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Abstract 22 
 23 

Defining appropriate delivery strategies of therapeutic proteins, based on lipid nanoparticulate 24 

carriers, requires knowledge of the nanoscale organization that determines the loading and 25 

release properties of the nanostructured particles. Nanoencapsulation of three cationic proteins 26 

(human brain-derived neurotrophic factor (BDNF), α-chymotrypsinogen A, and histone H3) 27 

was investigated using anionic nanoparticle (NP) carriers. PEGylated lipid NPs were prepared 28 

from self-assembled liquid crystalline phases involving monoolein and eicosapentaenoic acid. 29 

Inclusion of the antioxidant α-tocopherol favoured the preparation of stealth hexosome 30 

carriers. The purpose of the present work is to reveal the structural features of the protein-31 

loaded lipid nanocarriers by means of high resolution small-angle X-ray scattering (SAXS) 32 

and cryogenic transmission electron microscopy (cryo-TEM). The obtained results indicate 33 

that protein entrapment is concentration-dependent and may significantly modify the inner 34 

liquid crystalline structure of the lipid nanocarriers through changes in the interfacial 35 

curvature and hydration.  36 
 37 
 38 
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41 



1. Introduction 42 
 43 
Modern methods for protein and peptide drug delivery are based on nanoencapsulation in 44 
nanoparticle (NP) carriers (Al-jamal et al., 2011; Azagarsamy et al., 2012; Cortesi et al., 45 
2007; Dai et al., 2006; de Hoog et al., 2012; Géral et al., 2013; Jorgensen et al., 2006; Patton 46 
et al., 2005; Plum et al., 2000). Since the emergence of nanomedicine, NP-based delivery 47 
strategies have faced various challenges (Allen and Cullis, 2004; Desai, 2012; Dai et al., 48 
2005; Petersen et al., 2012). It has been demonstrated that the physicochemical parameters of 49 
lipid-based nanocarriers (size, surface charge, morphology, surface chemistry, stability) may 50 
easily be adjusted as to satisfy the requirements for improved drug safety, targeted delivery, 51 
appropriate drug release kinetics, and possibility for scaling-up manufacturing (Lim et al., 52 
2012; Martins et al., 2007; Koennings et al, 2007; Carafa et al., 2006; Fujita et al., 1995; 53 
Gorodetsky et al., 2004; Guo et al., 2003; Kullberg et al., 2005; Langston et al., 2003; 54 
Ramprasad et al., 2003; Ye et al., 2000). Drug delivery applications have shown an essential 55 
need of stealth carriers that are stabilized by hydrophilic polymer shells (Freichels, et al., 56 
2011; Keefe et al., 2012; Garcia-Fuentes et al., 2005; Garcia-Santana et al., 2006; Almgren 57 
and Rangelov, 2006; Thongborisute et al., 2006). NPs have been surface-modified by 58 
polyethyleneglycol (PEG) chains as PEGylation provides reduced immunogenicity and 59 
increased circulation time of the vehicles (Arulsudar et al., 2004; Badiee et al., 2007; Chang 60 
et al., 2011; Frkanec et al., 2003; Gabizon et al., 1994). Functionalization of the nanocarriers 61 
by appropriate ligands (including ligand grafting at the termini of the PEG chains) has 62 
favoured targeted protein delivery and has helped avoiding adverse effects (Brgles et al., 63 
2007; Martin et al., 1982; Takeuchi et al., 2003; Torchilin et al., 2001; Visser et al., 2005; 64 
Zhang et al., 2005; Wei et al., 2012). Multifunctional lipid-based NPs, involving therapeutic 65 
and contrast agents, magnetic components for NP guidance, and/or fluorescence imaging 66 
probes, have been developed for theranostic applications (Lesieur et al., 2011; Mulet et al., 67 
2012; Petersen et al., 2012).  68 
 69 
Both PEGylated and non-PEGylated liposomes have attracted considerable interest for protein 70 
encapsulation (Arifin et al., 2003; Goto et al., 2006, Gregoriadis et al., 1999; Murakami et al., 71 
2006; Rengel et al., 2002; Teiji et al., 2005; Xi et al., 2007; Xu et al., 2012). In such particles, 72 
lipid membrane shells isolate the entrapped proteins from the surroundings and serve for 73 
efficient protein protection against chemical, physical, or enzymatic degradation (Walde et al., 74 
2001). Furthermore, PEGylation of the NP carriers has contributed to their significantly 75 
enhanced bioavailability and minimized side effects (Wang et al., 2012).  76 
 77 
Advances in the methods for protein and peptide nanoencapsulation have led to studies of 78 
nanostructured lipid particles with multicompartment organizations (Angelov et al., 2012a; 79 
Angelova et al., 2005a, 2011, 2012; Géral et al., 2012; Mulet et al., 2012; Nguyen et al., 2011; 80 
Puglia, 2008; Woerle et al., 2007; Yaghmur and Glatter, 2009). Inner nanostructures of liquid 81 
crystalline types facilitate the encapsulation of large amount of protein molecules in the 82 
nanocarriers and may provide protein delivery at enhanced concentration on target sites 83 
(Angelov et al., 2003; Angelova et al., 2003; 2005b, 2005c, 2008, 2011; Clogston et al., 2005; 84 
Conn et al., 2010; Garti et al., 2012; Misiünas et al., 2012; Negrini and Mezzenga, 2012; 85 
Rizwan et al., 2011). Factors controlling the encapsulation and release of biomolecules from 86 
liquid crystalline nanocarriers include the type of the inner structural organization, the inner 87 



nanochannel sizes, interface area, surface charge, functionalization, as well as the NP 88 
dimensions (Angelov et al., 2013; Angelova et al., 2003, 2012; Chemelli et al., 2012; Negrini 89 
and Mezzenga, 2012; Rizwan et al., 2011). Major types of lipid NPs with internal liquid 90 
crystalline structures comprise cubosomes, hexosomes, spongosomes, micellar-type 91 
cubosomes, multilamellar liposomes, and nanostructured emulsions (Angelov et al., 2006, 92 
2012a, 2012b; Boyd et al., 2006; Conn et al., 2010; Esposito et al., 2005; Dehsorkhi et al., 93 
2011; Géral et al., 2013; Kulkarni et al., 2010; Lai et al., 2010; Mulet et al., 2012; Negrini and 94 
Mezzenga, 2012; Phan et al., 2011; Salentinig et al., 2008; Yaghmur and Glatter, 2009). 95 
Figure 1 presents examples of lipid NP carriers derived from PEGylated liquid crystalline 96 
nanostructures. Such nanocarriers offer unexplored opportunities for protein and peptide drug 97 
delivery in view of the suggested link between self-assembled mesophase structure and drug 98 
release (Phan et al., 2011).  99 
 100 

Figure 1 101 
 102 
High resolution electron microscopy and small-angle X-ray scattering (SAXS) studies 103 
(Angelov et al., 2007, 2009, 2011a, 2011b; 2012a, 2012b; Cortesi et al., 2007; Woerle et al., 104 
2007; Yaghmur et al., 2007, 2008) have permitted to visualize the single aqueous pore in 105 
cubosome nanocarriers, to control the nanochannel sizes in the inner channel networks as well 106 
as to detect the earliest stage of the tetrahedral nanochannel formation in cubic lipid particles. 107 
It has been suggested that medium- and large-size protein molecules, which are bigger than 108 
the aqueous channel diameters, will locate at the interfaces of the nanocubosome subunits, 109 
formed inside the cubosome carriers upon protein nanoencapsulation (Angelova et al., 2005c, 110 
2011). The work of Negrini and Mezzenga (2012) has recalled that guest species smaller than 111 
the mesophase periodicity will be confined within the aqueous channels and may affect the 112 
inner mesophase periodicity, whereas larger species will be expelled and may partition at the 113 
grain boundaries of the mesophase domains in the carriers.  114 
 115 
The purpose of the present work is to investigate the structural features related to entrapment 116 
of different proteins in PEGylated nanocarriers formed by the nonlamellar lipids monoolein 117 
and eicosapentaenoic acid (a representative ω-3 polyunsaturated fatty acid). The antioxidant 118 
α-tocopherol was included in the lipid mixture in order to induce the formation of an inverted 119 
hexagonal (HII) mesophase structure (Boyd et al., 2006). Brain-derived neurotrophic factor 120 
(BDNF), α-chymotrypsinogen A, and histone H3 are considered as examples. All three 121 
proteins are basic proteins, i.e. are positively charged at pH < pI (see Table 1). BDNF and α-122 
chymotrypsinogen A are soluble in aqueous medium and do not aggregate under the 123 
investigated solution conditions. At variance, histone, which is characterized essentially by α–124 
helical content (Arents et al., 1991), is less soluble and was studied as a model of protein 125 
aggregation at elevated concentrations. The α–tocopherol component (promoting the 126 
hexosome carrier formation) was not studied in the case of histone H3 encapsulation taking 127 
into account the geometrical constraints for entrapment of large protein aggregates inside the 128 
fine channels of the hexosome particles. The resulting nanoscale organizations were revealed 129 
by cryogenic transmission electron microscopy (cryo-TEM) and X-ray structural analysis 130 
(SAXS) in order to evaluate the ability of the investigated PEGylated lipid NPs for protein 131 
upload.  132 
 133 
 134 



2. Materials and Methods 135 
 136 

2.1. Materials and samples preparation 137 
 138 

Monoolein (MO) (1-monooleoyl-rac-glycerol, C18:1c9, MW 356.54, powder, purity 139 
>99.5%), cis-5,8,11,14,17 eicosapentaenoic acid (EPA) (20:5, MW 302.45, oil phase, 140 
analytical standard, purity ≥98.5%), α-tocopherol (Vit E) (MW 430.71, Ph Eur grade), D-α-141 
tocopherol polyethyleneglycol 1000 succinate (V1000) (MW 1531, waxy solid, CMC ∼ 0.02% 142 
by weight) were purchased from Sigma-Aldrich-Fluka (Saint-Quentin, France). The 143 
PEGylated lipid 1,2-dioleyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene 144 
glycol)-2000] (DOPE-PEG2000) (MW 2801.51, powder, purity >99.5%, CMC ∼ 2×10-5 M) 145 
was a product of Avanti Polar Lipids (COGER, France). Carrier-free human recombinant 146 
brain-derived neurotrophic factor (hrBDNF, MW 13.6 kDa) was purchased from R&D 147 
Systems. The proteins α-chymotrypsinogen A (type II from bovine pancreas, purified by 148 
6×crystallization, salt-free, lyophilized powder, MW 25.656 kDa) and histone H3 (type III-S 149 
lysine-rich fraction, from calf thymus, MW 15.3 kDa) were products of Sigma (Saint-150 
Quentin, France). Phosphate buffer solution (1x10-2 M, pH 7) was prepared using the 151 
inorganic salts NaH2PO4 and Na2HPO4 (p.a. grade, Fluka, Saint-Quentin) and MilliQ water of 152 
resistivity 18.2 MΩ.cm (Millipore Co., Molsheim).  153 

Liquid crystalline lipid NP formulations were prepared by the method of hydration of a 154 
dry lipid film followed by physical agitation (Angelov et al., 2011b). The organic solvent 155 
(chloroform) was evaporated under flow of nitrogen gas and the resulting lipid mixtures were 156 
lyophilized overnight. Towards mesophase formation, lipid assemblies were initially 157 
incubated with aqueous buffer during 30 min followed by repeated vortexing. Subsequently, 158 
15 min agitation was performed in ice medium using a sonication bath with a moderate 159 
frequency (40 kHz, Branson 2510) (Branson Ultrasonics, Geneve). The PEGylated 160 
amphiphiles (DOPE-PEG2000 and V1000) served as solubilizing and dispersing agents for the 161 
MO/EPA/VitE liquid crystalline phases. The resulting NP formulations were incubated with 162 
proteins for several hours, homogenized, and studied by means of SAXS, cryo-TEM, and 163 
QELS. 164 

 165 

2.2. Small-angle X-ray scattering (SAXS) 166 
 167 
SAXS experiments were performed at the P12 BioSAXS beamline of the European Molecular 168 
Biology Laboratory (EMBL) at the storage ring PETRA III of the Deutsche Elektronen 169 
Synchrotron (DESY, Hamburg, Germany) at 20 °C using a Pilatus 2M detector (1475 x 1679 170 
pixels) (Dectris, Switzerland) and synchrotron radiation with a wavelength λ = 1 Å. The 171 
sample-to-detector distance was 3 m. The q-vector was defined as q = (4π/λ) sin θ, where 2θ 172 
is the scattering angle. The q-range was calibrated using the diffraction patterns of silver 173 
behenate. The experimental data were normalized with respect to the incident beam intensity. 174 
The background scattering of the solvent buffer was subtracted. The solvent scattering was 175 
measured before and after every lipid NP or protein-containing sample in order to control for 176 
eventual sample-holder contamination. Eight consecutive frames comprising measurements 177 
for the solvent, the sample, and the solvent were acquired. No measurable radiation damage 178 
was detected by the comparison of eight successive time frames with 5 s exposures. The final 179 
scattering curve was obtained using the program PRIMUS by averaging the scattering data 180 



collected from the measured frames. An automatic sample changer adjusted for sample 181 
volume of 15 µL and a filling cycle of 20 s was used.  182 

 183 
2.3. Cryogenic transmission electron microscopy (Cryo-TEM) 184 

 185 
For cryo-TEM studies, a sample droplet of 2 µL was put on a lacey carbon film covered 186 
copper grid (Science Services, Munich, Germany), which was hydrophilized by glow 187 
discharge for 15 s. Most of the liquid was then removed with blotting paper, leaving a thin 188 
film stretched over the lace holes. The specimens were instantly shock frozen by rapid 189 
immersion into liquid ethane and cooled to approximately 90 K by liquid nitrogen in a 190 
temperature-controlled freezing unit (Zeiss Cryobox, Zeiss NTS GmbH, Oberkochen, 191 
Germany). The temperature was monitored and kept constant in the chamber during all the 192 
sample preparation steps. After the specimens were frozen, the remaining ethane was 193 
removed using blotting paper. The specimen was inserted into a cryo transfer holder 194 
(CT3500, Gatan, Munich, Germany) and transferred to a Zeiss EM922 Omega energy-filtered 195 
TEM (EFTEM) instrument (Zeiss NTS GmbH, Oberkochen, Germany). Examinations were 196 
carried out at temperatures around 90 K. The TEM instrument was operated at an acceleration 197 
voltage of 200 kV. Zero-loss-filtered images (∆E = 0 eV) were taken under reduced dose 198 
conditions (100-1000 e/nm2). All images were recorded digitally by a bottom-mounted 199 
charge-coupled device (CCD) camera system (Ultra Scan 1000, Gatan, Munich, Germany) 200 
and combined and processed with a digital imaging processing system (Digital Micrograph 201 
GMS 1.8, Gatan, Munich, Germany). All images were taken very close to focus or slightly 202 
under the focus (some nanometers) due to the contrast enhancing capabilities of the in-column 203 
filter of the used Zeiss EM922 Omega. In EFTEMs, deep underfocussed images can be totally 204 
avoided. 205 

 206 

2.4. Quasi-elastic light scattering (QELS)  207 

 208 
Particle size distributions in the investigated dispersed lipid samples were determined using a 209 
Nanosizer apparatus (Nano-ZS90, MALVERN, Orsay) equipped with a Helium-Neon laser of 210 
633 nm wavelength. The samples were diluted to 1 mM lipid concentration prior to 211 
measurement in 1 cm thick cells and analyzed in an automatic mode using the following 212 
experimental parameters: temperature 25 oC; scattering angle, 90°; refracting index, 1.33; 213 
environment medium viscosity, 0.890 cP. The average hydrodynamic diameter, dh, was 214 
calculated considering the mean translational diffusion coefficient, D, of the particles in 215 
accordance with the Stokes-Einstein law for spherical particles in the absence of interactions: 216 
dh = kBT/3ηπD, where kB is the Boltzmann constant, T is temperature, and η is the viscosity of 217 
the aqueous medium. Three measurements with the same cell were averaged for every 218 
sample. The protein solutions were investigated at chosen concentrations (Table 1). The 219 
results were analyzed using the MALVERN Zetasizer software (version 6.11).  220 
 221 
 222 
3. Results and discussion 223 
 224 



Sterically stabilized lipid nanocarriers were prepared by hydration of mixed lipid films 225 

consisting of self-assembled MO/EPA/VitE or MO/EPA mixtures and functionalized by the 226 

PEGylated amphiphiles DOPE-PEG2000 or V1000. Monoolein (MO) and α-tocopherol (VitE) 227 

are neutral lipids of nonlamellar propensities, whereas eicosapentaenoic acid (EPA) is a ω-3 228 

polyunsaturated anionic lipid. The role of α-tocopherol (VitE) is to increase the interfacial 229 

curvature of the cubic-phase forming lipid monoolein as well as to induce the formation of 230 

inverted hexagonal phase structures. The latter may provide sustained release of entrapped 231 

proteins from nanochanneled-type carriers. The investigated PEGylated amphiphiles form 232 

PEGylated micelles in individual assemblies at concentrations above their critical micellar 233 

concentrations (CMC). The molar percentages of these PEGylated components, included in 234 

the studied liquid crystalline lipid structures, were optimized in a manner ensuring only a 235 

partial shield of the charges of the lipid NPs, which facilitate the protein entrapment through 236 

electrostatic interactions. In the following, we present the structural results obtained for lipid 237 

NPs (MO/EPA/VitE/V1000 or MO/EPA/DOPE-PEG2000) interacting with the proteins BDNF, 238 

α-chymotrypsinogen A, or histone H3. Taking into account the possible aggregation of 239 

histone, the latter was not selected for studies with the HII phase carriers. The associated form 240 

of histone would have a minor chance for loading into the nanochannels of hexosome carriers 241 

formed by the self-assembled MO/EPA/VitE/V1000 (71/17/8/4 mol.%) mixture.   242 

 243 
3.1. Human recombinant brain-derived neurotrophic factor (BDNF) 244 
 245 
Small-angle X-ray scattering (SAXS) patterns of PEGylated lipid NPs studied for 246 

nanoencapsulation of the neurotrophin BDNF are shown in Figure 2a. The SAXS curve 247 

presented in the inset characterizes the NPs structure (MO/EPA/VitE/V1000, 71/17/8/4 mol.%) 248 

formed before the addition of the therapeutic protein. BDNF exerts its neuroprotective 249 

bioactivity at concentrations in the nanogram range. Therefore, the nanoencapsulation studies 250 

should take into account that BDNF can cause adverse effects in a concentrated state. For this 251 

reason and because of its high cost, the interaction of recombinant human BDNF with lipid 252 

NPs was studied at a chosen relatively low protein concentration of 8 µg/ml. Under these 253 

conditions, BDNF was completely soluble in the aqueous medium (Table 1). The positively 254 

charged protein was allowed to interact with the nanocarriers involving the anionic lipid EPA.  255 

 256 

The analysis of the obtained SAXS patterns established that both blank (MO/EPA/VitE/V1000) 257 

and protein-loaded lipid NPs have inner mesophase structures of an inverted hexagonal (HII) 258 

type (Fig. 2a). The formation of stable PEGylated hexosomes in the lipid formulations was 259 

favoured by the hydrophobic component VitE, which essentially increases the lipid 260 

monolayer curvature and augments the nonlamellar propensity of the mixture. In addition, 261 

VitE provides an antioxidant functionality of the carriers, which is of interest for their 262 

therapeutic applications. The included higher percentage of VitE (8 mol%) with regard to the 263 

PEGylated component V1000 (4 mol.%) contributes to compensate the decrease of the 264 

monolayer curvature, due to the PEGylation, and to induce a nonlamellar supramolecular 265 



organization of hexagonally-packed aqueous channels (Fig. 1a). The resolved Bragg peaks, 266 

spaced in the ratio 1: √3: √4: √7, determine an inner HII-lattice periodicity of 6.53 nm. The 267 

water channel diameter, DW, was calculated using a literature method (Turner and Gruner, 268 

1992). The protein hydrodynamic size, dh, was determined by quasi-elastic light scattering 269 

(QELS) (see Table 1). The obtained results indicate that the aqueous channels in the 270 

hexosome nanocarriers are sufficiently large (DW = 3.42 nm) to accommodate the soluble 271 

protein BDNF (dh = 2.3 nm).  272 
 273 

Figure 2 274 
 275 
Both the SAXS (Fig. 2a) and the cryo-TEM (Fig. 2b) results confirmed that BDNF does not 276 

modify the structural periodicity of the lipid nanocarriers at the investigated protein 277 

concentration. Figure 2b shows the characteristic morphology of the hexosome NPs. The inset 278 

presents the Fast Fourier transform (FFT) derived from the cryo-TEM image. It reveals the 279 

inverted hexagonal (HII) mesophase periodicity corresponding to an ordered structure of 280 

aqueous nanochannels available for BDNF loading. The hexosome particles in the 281 

MO/EPA/VitE/V1000 (71/17/8/4 mol.%) formulation displayed mean hydrodynamic diameters 282 

of ∼400 nm in QELS measurements. This is in agreement with the electron microscopy 283 

results. A coexisting fraction of small vesicles (dh = 38 nm) was also observed in the cryo-284 

TEM and QELS studies as a result of nonequilibrium effects related to the dispersion of the 285 

nanoparticulate system under energy input.  286 

 287 

3.2. α-Chymotrypsinogen A 288 
 289 
The NP carriers studied above (MO/EPA/VitE/V1000, 71/17/8/4 mol.%) were allowed to 290 

interact also with the positively charged enzyme α-chymotrypsinogen A of concentration 4 291 

mg/mL. The obtained results revealed that the protein, displaying surface activity under these 292 

conditions, affected the curvature of the lipid assembly. The SAXS patterns (Fig. 3a) and the 293 

cryo-TEM images (Fig. 3b) clearly demonstrate that the performed nanoencapsulation 294 

resulted in a structural change of the HII-phase lipid nanocarriers (MO/EPA/VitE/V1000, 295 

71/17/8/4 mol.%) (Fig. 3a, inset) toward protein-loaded NPs with new structural and 296 

morphological features. The SAXS pattern of the protein-containing NPs (Fig. 3a) 297 

corresponds to the form factor of the NP scattering rather than to Bragg diffraction peaks of 298 

an inner periodic structure. The blue bars (which mark the positions of the HII-phase peaks of 299 

the blank NPs) show that the Bragg peaks are vanished in the presence of α-300 

chymotrypsinogen A as a result of the hexosome NP transformation into another type of NPs.  301 
 302 
  Figure 3 303 
 304 
Indeed, the cryo-TEM image (Fig. 3b) shows double vesicular structures in the protein-loaded 305 

lipid NP formulation. The mean hydrodynamic diameter of the α-chymotrypsinogenA-loaded 306 

particles determined by QELS (dh = 458 nm) is slightly different from that of the blank 307 



hexosome carriers (dh ∼ 400 nm). Coexisting bilamellar lipid NPs (dh ∼ 80 nm) were also 308 

observed (Fig. 3b, inset). They are likely obtained upon the membrane fragmentation (from 309 

larger to smaller particles), which is provoked by the surface-active protein. The darker 310 

interior of the bilamellar vesicles is due to thickness variation (the transmission is reduced 311 

because the electrons must pass through extra bilayers). No evidence for protein aggregation 312 

is obtained at the studied concentration.  313 

 314 
3.3. Histone  315 
 316 
PEGylated lipid NPs (MO/EPA/DOPE-PEG2000 (69/28/3 mol.%) were incubated with histone 317 

H3, which is a basic protein of prevailing α-helical content. The employed lipid mixture did 318 

not display a propensity for hexosome formation similarly to the recently reported NPs 319 

involving DOPE-PEG2000 (Angelov et al., 2012b). The mean particle size in the blank NP 320 

formulation (MO/EPA/DOPE-PEG2000, 69/28/3 mol.%), determined by QELS, was dh = 142 321 

nm and was attributed to coexisting small cubosomes and vesicles (see the histogram in 322 

Figure 4b). The solution scattering of histone is presented in Fig. 4a together with the derived 323 

pair distance distribution function ρ(r) (inset). The size of the histone octamer, estimated from 324 

these SAXS results, is 4.5 nm. The QELS data (Fig. 4a, red histogram) showed that the 325 

histone units (4.5 nm) begin to associate into aggregates at the studied solution concentration. 326 

The hydrodynamic particle diameter of the associated protein was dh = 255 nm at 327 

concentration of 4 mg/ml (Fig. 4a, inset).  328 

 329 
Figure 4 330 

 331 
Figure 5a (inset) shows the NP scattering of the blank MO/EPA/DOPE-PEG2000 (69/28/3 332 

mol.%) carriers. The observed SAXS is typical for a mixture of membrane-type lipid 333 

nanocarriers. Attempts to load these small cubosomes and vesicles with histone (4 mg/ml) did 334 

not permit significant entrapment of the protein inside the NPs, because of its associated state 335 

in solution. The SAXS pattern of the particles incubated with protein is shown in Fig. 5a. The 336 

performed QELS investigation also confirmed the aggregation of histone in lipid NP 337 

formulations (Fig. 4b, right panel). The particle size distributions in a blank lipid NP 338 

formulation and in a protein-containing lipid (MO/EPA/DOPE-PEG2000, 69/28/3 mol.%) 339 

formulation determined mean NP diameters of dh = 142 nm and 220 nm, respectively. 340 
 341 

Figure 5 342 
 343 
The obtained cryo-TEM image (Figure 5b) shows a noticeable phase separation of the protein 344 

from the lipid NPs (MO/EPA/DOPE-PEG2000, 69/28/3 mol.%). The difficulty to entrap histone, 345 

associated in aggregates, into such small PEGylated NP carriers implies that larger lipid 346 

particles or even bulk liquid crystalline phases would be more appropriate for confinement 347 

and encapsulation of this hydrophobic α-helical protein. At variance, BDNF and α-348 

chymotrypsinogen A appeared to be homogeneously distributed in the investigated NP 349 



systems and can be entrapped both in hexosome and vesicular carriers of similar lipid 350 

compositions.  351 

 352 
4. Conclusion 353 
 354 

Further to the recently reported protein-containing PEGylated cubosomes (Angelov et al., 355 

2012a), the present study of nanostructured liquid crystalline lipid NPs demonstrates that the 356 

interaction of PEGylated hexosomes with cationic protein molecules may lead to either 357 

preservation or dramatic changes in the inner structure of the NPs. The obtained results 358 

revealed that the entrapped protein, depending on its concentration and amphiphilicity, may 359 

influence the curvature of the lipid assemblies and even transform the internal nanostructure 360 

of channels into a different structural organization. Efficient protein encapsulation was 361 

achieved for recombinant BDNF and α-chymotrypsinogen A. Histone in its aggregated state 362 

showed a tendency to phase separate from the lipid NP carriers at the investigated protein 363 

concentration. The outcome of this structural study confirms that SAXS, QELS and cryo-364 

TEM measurements are very powerful methods in the design of protein drug delivery carriers 365 

and should be recommended as tools of ultimate pharmaceutical relevance permitting to 366 

control the protein nanoencapsulation process.  367 

 368 

 369 

 370 

 371 

 372 

373 
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Figure captions  680 

 681 

Figure 1. Examples of nanoparticulate lipid carriers that may be derived from PEGylated 682 

liquid crystalline lipid phases: (a) hexosome, (b) bilamellar vesicle, and (c) spongosome 683 

particles.  684 

 685 

Figure 2. Small-angle X-ray scattering (SAXS) patterns (a) and cryo-TEM image (b) of a 686 

PEGylated nanoparticulate lipid system (MO/EPA/VitE/V1000, 71/17/8/4 mol.%) interacting 687 

with the neurotrophic protein BDNF (brain-derived neurotrophic factor) of solution 688 

concentration 8 µg/ml. The blue bars indicate the positions of the Bragg reflections (spaced in 689 

the ratio 1: √3: √4: √7) of an inverted hexagonal (HII) lattice structure, which is present in 690 

both blank (inset) and BDNF-loaded NPs (a). The inset in (b) shows the Fast Fourier 691 

transform (FFT) image analysis of the hexosome lipid nanocarrier.  692 

 693 

Figure 3. SAXS patterns (a) and cryo-TEM images (b) of a PEGylated nanoparticulate lipid 694 

system (MO/EPA/VitE/V1000, 71/17/8/4 mol.%) interacting with the protein α-695 

chymotrypsinogen A with solution concentration 4 mg/ml. The blue bars in (a) indicate the 696 

positions of the Bragg reflections of the inverted hexagonal (HII) structure, which vanished 697 

upon protein loading. The inset in (b) shows a second representative NP population in the 698 

protein-containing sample.  699 

 700 

Figure 4. (a) SAXS patterns (orange curve), a pair distance distribution function ρ(r) (blue 701 

curve, inset), and quasi-elastic light scattering (QELS) size distribution plot (inset) measured 702 

with histone solution. The protein concentration is 4 mg/ml. (b) QELS determination of the 703 

particle size distributions in blank lipid NP formulation (MO/EPA/DOPE-PEG2000, 69/28/3 704 

mol.%) (left) and of the lipid formulation with incubated histone H3 (4 mg/ml) (right). The 705 

maxima of the histograms correspond to the most abundant average hydrodynamic particle 706 

diameters. The error bars are given in green.  707 

 708 

Figure 5. SAXS patterns (a) and cryo-TEM image (b) of a PEGylated nanoparticulate lipid 709 

system (MO/EPA/DOPE-PEG2000, 69/28/3 mol.%) interacting with the protein histone H3 with 710 

solution concentration 4 mg/ml.  711 
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Table 1 

Mean particle hydrodynamic diameter, dh, molecular weight (MW), isoelectric point (pI), and 

state of protein dissolution/association at the studied concentration in a phosphate buffer 

aqueous phase. The values of dh were determined by quasi-elastic light scattering 

measurements.  

Protein MW 

[kDa] 

pI concentration dh

[nm] 
  state 

BDNF 13.6 10.5 8 µg/ml 2.3 dissolved 

molecules 

α-chymotrypsinogen A 25.6 9.2 4 mg/ml 4.8 dissolved 

molecules 

histone  15.3 10.8 4 mg/ml 255 aggregate of 4.5 

nm octamers 

(Fig.4a)  
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