of the internal variables (A and M)

(A M) = arg /\11}\5 €l o 9)

Stresses derived from a pseudo potential

P =0pfea, &= juf £ (10)

Table 2: The variational structure of associative finite strain plasticity, cf. [5, 17-20, 22]
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analyzed. Computing the respective partial derivative of £, the corresponding condition reads

o0& oV OF° owP
= . . . FP - .
A\ OF*® : OFP . (82¢ F ) + dax 8Q¢+QO
= —X: 059 — Q-9q¢ +Qo (11)

—¢ 2 0.

Hence, energy minimization enforces admissible stress states, i.e. ¢ < 0. Further details are omitted
here, but can be found, e.g. in [5, 17-20, 22].

Although the minimization principle (9) is conceptually very simple, the nonlinear constraints resulting
from the flow rule M = 0s¢ require special care. One efficient approach which fulfills such constraints
a priori was recently proposed in [20]. It is based on the concept of so-called pseudo stresses, denoted as
3 which are not necessarily identical to their real counterparts 3. However, they lead to the same flow
direction, i.e., M = Ox¢|s, = Ox¢|s. Introducing these pseudo stresses, minimization principle (9) now
reads

(A, X) = arg inif: E(F\X (12)

)|F=0'

Further details can be found in [20, 22].

2.3 Numerical implementation

Based on variational principle (12) a numerical implementation can be developed in a natural way. For
this purpose, a time interval [t,;t,,+1] is considered and the continuous problem (12) is transformed into
its discrete counterpart

(AA, 2n+1) = arg A/\i,%i+1 Iinc ‘Fn+1:COHSt (13)
with
tnt1 tntt
Ine(Fry1, AN, 1) = / Edt =V, 1 =V, + AN Qo, AN:= / A dt. (14)
tn tn

The computation of ¥,, ;1 requires the updated deformation gradient F? 41 as well as the internal variables
a,11. Regarding FfLH = Ffl+1(A)\72~)n+1), an implicit time integration based on the exponential
map is employed, while the internal variables « are integrated by means of a standard backward Euler
integration. Once problem (13) has been solved, the update of the stresses is given by

red
Pn+1 = alinc ) Ilrrfg = H}f IiﬂC'F 1 =const * (15)
8Fn+1 AN e

As mentioned in [22], a minimization of Eq. (14) by using the classical Newton-Raphson scheme can
lead to numerical problems, since the Hessian of Ij,. can be singular. This is strongly related to the
positive homogeneity of the equivalent stress 3°? of degree one. In this case,

sy = 92 _ 99

_ 3 +
M(X) = 351 Mlv>s M(cX), Vee R™. (16)

>

In order to eliminate this non-uniqueness, the tensor  can be normalized. In [22] that was implemented
by a spectral decomposition of the type

3
¥ =Y %i(¢,p) B (17)
k=1
with the eigenvalues
¥ =sintcosp, o =sinesinp, g =cos (18)

depending on the angles p and . For a symmetrical flow rule, the basis By, is also symmetric and can be
defined by three Euler angles, whereas for an unsymmetrical flow rule, six angles are required. Further
details on the implementation of variational constitutive updates are provided in [22].
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3 Computational homogenization methods based on energy min-
imization

Purely macroscopic phenomenological models such as those discussed in the previous section are some-
times not sufficient to capture all relevant features associated with the microscale. Efficient approaches
allowing the incorporation of such features are provided by computational homogenization methods. In
the present section, focus is on a special class of these methods — the so-called FE? approaches, cf.
[14, 15]. For a recent and comprehensive overview, the interested reader is referred to [6]. In contrast to
the most frequently applied FE? implementations, a variational framework in line with [6] is considered
here. While the first part of the present section gives a concise state-of-the-art review concerning the
fundamentals of FE? approaches with focus on variationally consistent formulations, numerical aspects
are discussed at the end.

3.1 Fundamentals

In the following, a representative volume element B (RVE) consisting of the solid phase 2 and holes H
is considered, i.e. B = QU H. Variables describing the local state of constituents belonging to 2 (the
microscale) are written in standard notation, e.g., F' is the deformation gradient. In contrast, variables
related to the average response of the RVE (macroscale) are denoted by overlined letters, e.g., F is the
macroscopic deformation gradient.

3.1.1 Kinematics

One cornerstone of multiscale concepts in general is the homogenization assumption (also known as
prolongation assumption). In this connection and in line with [6] and others, the deformation gradient
at the microscale is additively decomposed into that at the macroscale and a superposed fluctuation field
denoted as w, i.e.,

F = F + GRADw. (19)

Accordingly, the deformation within the RVE is defined by
p=F X +w. (20)

Consequently, Eq. (19) represents a first-order approximation which is computationally efficient, but
which cannot capture size-effects. For higher-order computational homogenization schemes, the interested
reader is referred to [44] . Certainly, the deformation at the microscale and that at the macroscale are
coupled. That implies a constraint on the fluctuation field w. Following [45], the deformation at the
macroscale is computed from surface data of the microscale according to

F:‘T:;,l/cp®NdA (21)
oB

where IN is the referential outward normal vector of the RVE. As becomes evident, the macroscopic
deformation gradient defined by Eq. (21) is the standard average deformation gradient 1/|B| [,; F' dV, if
the RVE contains neither holes nor discontinuities. Thus, Eq. (21) justifies the interpretation of F as the
macroscopic deformation gradient. By inserting Eq. (19) into Eq. (21), the fluctuation field has to fulfill

the condition
1

E/wé@NdA:O. (22)
B

Eq. (22) can be a priori enforced by different choices such as the classical Taylor assumption w = 0
VX € B or homogeneous fluctuations at the boundary (w = 0 VX € 0B). The softest response is
obtained by homogeneous traction boundary conditions. The respective stress state can be interpreted
as a Lagrange multiplier enforcing Eq. (22) in a weak form. Between the limiting cases of homogeneous
fluctuations and stresses at the boundary of the RVE, periodic boundary conditions for w represent
another admissible choice complying with Eq. (22). The different mechanical response as predicted
by the different boundary conditions can be effectively estimated by using the variational structure of
the underlying constitutive response (if such a structure exists). This will be shown in the following
paragraph.
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3.1.2 Macroscopic stresses

Dual to Eq. (21), the macroscopic stresses P are often defined by
_ 1
Pzzﬁ/t@@NdA (23)
oB

where t is the traction vector at the boundary of the RVE (referential description). In the case of stress-free
holes, this definition of P complies with the average stresses of the microscale, i.e. P = 1/|B]| Jz P dv.
Furthermore, the macroscopic variables F' and P introduced by Eq. (21) and Eq. (23), together with the
aforementioned boundary conditions at the RVE, fulfill the so-called Hill-Mandel-condition, cf. [46]

P:F:‘—;‘/P:de. (24)
B

According to Eq. (24), the average stress power at the microscale equals the one at the macroscale.
Consequently, by assuming constitutive models showing a variational structure such as those discussed
in Section 2, Eq. (24) can be rewritten into the compact notation

_1
5:—/SdV. 25
‘B‘B (25)

Since Egs. (21) and (23) imply Eq. (24) (respectively Eq. (25)), one could alternatively define the macro-
scopic stresses implicitly. To be more precise, one could postulate Egs. (21) and (25). This idea will
be elaborated within the next paragraph. Concerning elasticity, such ideas go back to [47], whereas for
inelastic solids the interested reader is referred to [5, 6]. However, it bears emphasis that, although the
framework presented here is eventually equivalent to that previously advocated in [5, 6], the underlying
motivation is different. In [5, 6], the analogous structure of standard dissipative materials and hypere-
lasticity was the key observation. By way of contrast, the dependence between Egs. (21), (23) and (25)
represents the starting point within the present paper.

Combining Eq. (12) and Eq. (19) and assuming further that plasticity at the microscale is governed
by the variational framework discussed in Subsection 2.2, the stress power at the microscale is a function
of the type

& =E(F,w\3). (26)

In this case and in line with Eq. (12), the plastic multiplier A as well as the flow direction represented by
the pseudo stresses 3 follow from the variational principle

(A, 3) = arg inf E(F,w, \, 5) . (27)
A w=const,F'=const
which, in turn, implicitly introduces the reduced stress power
Ered(F,w) = inf E(F,w,\,2). (28)

i
A
By way of contrast, the reduced stress power at the macroscale does not depend on the fluctuation field
w, i.e )

gred = gred(F)~ (29)
Accordingly, by inserting Eq. (28) and Eq. (29) into the homogenization condition (25), it is evident that
the boundary conditions associated with w alone are not sufficient for a scale transition. To be more
explicit, the fluctuation field w has to be known everywhere — also in the interior of the body. Typically,
the fluctuation field is computed such that equilibrium at the microscale is fulfilled. Ignoring body forces
within the RVE, the respective condition therefore reads

DIVP=0 weW. (30)

Here, W denotes the space of admissible fluctuation fields and hence, this space depends on the assumed
boundary conditions of the RVE. As shown, e.g. in [5, 6, 47] (see also the seminal work [45]), Eq. (30)
can be rewritten into the variational form

w

1 -
w = arginf E/é}ed(F,zb) dv . (31)
B

F=const,weW



8 N. Bleier and J. Mosler

The equivalence of Eq. (30) and Eq. (31) can be proved in straightforward manner. For instance, the
necessary condition for minimizing the averaged microscopic stress power reads

1

@ /P : GRADdw dV =0 Yéw € Wy. (32)
B

Here, the definition of the first Piola-Kirchhoff stresses at the microscale P = Op&,eq has been used.
Accordingly, minimization principle (31) implies the principle of virtual work which is known to be
equivalent to the strong form of equilibrium (30). Further technical details concerning the boundary
conditions or the case of homogeneous prescribed tractions at the RVE are not considered here, but can
be found in [6].

Combining Eq. (25) and Eq. (31), the reduced stress power at the macroscale is defined as

Ered(F) := inf % / Ered (F, ) AV . (33)
B

?‘:const,wGW

Since the macroscopic stress power can alternatively be written as

£ed(F) =P F, (34)

the macroscopic stresses are simply the partial derivative of the averaged microscopic stress power, i.e.

P= i inf 1 / Ered (F, ) AV . (35)
oF w | [Bl J

F—=const, wew

Further details can be found in [6].

Remark 1 Once more, it bears emphasis that the starting point of the discussed variational homoge-
nization concept was the kinematical assumption (21) and the postulate of energy equivalence (25). The
definition of the stresses (35) is implied by these assumptions. That is in contrast to classical homoge-
nization theories in which a scale transition for the strains as well as for the stresses is usually postulated.
Conceptually, the difference between classical computational homogenization and the discussed variational
approach can be sketched as follows:

Assumptions Consequences

Kinematics (21)
traditional ¢ Stresses (21) = Hill-Mandel condition (24)
Boundary conditions (36)

Kinematics (21)
variational <{ Hill-Mandel condition (24) = Stresses (21)
Boundary conditions

Clearly, both formulations are equivalent in the case of classical boundary conditions such as the periodic
boundary conditions employed in the present paper. However, this equivalence is not fulfilled in general.

3.2 Numerical aspects

The goal of the numerical implementation is the computation of the macroscopic stresses P at time t,41
based on the prescribed macroscopic strains F',, ;. This problem is common to all displacement-driven
finite element implementations.

3.2.1 Boundary conditions for the RVE

In the following, only periodic boundary conditions for the fluctuations w will be considered. As a special
case they include homogeneous boundary fluctuations, i.e., with Wyom denoting the respective space and
Wher Tepresenting the space of admissible displacement fluctuations which are periodic, Whom C Wher-
Consequently,

Er(F) < EmF) < ETN(F) VF (37)
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with
EPr(F) = inf { - / Ered(F,w) AV (38)
WEWper | |B] ’ '
B
_ = 1 =
Ehom(FY) .= inf — | Eea(F,w) dV } | 39
( ) w 611%]10111 ‘ ‘ / d ( v ) ( )

gTaylor(F):: I Ercd(-?‘, w) dv . (40)

|~
B »

w=0

According to Eq. (37), periodic boundary conditions lead to a softer mechanical response, because they
are less restrictive (0 € Whom C Whoer). Similarly, one can show that the softest response is provided
by homogeneous traction conditions. For such boundary conditions, the implementation has to be mod-
ified significantly, cf. [6]. In practice, periodic boundary conditions bounded by the limiting cases of
homogeneous fluctuations (or the even more restrictive Taylor assumption w = 0) and homogeneous
tractions have proven to yield usually the most realistic mechanical response, cf. [6]. For this reason,
such boundary conditions will also be considered in the present paper.

3.2.2 Update of the macroscopic stresses

In this section, the computation of the macroscopic stresses P at pseudo time ¢, is briefly presented,
see also [6]. In this connection, an underlying displacement-driven finite element formulation is assumed.
Accordingly, the macroscopic deformation gradient at time t,41 denoted as F',, | is known a priori. With
this notation, the backward-Euler approximation of the microscopic stress power (see Eq. (14)) integrated
over the time interval [t,;t,41] yields

tng1
Iinc := / Edt = ‘Iln—i-l(Fn-i-lzwn—i-la A)\, 271-&-1) -, +AX QO- (41)

in

Based on this incrementally defined energy, the respective macroscopic energy is introduced by the vari-
ational principle

1 — ~
Iinc(Fn—i-l) = inf inf /Iinc(Fn+1awn+17AAv 2n+1) dv (42)
Wnt1 AN, 41 |B| %

which, in turn, leads to the updated macroscopic stresses

_ OlLinc(F,
P, = HineFon)) (43)
a-Fn+1
It bears emphasis that the integrated plastic multiplier AX and the pseudo stresses ¥ in Eq. (42) have
to be interpreted as fields, i.e., they can vary within the RVE.
In order to solve Eq. (42), the microscopic deformation ¢ is discretized by using finite elements. Thus,

Pl = ZNi (Fnﬂ X 4 'wfzizrl) (44)
im1

within a certain element e where N; are the shape functions, X® are the nodal coordinates (reference
configuration) and wszrl is the fluctuation field at node i. Since F,,; is constant within Eq. (42),
Aw, 1 = Ap® (here A(e) represents the change of (e) in a finite time step at the microscale). As a
result, periodic fluctuations can be equivalently enforced by constraining the change in the microscopic
deformation field. This can clearly be implemented in a straightforward manner — at least, in the case of
regular boundary triangulations, i.e., if the master and the slave side of the RVE show the same surface
discretization.

According to Eq. (44), the microscopic deformation (respectively w) is continuously approximated.
This is necessary since it enters the energy through the deformation gradient. By way of contrast, the
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increment of the internal variables characterized by A\ and 2n+1 enter the energy directly. For this
reason, they can conveniently be approximated locally. Consequently, Eq. (42) can be written as

_ 1 _ .
IinC(FnJrl) ;= inf T / inf IinC(Fn+17 W41, A)\7 2n+1) dv ». (45)
wnir | |B] AN,
B
In line with standard computational plasticity theory (see [48, 49]), Eq. (45) is solved in a staggered
fashion. More explicitly, the fluctuation field w,, ;1 is computed first by fixing the internal variables, i.e.

1 - -
Wp41 = arg inf @ /Iinc(Fn—f—lywn-‘rla A)H Z:n-‘rl) dv . (46)
Wn41

B 1_7‘”+1,A)\,2:const

This can be realized by classical optimization algorithms (see [50, 51]) or by solving the corresponding
necessary condition

1

B / P : GRADSw dV =0  Vowe W, (47)
B

FnJrl,A)\,fI:const

being equivalent to the principal of virtual work. Using the solution w1, the internal variables are up-
dated within the RVE (typically at all integration points). They follow from the spatially local variational
principle

(AA, EnJrl) = arg H}f Iinc(Fn+17 Wn+1, A)\7 2n+1
A>\72n+1

)|Fn+1,wn+1:const ' (48)
This staggered scheme is repeated until convergence is obtained. Finally, the macroscopic stresses can be
computed from Eq. (43).

Clearly, the staggered algorithm discussed here usually does not result in an asymptotically quadratic
convergence at the macroscale. One way of achieving such a behavior is the employment of a Newton-
Raphson scheme at the global macroscopic level. Such an algorithm involves the algorithmic tangent

Apyp = =" (49)

According to Eq. (47), this tangent requires the linearization of a boundary value problem (the one
defining w,,41). For this reason, the computation of A, 11 is numerically very complex and often even
prohibitive from a numerical point of view, cf. [5, 6].

Remark 2 The proposed algorithm can be applied in the case of periodic or homogeneous fluctuation
boundary conditions. While for homogeneous fluctuations no special consideration is needed, periodicity
requires a coupling of the master and slave nodes at the facets of the RVE. Ignoring a relazation with
respect to the fluctuation field completely leads to the classical Taylor approzimation.

Remark 3 Conceptually, the computation of the macroscopic stresses (43) is in line with standard hyper-
elasticity. However, the potential (42) is path-dependent and highly nonlinear. For that reason, Eq. (42)
has to be solved numerically for every load step. In practice, this is done by applying the aforementioned
staggered scheme, i.e., the fluctuation field is computed by solving the weak form (47) (global problem),
while the update of the internal variables follows from the local minimization problem (48) (for each
integration point).

4 A novel variational hybrid homogenization method based on
energy minimization

The variational homogenization method discussed in the previous section is a mathematically and from
a physics point of view elegant one. However, as common to all classical FE? approaches, it requires the
costly computation of a boundary value problem for each macroscopic material point. In this connection,
the computation of the algorithmic tangent at the macroscale necessary for an asymptotically quadratic
convergence is in particular very expensive. The present section is concerned with a numerically efficient
approximation of the presented variational homogenization method.
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4.1 Fundamentals

The mathematically, physically and numerically most desirable homogenization method is certainly the
derivation of an effective, explicitly defined macroscopic constitutive model. A mathematical framework
suitable for that purpose is T'-convergence, cf. [52, 53]. Although I'-convergence is indeed a promising
technique for homogenization, its application to complex constitutive models is restricted. Nevertheless,
if such an analytical solution existed, it would fulfill the Hill-Mandel condition (33) and its discrete coun-
terpart (45). Assuming that the effective macroscopic model falls into the range of standard dissipative
solids, it can be defined by a Helmholtz energy and a dissipation functional. Thus, its stress power shows
the form

gmmcro(F I) macro(F I) + Dmmcro(F I) (50)

with Z being the collection of all macroscopic strain-like internal variables. In Eq. (50), the analytical
solution has been marked by the subscript “macro”. Consequently, if such a function existed, it would
fulfill the condition . L

gred(F) = HIlf 5maCrO(FaI)- (51)

As a result, combining Eq. (51) with the Hill-Mandel condition (33) yields

inf«’i'macm(l_?’ f) inf inf /5 (F,w,\,$)dV 3 =0. (52)
1 w3z | |B]

Interestingly, Eq. (52) introduces a natural distance

7?/(‘E‘macro) = lIlf gmacro(p i) Ilf Hlf 1
A

—/S(F,w,A,E) av (53)
w s | |B]

B

measuring the error between the averaged microscopic model and its effective macroscopic counterpart.
Such a metric can be used in order to derive effective macroscopic models. For instance, if the space of
all macroscopic models is denoted as Xpodel, the effective macroscopic material law £ ..., minimizes this
distance, i.e.
& aero = AIE inf R(Emacro) V loading paths (54)

Emacro € Xmodel
and fulfills

R(EFaero) =0 V loading paths. (55)

Although principle (54), together with the constraints (55), defines an effective macroscopic material
model, this model can usually not be computed. The reasons for this are, at least, threefold. Firstly, the
space of admissible loading paths is infinite-dimensional. The same also holds for the space of admissible
macroscopic material models. Finally, both such spaces are highly non-linear and by no means standard.

4.2 A novel hierarchical homogenization approach — a Ritz-type approxima-
tion

The novel hierarchical homogenization approach to be elaborated in the present section is based on a Ritz-
type approximation of Eq. (54). More precisely and focusing directly on the numerical implementation,
the discrete counterparts of Egs. (53) and (54)

Rine(IM270) .= | inf [M(F .\ AT,,) — inf inf / e AV (56)
ALpya Wnt1 AN, 41 |B|

and

MNloadings
I0a0 — arg inf { Z Rmcffggcm} (57)

T2 € Xy odel

are considered in the following. Eq. (56) is obtained by applying a standard time discretization to
Eq. (53). Eq. (57) already contains two approximations. On the one hand, the infinite-dimensional space
of admissible loading paths has been discretized by the nigadings most characteristic deformation paths.
On the other hand, the error Riy. is not necessarily zero as required in Eq. (55).
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Eq. (57) represents still an infinite-dimensional minimization principle, since the space of admissible
material models is not finite. A well-known approximation of such a minimization principle is provided
by Ritz’s method. Within this method, the infinite-dimensional space X041 is approximated by a
finite counterpart Xmodcl, i.e. Xr}ﬁodcl C Xmodel and dim XI}ILI | < oo. With this notation, the effective
macroscopic energy is computed as

ode

Nloadings
I8 = arg inf { Z Rine( I&‘?“O)} . (58)
i=1

TRETOEX] o

As evident, the numerical implementation of principle (58) crucially depends on a suitable parame-
terization of the space X”_, . The parameterizations used in the present paper have been determined in
two steps. Firstly, the mechanical response of the RVE is computed by using a classical FE? approach.
By interpreting the results and the underlying models for the microscale, the most important features of
the macroscopic response have to be identified, e.g. symmetry groups of the elastic and the plastic be-
havior and hardening mechanisms (isotropic, kinematic, etc.). Secondly and finally, a phenomenological
model capturing most of these effects, at least qualitatively, has to be chosen, cf. Tab. 3. Its material
parameters are denoted as X podel. Using this notation, Ritz’s method (58) which now reads

Nloadings
Xmodel = arg lnf { Z RIHC model)} (59)

Xmodel

determines the best set of material parameters X ,04e1. Clearly, the suitable material parameters are
sometimes constrained. In this case, Eq. (59) has to be replaced by a corresponding constrained opti-
mization.

One of the most important points regarding Eq. (59) is a good approximation of X _, | by a reasonable

macroscopic model. Fortunately, the underlying variational principle provides some guidance for this.
(2)

mode

Nloadings Nloadings
1(2; { Z 7?/mc model)} = l(I11>f { Z 7?/mc model)} (60)

modnl

More explicitly, model 2 related to the material parameters X | is better than model 1, if and only if

modnl

pasy

This 1nequahty suggests the following procedure: Startlng with an initial ch01ce represented by X 7

and X! a more general model 2 in the sense of X2) odel 2 X ( O)del and X2 is considered. If

model

Nloadings MNloadings
ARinc:Xi(Ill)f { Z Rll’lC model)} - I(I;)f { Z 7?/mc model)} ZO (61)

model

model’

model

is sufficiently large, the old macroscopic model 1 has to be replaced by model 2. In other words, the
variational principle (59) provides a natural setting for error estimation. Based on this feature, the class
of admissible macroscopic models can be chosen adaptively. Similar adaptive methods can be found in
[54-56]. A summary of the novel hybrid variationally consistent homogenization approach is given in
Tab. 3.

Remark 4 In practice, the choice of the space Xﬁlodelf i.e., the choice of a reasonable macroscopic ma-
terial model, is supported on the one hand by the microstructure of the considered representative volume
element. For instance, the microstructure in Fig. 1b, together with the knowledge that both constituents
are isotropic, suggests a resulting transversely isotropic macroscopic composite. On the other hand, the
computation of the residual (56) requires numerical analyses of the RVE for the most relevant loading
paths. Such simulations provide important information about the macroscopic mechanical response. For
instance, the macroscopic iso-contours of plastic work of a solid could be computed based on which a
macroscopic yield function and the hardening mechanisms could be estimated. Finally, the aforemen-
tioned criteria are further sharpened by the variational inequality (61).

Remark 5 Clearly, if the set of admissible material models contains the analytical solution (if it exists),
the proposed hierarchical homogenization approach based on Ritz’s method is not an approrimation, but
automatically precisely selects this analytical solution. Otherwise Ritz’s method chooses the best approxi-
mation in an energetic or Hill-Mandel sense (stress power).
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1. Selection/identification of the njoadings relevant loading paths either

e by analyzing the strain paths of the macroscopic boundary value problem

e or by using a sufficiently large space of different loading paths

2. Computation of the RVE’s mechanical response for the nicadings different loading paths
(#computations = Nieadings X load steps per path) such as

e the iso curves of equivalent plastic strain in stress space

e the average energy of the RVE (integrated stress power), see Eq. (45)

3. Choice of a macroscopic phenomenological constitutive model based on the RVE’s mechanical re-
sponse, i.e., by

e analyzing the material’s symmetry due to the underlying micro-structure

e analyzing the shape and evolution of the iso curves of equivalent plastic work

4. Homogenization / identification of the material parameters defining the macroscopic phenomeno-
logical constitutive model by the principle of energy equivalence (59)

Table 3: Summary of the hybrid variationally consistent homogenization approach based on Ritz’s method

Remark 6 It bears emphasis that the function to be minimized Rine depends explicitly only on the macro-
scopic model. Accordingly, the averaged energy corresponding to the microscale, i.e., infy,, ian/\,fin+1
{1/18| fB Iine dV'} in Eq. (56), has to be computed only once in a preprocessing step for each relevant
loading path. For instance, 9 different local loading paths (the 9 components of the deformation gradi-
ent F;;) discretized by 6 time steps are considered in the numerical examples presented in Section 5 (see
Tab. 4). Accordingly, only 6 x9 = 54 computations of the RVE are required. Based on such computations,
the parameters of the macroscopic model can be identified. For this reason, minimization problem (59)
leads to a numerically very efficient algorithm.

4.3 A congruent-to-hierarchical approach

The classical FE? approach discussed in Subsection 3 requires, on the one hand, the computation of an
additional costly boundary value problem at every macroscopic material point. On the other hand, no
guess about the resulting macroscopic response is required, i.e., the method is generic in nature. By way of
contrast, the approximation advocated in Subsection 4.2 yields an explicit effective macroscopic material
model which is numerically very efficient. However, for that purpose, a reasonable family of macroscopic
material models has to be chosen first. In this section, a compromise between the aforementioned limiting
cases is briefly sketched. It represents the missing and smooth link between the classical FE? approach
discussed in Subsection 3 and the novel hybrid homogenization method described in Subsection 4.2.
The results analyzed in the following section are, however, not based on this congruent-to-hierarchical
approach. Instead, the hybrid homogenization method according to Subsection 4.2 has been implemented.

The underlying idea of the congruent-to-hierarchical approach is a continuous transition from the
variational multiscale approach addressed in Section 3 to the hierarchical strategy outlined in Subsec-
tion 4.2. For that purpose, both schemes are simultaneously employed in the beginning of the respective
computation. To be more precise, the hierarchical algorithm introduced in Subsection 4.2 is applied
to the whole previous loading history discretized by nnistory discrete computing steps, i.e., Eq. (59) is
replaced by

Xmodel

Mhistory
X model = arg inf { Z Rinc(Xmodel)} (62)
=1

and the accumulated error

1 . Mhistory
Rhistory = l inf { Z Rine (Xmodel) }] (63)
=1

nhistory Xmodel

is monitored. If Rpistory is less than a certain threshold value, the effective macroscopic model is a
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Figure 1: Numerical analysis of a beam subjected to bending: a) geometry of the structure and bound-
ary conditions. The dimensions of one RVE are set to 1mm x 1mm x 1mm; b) triangulation of the
representative volume element (RVE) showing a cylindrical inclusion

-3 2 _ 1 142 43
n={ 1200 120 120’07+1207+120’+120}

Table 4: Numerical analysis of a beam subjected to bending: chosen loading history of the macroscopic
deformation gradient required for the variational hierarchical multiscale approach according to Subsec-
tion 4.2 (see also Eq. (59)). The macroscopic deformation gradient is parameterized as F = 1+17 e; ® e;
with e; denoting the standard cartesian bases. 7 is varied for each loading direction independently
resulting in 9 x 6 = 54 loading points.

reasonably good approximation of the microstructure’s response. In this case, the effective macroscopic
model can be used. Otherwise, the full resolution provided by the FE? approach is required.

Remark 7 Since the computing time required for the algorithm presented in Subsection 4.2 is significantly
less than the one associated with the FE? approach according to Section 3, the overall performance of the
congruent-to-hierarchical approach is almost the same as that of the classical FE? approach.

Remark 8 The proposed algorithm can be modified with respect to several aspects. For instance, if
Rhistory > tol, a more realistic effective material model could be used.

5 Numerical Examples

The applicability and performance of the novel hierarchical homogenization approach discussed in Sub-
section 4.2 are demonstrated by two representative numerical examples. In both cases, the geometry of
the considered structure and the boundary conditions are given in Fig. 1la. The material response associ-
ated with the beam is driven by the underlying microstructure. In this connection, cylindrical inclusions
are assumed, cf. Fig. 1b.

While a purely elastic response of the matrix and the inclusion is assumed in Subsection 5.1, a more
complex elastoplastic behavior is considered in Subsection 5.2. In both subsections, the performance
of the advocated homogenization method is compared to the results of a full field simulation. In order
to avoid numerical artifacts with respect to the disretization, the same mesh is used in the full field
simulation and for the novel homogenization approach. In the latter case, the material is assumed to be
homogeneous within the whole structure. It is represented by the effective macroscopic material model
predicted by the variational hierarchical multiscale approach.

According to Eq. (59), the application of the proposed hierarchical multiscale approach requires the
choice of a characteristic family of constitutive models as well as the specification of the loading history.
Concerning the latter, this history is locally defined by the series of deformation gradients according to
Tab. 4. Other loading histories are certainly admissible as well, particularly if such histories are known
in advance. However, it bears emphasis that the presented hierarchical multiscale approach is very fast
and, thus, the number of loading paths and the number of points per loading paths are not crucial for
the overall performance.

In all computations, periodic boundary conditions have been used for the fluctuation field w. The
objective function (59) was minimized by using different derivative-free optimization schemes such as the
Nelder-Mead, the L-BFGS, the COBYLA and genetic optimization algorithms, cf. [50, 57].
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A [N/mm?] & [N/mm?]

inclusion 26.9 32.4
matrix 269 324

Table 5: Numerical analysis of a beam subjected to bending: material parameters for the purely elastic
constitutive model (64) describing the microscale

5.1 Hyperelasticity

Within the first example, the inclusion and the matrix defining the RVE in Fig. 1b are assumed as purely
elastic and isotropic. To be more precise, both materials are described by the neo-Hooke-type hyperelastic
stored energy

\yzlu(J—%c;1—3)+1m(J2—1)—1an (64)
2 4 2
where x and p are the bulk modulus and the shear modulus and J := det F' is the Jacobian determinant.
Hence, the material response of the RVE is determined by four material parameters. They are summarized
in Tab. 5. According to Tab. 5, the inclusion is ten times weaker than the surrounding matrix material.
A suitable parameterization of the macroscopic model is needed next. Since hyperelastic models have
been adopted for the RVE, the resulting effective macroscopic material law is expected to show the same
reversibility of the energy. Furthermore, the geometry of the RVE in Fig. 1b suggests a transversal
isotropic behavior. For this reason, a general orthotropic macroscopic constitutive framework is chosen
which captures the aforementioned features. One such model is given by the Helmholtz energy

= 1 _2 1 9 1
U=cp (7 Ci1-3) 41k (o) -5k InJ
1
+§(Ol1 JZ—FOZQ J62)+2(a3 J5+Oé4J7) (65)

+asJyJy + o Jg J1 +ar i Jg

where aq, ..., ay are material parameters and Jy, ..., J; are additional pseudo invariants, cf. [58]. They
depend on the structural tensors M () as well as on the Green-Lagrange-deformation tensor E := $(C-1)
and are defined as

Jy=E: MW, Js = E*: MW,
Jo:=E: M®, Jr = E%: M®,

The structural tensors M () span the orthotropy of the material and can be written in the most general
case as

M(l) = RT(BD 52753) ep®eq - R(517ﬁ27ﬁ3)7 (66)
M® .= RT (B, 82,83) - €2 @ es - R(f1, B2, Bs). (67)

In Egs. (66) and (67), R is a rotation tensor depending on the (so far unknown) Euler angles f;, cf. [59]
and e; and ey define the first two cartesian bases. Combining Eq. (65) with Eqgs. (66) and (67), the
macroscopic material model depends on the twelve unknown parameters

X model = (A, K, a1, a2, ... e, B, B2, B3) - (68)

These parameters have been computed by the variational Ritz’s method. In this connection and according
to Tab. 4, the RVE in Fig. 1b was numerically computed 54 times (9 loading paths discretized by means
of 6 points each). That corresponds to Step 2 in Tab. 3. Subsequently, the variationally consistent
identification of the material parameters was realized by Step 4 in Tab. 3, i.e., by minimization of
Eq. (59). The best results were obtained by using the Nelder-Mead minimization algorithm. The whole
optimization took less than 2 minutes on a standard PC. The final material parameters determined by
the algorithm are summarized in Tab. 6. According to Tab. 6, the angle /31 is close to zero. Speaking in
terms of physics, that implies an almost transversely isotropic response which is in good agreement with
the underlying microstructure.
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A K Qg Qs Qs Qy as Qg oy
[N/mm?] [N/mm? [N/mm° [N/mm® [N/mm° [N/mm° [N/mmf [N/mmf [N/mm"]
165.0 244.8 -15.18 -12.39 30.23 -9.403 -11.67 13.45 -45.61

B1 Ba B3
—1.379° 14.93° 18.44°

Table 6: Numerical analysis of a beam subjected to bending — fully elastic response: material parameters
defining the effective macroscopic constitutive model (see Eq. (65) and Eqgs. (66) and (67))
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Figure 2: Numerical analysis of a beam subjected to bending — fully elastic response: a) distribution
of the elastic energy ¥ along the cross-section in the middle of the beam through the inclusions; b)
distribution of the equivalent von Mises stress along in the cross-section the middle of the beam through
the inclusions; the solid lines correspond to the full field finite element simulation, while the dashed line
is associated with the novel hybrid homogenization method
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A [N/mm?] & [N/mm?] of [N/mm?]  [D];j []
inclusion 269 324 1.5 dir0j1
matrix 269 324 (purely elastic) 0ir0j1

Table 7: Numerical analysis of a beam subjected to bending: material parameters for the elastoplastic
constitutive model according to Eq. (64) and Eq. (69) describing the mechanical response at the microscale

Based on the effective macroscopic material model, the beam depicted in Fig. 1 is numerically analyzed.
The results, together with those related to a full field simulation, are given in Fig. 2. In this figure, the
distribution of the elastic energy ¥ as well as the distribution of the equivalent von Mises stress are
plotted along the cross-section in the middle of the beam. Qualitatively, the plot associated with the
energy and that related to the stresses look similar. In both cases, only the full field simulation can
capture the interfaces between the matrix and the inclusion. However, the effective macroscopic model
describes the result of the microstructure in average very well. It bears emphasis that the same holds
also for classical FE? computations, i.e., the effect of interfaces within the RVE cannot be explicitly seen
at the macroscale either. For this reason, the novel approach and the classical FE? method give almost
identical results. However, the novel scheme is computationally significantly more efficient. For the sake
of completeness, the error in the vertical displacement in the middle of the beam is reported as well. It
is 0.318%.

Certainly, the results associated with the macroscopic boundary value problem depend on the mate-
rial parameters of the macroscopic phenomenological constitutive model which, in turn, depend on the
considered loading paths (see Tab. 4). Since the macroscopic problem is dominated by bending effects
around the X3 axis, the probably most important loading paths is defined by Fy;. Therefore, this a priori
known loading path has also been considered in the calibration procedure (among other loading paths,
cf. Tab. 4). However, as mentioned in Remark 6, the proposed algorithm is numerically very efficient
and thus, the number of loading paths is not critical for the overall performance. As a consequence, a
broad spectrum of different loading paths should be employed, if no information concerning the relevant
loading state is known in advance.

5.2 Elastoplasticity

Next, the numerical example is reanalyzed assuming a more complex constitutive model at the microscale.
Since the previous section was exclusively concerned with elasticity, focus here is on the elastoplastic
response. For this reason, the elastic properties are assumed as homogeneously distributed, i.e., the same
material parameters are chosen for the matrix and the inclusion, see Fig. 1b. Consequently, the same
behavior is also considered for the macroscale. Concerning plasticity, the isotropic von Mises type yield
function

¢ =VdevX:devE — Q. (69)

is employed in order to describe the microscale. Here, dev X is the deviatoric part of the stresses and Qg
denotes the yield stress.

In order to choose a reasonable family of macroscopic models capturing the features of the microscale,
Eq. (69) is combined with the underlying microstructure, cf. Step 2 in Tab. 3. That leads to a purely
deviatoric yield function showing transversal isotropy at the macroscale. Accordingly, the Hill-type class
of yield functions

p=VE H:Z-Q (70)

is adopted. The 4th-order weighting tensor H is decomposed into a deviatoric projection [Pde"]ijkl =
0kl — %5@-6“ and an additional tensor D corresponding to the symmetry of the material, i.e.

H =P : D : pdev, (71)

Clearly, if D] = dixd;1, Eq. (70) yields the classical von Mises yield function.

For the sake of simplicity, perfect plasticity is considered. However, complex hardening models can
be included in the proposed variational multiscale approach in a straightforward manner. The only
requirement is the variational consistency of the models, cf. [20, 21, 60].
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Dy Dioiz Diziz Daiar Dazaz Dozez Dzizr D3a32  Dasss
1.056 0.9907 0.978 1.010 0.9994 0.9893 1.014 1.000 1.021

Table 8: Numerical analysis of a beam subjected to bending — elastoplastic response: dimensionless
material parameters defining the effective macroscopic constitutive model

According to Eq. (70), the material parameters

Xrnodel = (D7 QO) (72)

have to be computed for the effective macroscopic material model. Eq. (72) yields an 82-dimensional
approximation of the space of admissible macroscopic models. However, that space is not unconstrained.
For instance, the yield function is usually assumed to be convex. Unfortunately, the respective constraint
is highly non-linear and thus difficult to enforce. For this reason, the matrix representing the tensor
D is assumed to show a diagonal form (in Voigt notation). On the one hand, that complies with the
expected orthotropy (transversal isotropy) of the effective macroscopic yield function. On the other
hand, convexity in this case simply requires that the eigenvalues of D are greater than zero. This choice
reduces the number of unknowns from 82 to 10. It bears emphasis that the initial diameter of the yield
function can either be defined by Q¢ or by the 4th-order tensor D. Consequently, the admissible choice
Qo = 1.5 N/ mm? has been made. In summary, the 9-dimensional reduced set of unknown material
parameters is thus

X model = (D1111, D1212, D1313, D121, Dogas, Dazas, Daig1, D3a3e, Disss). (73)

The macroscopic material parameters (73) were again computed by means of the novel hybrid ho-
mogenization method discussed in Subsection 4.2. In line with the previous subsection, the variational
material parameter identification procedure requires the selection of the nigadings relevant loading paths,
see Step 1 in Tab 3. Following the previous section, the different components of the deformation gradient
are varied independently for that purpose, see Tab. 4. In contrast to the hyperelastic model considered
in the previous section, plasticity is intrinsically a path-dependent process. For this reason, the order of
the different loading paths matters. In the computations, a virgin material without plastic deformation
was considered for each of the 9 different loading paths (defined by the components Fij). Clearly, the
increase in plastic deformation within each of the 9 loading steps was taken into account. The assump-
tion of resetting the plastic deformation history for each of the 9 different loading steps is related to the
assumption of radial or proportional loading paths, i.e., in case of strong loading path changes within the
macroscopic boundary value problem, this assumption is not valid. However, depending on the considered
example, loading in 11 direction followed directly by loading in 22 direction without unloading could also
be implemented. Consequently, the proposed algorithm is general enough to deal also with such more
complicated loading paths. In summary, the elasto-plastic RVE shown in Fig. 1b is numerically computed
for 9 independent load paths (defined by the components Fij). Each of them is discretized by 6 time
steps, cf. Tab. 4. Consequently, 9 x 6 = 54 computations of the RVE are required (see Step 2 in Tab. 3).
Subsequently, a homogeneous RVE modeled by means of the macroscopic model is also numerically an-
alyzed for the same 54 load steps. These 54 computations, depending on the involved model parameters
of the macroscopic model, are repeated for different parameters until Eq. (59) is minimized. For this
reason, the minimization is not performed for one single time step, but for the whole loading history. By
doing so, the path-dependence of the process is naturally included. In contrast to the previous example,
the best results were obtained by applying a genetic algorithm to the optimization problem (59). The
material parameters corresponding to the final state are summarized in Tab. 8.

Based on the material parameters in Tab. 8, the beam depicted in Figs. 1a and 1b was reanalyzed.
Following the hyperelastic case, a full field finite element simulation is additionally considered for the
sake of comparison. The predicted distribution of the integrated stress power firlc, as well as that of the
equivalent von Mises stress along the cross-section in the middle of the beam are given in Fig. 3. From
these figures it can be seen that the effective material model indeed captures the mechanical response
induced by the underlying microstructure very well. Only if a higher resolution concerning the material
interfaces is required, the effective macroscopic material model relying on an averaging scheme will not
be sufficient any more. However, a classical FE? approach would not be sufficient either then.
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Figure 3: Numerical analysis of a beam subjected to bending — elastoplastic response: a) distribution of
the integrated stress power Tine along the cross-section in the middle of the beam through the inclusions;
b) distribution of the equivalent von Mises stress along in the cross-section the middle of the beam through
the inclusions; the solid lines correspond to the full field finite element simulation, while the dashed line
is associated with the novel hybrid homogenization method

6 Conclusions

A novel hybrid homogenization method was proposed in the present paper. The backbone of this approach
is a variationally consistent description of the constitutive models for the microscale as well as for the
macroscale. This description defines all state variables naturally as energy minimizers of an incrementally
defined energy potential. Furthermore, it suggests the canonical principle of energy equivalence for
coupling the different scales. Since a classical FE? approach of this variationally consistent scale bridging
is numerically very extensive, an efficient approximation was advocated. This approximation crucially
depends on the overriding minimization principle governing every aspect of the multiscale problem. To be
more precise, Ritz’s method was used as an approximation. By doing so, the material parameters defining
an effective macroscopic material model capturing the underlying microstructure could be efficiently
computed. The only difficulty related to the presented algorithm is the choice of a suitable material
model describing all relevant features of the microscale. However, the variational scale bridging principle
provides some guidance for this. To be more explicit, model 2 is better than model 1 if, and only if, the
respective energy is lower. Comparisons between the results predicted by the novel hybrid homogenization
method and full field finite element simulations clearly showed that the novel method is indeed very
promising.
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