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[1] The spatial skill of four climate field reconstruction (CFR)
methods is investigated using pseudoproxy experiments
(PPEs) based on two millennial‐length general circulation
model simulations. Results indicate that presently available
global and hemispheric CFRs for the Common Era likely
suffer from spatial uncertainties not previously characterized.
No individual method produced CFRs with universally
superior spatial error statistics, making it difficult to advocate
for one method over another. Northern Hemisphere means
are shown to be insufficient for evaluating spatial skill,
indicating that the spatial performance of future CFRs should
be rigorously tested for dependence on proxy type and
location, target data and employed methodologies. Observed
model‐dependent methodological performance also indicates
that CFR methods must be tested across multiple models
and conclusions from PPEs should be carefully evaluated
against the spatial statistics of real‐world climatic fields.
Citation: Smerdon, J. E., A. Kaplan, E. Zorita, J. F. González‐
Rouco, and M. N. Evans (2011), Spatial performance of four
climate field reconstruction methods targeting the Common Era,
Geophys. Res. Lett., 38, L11705, doi:10.1029/2011GL047372.

1. Introduction

[2] Hemispheric and global reconstructions of temperature
indices or fields provide estimates of climate variability prior
to widespread availability of instrumental records, validation
fields for general circulation models (GCMs), and estimates
of climate sensitivity that help constrain climate projections
for the 21st century [e.g., Jansen et al., 2007]. Regional
subsets from climate field reconstructions (CFRs) also have
been used to characterize climate system dynamics [e.g.,
Mann et al., 2009]. Despite the promise of these endeavors,
methodological studies have demonstrated the potential for
reconstructions to underestimate past temperature variability
[e.g., von Storch et al., 2004, 2006; Lee et al., 2008; Smerdon
and Kaplan, 2007; Smerdon et al., 2011; Christiansen et al.,
2009], although several methods have been shown to suc-
cessfully reconstruct Northern Hemisphere mean (NHM)
temperatures in synthetic experiments [Hegerl et al., 2007;
Mann et al., 2007]. All of these studies, however, have
focused almost exclusively on characterizations of NHM
reconstructions. Here we specifically compare the spatial

characteristics of derived temperature CFRs using four
methods in identical synthetic experiments and show that all
methods yield CFRs with important spatial errors.
[3] Pseudoproxy experiments (PPEs), in which synthetic

tests are constructed from subsamples of spatiotemporally‐
complete climate model output, have allowed controlled
evaluations of CFR methods. Von Storch et al. [2004, 2006]
used PPEs to characterize warm biases and variance losses in
NHM temperatures estimated from Mann et al.’s [1998]
CFR method (hereinafter MBH98). Canonical correlation
analysis (hereinafter CCA) [see Smerdon et al., 2011, and
references therein] and the regularized expectation maximi-
zation (RegEM) method using ridge regression [Schneider,
2001] have also been shown to have similar shortcomings
as CFR methods in PPEs [Smerdon and Kaplan, 2007;
Smerdon et al., 2011; Christiansen et al., 2009]. In contrast,
a RegEM application using truncated total least squares
(hereinafter RegEM‐TTLS) was used to successfully
reconstruct NHM temperatures in a PPE context [Mann et al.,
2007].
[4] Here we explicitly examine the spatial performance of

four CFR methods: MBH98, RegEM‐TTLS, ridge regres-
sion and CCA. These methods include the full suite of
multivariate linear methods most commonly used for global
and hemispheric temperature CFRs, and our experiments are
the first comparison of the spatial skill of these methods in
identical PPEs.

2. Methodology

[5] PPEs are constructed from the surface air temperature
fields of the National Center for Atmospheric Research
Community Climate System Model 1.4 (hereinafter CCSM)
[Ammann et al., 2007] and the Hamburg Atmosphere‐
Ocean Coupled Circulation Model ERIK2 (hereinafter
ECHO‐g) [González‐Rouco et al., 2006] millennial simu-
lations, according to Smerdon et al.’s [2010] corrections.
Pseudoproxy distributions approximate the multi‐proxy
locations of the most populated nest in the MBH98 network
(Figure 1 and Figure S1 of the auxiliary material).1 A pseu-
doproxy network approximating the updated Mann et al.’s
[2008] network is also tested and presented in the auxiliary
material (Figures S1 and S2). Noise perturbations added to
the pseudoproxies are drawn from Gaussian white‐noise dis-
tributions and described in the auxiliary material. All results
shown herein represent experiments using pseudoproxy sig-
nal‐to‐noise ratios (SNRs) of 0.5 by standard deviation, while
the auxiliary material provides a summary of experiments
using four different SNRs. Typical proxy records are estimated
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to have SNRs in the range of 0.5–0.25 [e.g., Mann et al.,
2007]. The instrumental field has been masked to mimic the
availability of global temperature data as determined byMann
et al. [2008]. This collective PPE design is a simplification of

real‐world conditions, and represents a best‐case scenario (see
further discussion in the auxiliary material).
[6] The MBH98 method was applied as emulated by von

Storch et al. [2006]. RegEM‐TTLS was applied as by Mann
et al. [2007]; we test the hybrid and non‐hybrid versions of

Figure 1. Local correlation coefficients for the four non‐hybrid CFR methods using pseudoproxies with SNRs of 0.5 and
the (left) CCSM and (right) ECHO‐g model fields. All methods use the same pseudoproxies, target field, and intervals for
calibration (1856–1980 CE). (top left) Grid‐point locations of the pseudoproxies used in all the PPEs, which approximate
the distribution of the most populated nest in the MBH98 network.
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RegEM‐TTLS and find only small differences between the
two choices (see results presented in the auxiliary material).
Ridge regressions [Hoerl and Kennard, 1970] were done
according to the standard formulation using singular value
decomposition [Hansen, 1997]; minimization of the gener-
alized cross validation function was used to select the ridge
parameter [Golub et al., 1979]. CCA was applied as by

Smerdon et al. [2011]. See the auxiliary material for a
detailed description of the applied methods.

3. Analysis and Results

[7] We evaluate field skill using spatially resolved cor-
relation coefficients, biases, variance ratios and root mean

Figure 2. Same as in Figure 1, but for biases, that is, mean differences between the four non‐hybrid CFRs and the true
model field during the reconstruction interval.
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squared errors (see auxiliary material for further discussion).
Correlation coefficients for all CFRs yield consistent spatial
patterns in each of the CCSM and ECHO‐g PPEs (Figure 1),
although the patterns differ across the two models. The
hybrid RegEM‐TTLS CFR yields a pattern similar to the
non‐hybrid version (Figure S3), except in some tropical
areas. In all CFRs, large correlation coefficients generally

coincide with high‐density pseudoproxy sampling, while
low values occur over most extratropical oceans and the
sparsely sampled Southern Hemisphere. This tendency also
occurs in CFRs using the richer multiproxy distribution of
Mann et al. [2008] (Figure S4): correlation coefficients
increase in densely sampled areas, but are low outside of
them. In some cases, relatively large correlation coefficients

Figure 3. Same as in Figure 1, but for the ratio between the sample standard deviations estimated in the reconstruction
interval of the four non‐hybrid CFRs and the true model fields.
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occur in tropical areas that are not adjacent to any pseudo-
proxy locations, reflecting sampled teleconnections between
the tropics and midlatitudes.
[8] Spatially variable mean biases are present in all CFRs

(Figures 2, S3, and S4) and largely compare to the spatial
patterns in the differences between the calibration and veri-
fication interval means (Figure S5). The overall mean biases
for the globe (Table S4) indicate that the MBH98 and
RegEM‐TTLS methods are least biased, but all methods
yield CFRs with regional means or NGMs different from the
target. Notably, these biases are one statistic of the hybrid
RegEM‐TTLS CFRs that show a marked improvement over
the non‐hybrid methods tested herein, even though the mean
RMSE in the hybrid RegEM‐TTLS CFRs is not necessarily
reduced relative to other methods (Table S4). The general
problem with large biases is particularly obvious in the
CCSM PPEs over the North Atlantic, where regional biases
greater than 1°C are observed for all methods (Figure 2).
While these biases cannot be assumed to occur in real‐world
CFRs (nor are they nearly as large in the ECHO‐g PPEs), the
possibility of such regional biases requires further caution
when interpreting relative warm and cold regions in real‐
world CFRs.
[9] Variance losses are expected for regression‐based

CFR methods that blend signal and error variances as a
characteristic of formulation [e.g., von Storch et al., 2004].
All derived CFRs suffer variance losses (Table S4), the
patterns of which vary appreciably between methods and
climate models, and are spatially heterogeneous (Figures 3,
S3, and S4). Ridge regression and CCA display similar
patterns (Figure 3), although variance losses are larger for
the former method. These two methods also exhibit the
well‐behaved characteristic of preserving more variance
in regions where correlation coefficients are largest. Such
behavior is less prevalent in the MBH98 and RegEM‐TTLS
(hybrid and non‐hybrid) CFRs, which enhance variance in
small correlation coefficient areas, that is, preserved variance
patterns do not match well the correlation coefficient pat-
terns. The hybrid method does not yield a systematic
improvement in these preserved variance patterns (Figure S3
and Table S4), while improved spatial sampling does (Figure
S4 and Table S4).
[10] CFR skill is generally consistent across the two model

PPEs, but some important differences exist. Skill is univer-
sally higher for all methods in every reported assessment
metric for the ECHO‐g PPEs, relative to the CCSM PPEs
(Table S4). In particular, while all of the CFRs have some
skill in the tropics, the skill is much higher for the ECHO‐g
CFRs, indicating enhanced sampling of tropical teleconnec-
tions in the ECHO‐g vs. the CCSM PPEs. This difference
appears to have significant impact on the NHM estimates,
which are reconstructed more skillfully by all methods in the
ECHO‐g PPEs (Figure S6 and Table S4). Note that theses
differences in the reconstructed NHMs appear more signifi-
cant across the twomodel simulations than for those observed
between the hybrid and non‐hybrid RegEM‐TTLS methods
(Figure S7) or the two different pseudoproxy sampling
schemes (Figure S8).

4. Conclusions

[11] The spatial performance of four CFR methods iden-
tifies some limits on the ability of currently employed

multivariate linear CFR methods to extract information from
sparse and noisy observations. No single method produced
CFRs with universally advantageous characteristics, making
it difficult to advocate for one method over another. NHMs
were insufficient for characterizing spatial uncertainties in
CFRs, indicating that spatially‐resolved error metrics are
necessary for evaluating CFR field skill.
[12] Our results further suggest that CFR skill will improve

with new proxy sampling in currently undersampled regions
and with denser replication elsewhere. Model dependencies
also indicate the importance of evaluating CFR methods with
multiple model‐based PPEs, while rigorous comparisons
between employed model fields and observed climate fields
appear essential for determining the applicability of PPEs to
assessments of real‐world CFRs. Collectively, our findings
should guide future efforts to improve large‐scale CFRs
through the application of new methodologies, expanded
proxy networks and robust quantification of uncertainties.
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