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SUMMARY

Analogously to the classical return-mapping algorithm, so-called variational constitutive updates are numerical
methods allowing to compute the unknown state variables such as the plastic strains and the stresses for material
models showing an irreversible mechanical response. In sharp contrast to standard approaches in computational
inelasticity, the state variables follow naturally and jointly from energy minimization in case of variational con-
stitutive updates. This leads to significant advantages from a numerical, mathematical as well as from a physical
point of view. However, while the classical return-mapping algorithm has been being developed for several decades
and thus, it has already reached a certain maturity, variational constitutive updates have drawn attention only
relatively recently. This is particularly manifested in the numerical performance of such algorithms. Within the
present paper, the numerical efficiency of variational constitutive updates is critically analyzed. It will be shown
that a naive approximation of the flow rule causes a singular Hessian within the respective Newton-Raphson
scheme. However, by developing a novel parameterization of the flow rule, an efficient algorithm is derived. Its
performance is carefully compared to that of the classical return-mapping scheme. This comparison clearly shows
that the novel variationally consistent implementation is, at least, as efficient as the classical return-mapping
algorithm.

1 Introduction
For constitutive models capturing dissipative mechanisms, stress update algorithms are always required.
Considering a strain-driven process such as that in typical finite elements based on an interpolation of
the deformation mapping, the goal of such update algorithms is the computation of the state variables
at time tn+1 by means of the internal variables at time tn and the current strain tensor. An overview
of stress update algorithms can be found in [1, 2] and in the references cited therein. Nowadays, the
most frequently applied implementations are those relying on the return-mapping scheme. Within these
operator-split schemes, the evolution equations and the flow rule are discretized by a backward Euler
time integration and the unknowns such as the plastic strain increment are computed by solving a set
of nonlinear equations. Typically, a standard Newton-Raphson iteration is employed for that purpose.
Since the classical return-mapping algorithm has been being developed for several decades, it has already
reached a certain maturity and has also been reasonably well understood, cf. [1, 2].

According to the previous paragraph, the return-mapping scheme is a purely mathematical technique
which can be applied to other stiff nonlinear differential equations as well. Certainly, this broad range of
application makes the return-mapping scheme very appealing. However, the broad range of application
implies that many physically relevant principles are completely ignored within this algorithm. One such
principle is that of energy stability. By way of contrast, an alternative, variationally consistent method
was proposed by Ortiz and co-workers, see [3, 4]. It is based on minimizing the stress power and thus,
it shares some similarities to the postulate of maximum dissipation, cf. [5, 6]. Due to the underlying
variational basis, such models are referred to as variational constitutive updates, cf. [7–10].

Compared to conventional stress update algorithms such as the classical return-mapping scheme,
variational constitutive updates show several significant advantages from a numerical and mathematical
as well as from a physical point of view. Concerning a numerical and mathematical viewpoint, the
probably most important feature of variational constitutive updates is that they provide an unambiguous
comparison criterion for numerical solutions, cf. [11]. More specifically, solution one is better than
solution two, if and only if the stress power associated with solution one is lower. This natural pseudo
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metric can be used for deriving physically sound error estimates and indicators which can be employed
in adaptive finite element methods (see [12–15]). From a physical point of view, the interpretation of the
solution as an energy minimizer is worth mentioning. Furthermore, energy principles provide a physically
sound basis for coupling different constitutive models, i.e., the energetically most favorable combination
between the respective models is considered, cf. [16–18].

In spite of the aforementioned advantages, variational constitutive updates are comparably infre-
quently applied. The return-mapping scheme remains to be the common choice for stress update algo-
rithms. There are, at least, two reasons associated with this.
First, most of the existing implementations for variational constitutive updates have been specifically
designed for certain, relatively simple, material models, although the underlying framework itself is very
general, cf. [3, 4, 7–9]. More precisely, focus is either on isotropic von Mises plasticity or on crystal
plasticity theory within the cited papers. Furthermore, no general implementation exists which can be
easily applied to a broad range of applications. By way of contrast, such algorithms are well-established
in case of the return-mapping scheme, see [1, 2]. First ideas for a more general framework for variational
constitutive updates are discussed in [10].
The second reason why variational constitutive updates have not been frequently applied yet is related
to their numerical efficiency. While the classical return-mapping algorithm has already reached a cer-
tain maturity and thus, its numerical implementation has been highly optimized, the implementation of
variational constitutive updates has drawn attention only relatively recently, cf. [6, 10, 18, 19].

Within the present paper, a new implementation for variational consistent updates is discussed. This
implementation can be applied to a broad range of different constitutive models. In contrast to previous
works on such update scheme, focus is particularly on the accuracy, numerical robustness and efficiency
of the respective algorithm. As shown by numerical experiments, the resulting numerical formulation
is as efficient as the return-mapping scheme – and in many cases, even more efficient. Furthermore,
its range of application is very broad. For fully isotropic models (elastic energy as well as the yield
function) an adapted version of this algorithm is also discussed based on a description in eigenvalues.
In this connection, the underlying nonlinear set of equations shows a reduced complexity compared to a
return-mapping algorithm formulated in principal stress space, cf. [1, 2].

The nonlinear set of equations describing the novel variational consistent update is solved by employing
a Newton-Raphson iteration. In this connection, it is shown that a naive approximation of the flow rule
causes a singular Hessian. Such numerical problems are effectively solved by a new parameterization
based on pseudo stresses.

The paper is organized as follows: First the fundamentals of finite strain plasticity are introduced in
Section 2.1. Subsequently, a variationally consistent reformulation of finite strain plasticity is presented
in Section 3. The resulting framework, also known as variational constitutive updates, allows computing
all state variables by minimizing the stress power of the respective solid. Such update schemes depend
crucially on the parameterization of the flow rule. For this reason, different existing concepts are critically
analyzed and further elaborated in Subsection 4. It is shown that the most general among those param-
eterization leads to a highly ill-conditioned Hessian matrix causing numerical problems. Consequently,
an extended formulation is required. Such a formulation is elaborated in Subsection 5. Its efficiency,
accuracy as well as its numerical robustness are critically analyzed in Section 6.

2 Finite strain plasticity theory in a nutshell
This section is concerned with the fundamentals of finite strain plasticity theory. The section serves
mostly for introducing the notations used in the remaining part of the paper. Throughout this work,
isothermal conditions are considered.

2.1 Fundamentals
Following [20], the gradient of the deformation mapping ϕ, denoted as F := GRADϕ, is multiplicatively
decomposed into an elastic part F e and a plastic part F p, i.e.

F = F e · F p, with detF e > 0, detF p > 0. (1)

This split allows describing the elastic as well as the elastoplastic response of a solid. For that purpose,
the Helmholtz energy is defined. For elastoplastic processes, an additive decomposition of this energy of
the type

Ψ = Ψe(F e) + Ψp(α) (2)
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represents a suitable choice, cf. [2, 21]. In Eq. (2), α ∈ Rn is a strain-like internal variable (or a suitable
set) related to plastic hardening and Ψp denotes the associated stored energy. Energy due to a distortion
of the underlying atomic lattice is considered by Ψe.

Based on Eq. (2), the stress-strain response implied by the model can be computed. Therefor, the by
now standard Coleman & Noll procedure [22, 23] is employed. Combining the dissipation inequality

D = P : Ḟ − Ψ̇ ≥ 0 (3)

with Eq. (1) and Eq. (2), the second law of thermodynamics reads

D =
(
F p · S · F pT

− 2 ∂Ψ
∂Ce

)
: 1

2 Ċ
e + S :

(
F pT

·Ce · Ḟ p)+Q · α̇ ≥ 0. (4)

Here and henceforth, Ce := F eT · F e is the elastic right Cauchy-Green strain tensor, P := ∂FΨ and
S := F−1·P are the first and the second Piola-Kirchhoff stress tensors,Q := −∂αΨ is a stress-like internal
variable work conjugate to α and the superposed dot denotes the material time derivative. Evaluating
Ineq. (4) for reversible processes yields

S = 2 ∂Ψ
∂C

= 2 F p−1
· ∂Ψ
∂Ce · F

p−T

(5)

and the reduced dissipation inequality

D = Σ : Lp +Q · α̇ ≥ 0. (6)

In Eq. (6), Σ = 2 Ce · ∂CeΨ is the Mandel stress tensor (cf. [24]) and Lp = Ḟ
p · F p−1

is the plastic
velocity gradient.

While Eq. (5) defines the stress-strain response of the model, its evolution equations (Lp and α̇)
remain to be specified. For that purpose, the space of admissible stresses Eσ is introduced. Analogously
to the reduced dissipation inequality (6), this space is formulated in terms of Σ and Q, i.e.,

Eσ =
{

(Σ,Q) ∈ R9+n ∣∣ φ(Σ,Q) ≤ 0
}
. (7)

Here, φ is the yield function which has to fulfill certain regularity conditions, cf. [25]. Now, evolution
equations can be derived. In this connection, the postulate of maximum dissipation is a physically and
mathematically elegant framework. It can be written in the form

sup
(Σ,Q)∈Eσ

D (8)

leading to the associative evolution equations and the flow rule

Lp = λ ∂Σφ α̇ = λ ∂Qφ (9)

together with the classical Karush-Kuhn-Tucker conditions λ ≥ 0, λ φ ≥ 0. In Eq. (9), λ is the plastic
multiplier. According to Eq. (5) and Eq. (9), models showing associative evolution equations can be
defined by two independent response functions: the Helmholtz energy and the yield function. Such
models are also referred to as standard dissipative solids, see Halphen & Nguyen [26].

However, associative rules are not always suitable. This holds in particular for evolution equations
characterizing the hardening response. For instance, non-linear hardening of Armstrong-Frederick-type
does not fall into the range of standard dissipative solids, see [6]. Consequently, weaker constitutive
assumptions are required. A thermodynamically consistent framework for this purpose is that of gener-
alized standard materials, cf. [24, 27]. In addition to the yield function φ and the Helmholtz energy Ψ,
this framework requires an additional response function being the so-called plastic potential g. With this
potential g, the flow rule and the hardening rules are assumed to be of the type

Lp = λ ∂Σg α̇ = λ ∂Qg. (10)

It can be seen in a straightforward manner that the dissipation resulting from Eq. (10), is always non-
negative provided the plastic potential is convex.
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2.2 A class of prototype models
According to the previous paragraph, three functions define the mechanical response of a generalized
standard material: the Helmholtz energy, the yield function and the plastic potential. In the following,
some relatively weak assumptions concerning such functions will be made. They define the class of
constitutive models for which variational constitutive updates will be developed in the next sections.

Accounting for isotropic and kinematic hardening, the sets of internal variables α and Q are decom-
posed accordingly, i.e. α = (αk, αi) and Q = (Qk, Qi). With such notations, the Helmholtz energy (2)
is postulated to be of the form

Ψ = Ψe(F e) + Ψp
k(αk) + Ψp

i (αi), with Ψp
k(αk) = 1

2 Hk ||αk||2 (11)

with Hk being the kinematic hardening modulus. It bears emphasis that enforcing a quadratic function
Ψp

k is not mandatory. However and according to [28], choosing other functions would not modify the
respective hardening response essentially.

Based on Eq. (11), the variables energy conjugate to α = (αk, αi) are introduced in standard manner,
i.e. Qk = −∂αkΨ and Qi = −∂αiΨ. Having defined the stress-like state variables, the yield function can
be specified next. Accounting for isotropic as well as for kinematic hardening, a function of the type

φ(Σ,Qk, Qi) = Σeq(Σ−Qk)−Qi −Qeq
0 (12)

is a frequently made choice. In Eq. (12), Σeq is an equivalent stress measure defining the shape of the
yield function φ and Qeq

0 is the radius of the initial elastic domain Eσ. In what follows, it is assumed
that Σeq is a positively homogeneous function of degree one, i.e.

Σeq(c A) = c Σeq(A) ∀c ∈ R+. (13)

The final assumption is associated with the plastic potential g. Since the focus of the present paper
is on variational constitutive updates, variational consistency of the underlying material model has to be
guaranteed. It is well known that this is not automatically the case. For this reason, associative evolution
equations are postulated here and the only source of non-associativity is related to kinematic hardening.
More explicitly, a plastic potential of the form

g(Σ,Qk, Qi) = φ(Σ,Qk, Qi) + 1
2
b

Hk
||Qk||2 (14)

is adopted. It accounts for an Armstrong-Frederick-type saturation of the strain-like internal variable
αk, cf. [6]. The material parameter b in Eq. (14) defines the saturation of the internal variable αk (see
[6]).

Remark 1 In Addition to Eqs. (11)-(14), no further assumptions are made. As a result, all functions
can be highly anisotropic.

Remark 2 Evolution equation (10)2 is based on the material time derivative. It is well known that
such a model can lead to unphysical results such as artificial shear oscillations. However, other modified
evolution equations for the internal variable α based on objective time derivatives can be easily applied as
well. Alternatively, evolution equations based on the so-called center configuration could be considered (see
[29, 30]). All such modifications are consistently included in the variational constitutive update discussed
in the next sections, cf. [6].

3 Fundamentals of variational constitutive updates
In what follows, the finite strain plasticity model discussed before is rewritten into a variational form, cf.
[3, 4, 6, 8]. Physically speaking, the underlying idea of this variational reformulation is the minimization
of the stress power. For analogies and differences between this principle and the postulate of maximum
dissipation, the interested reader is referred to [5]. Since the foundations of variational constitutive
updates can be found in detail in [3, 4, 6, 8], a concise description of those schemes is given here.

Focusing on admissible states, the stress power E can be written as

E = P : Ḟ = Ψ̇ +D. (15)
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According to Eq. (15), E is decomposed into the rate of the Helmholtz energy Ψ and the dissipation
D. Computing the evolution equations (10) for the plastic potential (14) and inserting the resulting
equations into the dissipation inequality (6), yields the dissipation

D = λ Qeq
0 + λ

b

Hk
||Qk||2. (16)

Here, the positive homogeneity of degree one of Σeq has been used, cf. Eq. (13). Considering these
evolution equations once again, the rate of the Helmholtz energy (11) can be written as

Ψ̇ = P : Ḟ − λ Σ : ∂Ξφ+Qk :
(
∂Ξφ−

b

Hk
Qk

)
λ︸ ︷︷ ︸

= −α̇k

−Qi α̇i, Ξ := Σ−Qk. (17)

Thus, the stress power as predicted by the discussed constitutive framework is given by

E(ϕ̇, λ,M) = Ψ̇(ϕ̇, λ,M) +D(λ) = P : Ḟ − λ (Ξ : ∂Ξφ−Qi −Qeq
0 ) . (18)

According to Eq. (18), the stress power is regarded as a function of the deformation rate ϕ̇, the plastic
multiplier λ and a second-order tensor M defining the flow direction, i.e., Lp = λM holds. The other
state variables such as the relative stresses Ξ or the internal variables Qi are considered as fixed, cf.
[3, 4, 6, 8].

The physical relevance of Eq. (18) becomes evident, if its stationarity conditions are computed. More
explicitly, stability of E with respect to the plastic multiplier requires

∂E
∂λ

= −Ξ : ∂Ξφ−Qi −Qeq
0 = −φ ≥ 0. (19)

In Eq. (19), the positive homogeneity of degree one of Σeq resulting in ∂Ξφ : Ξ = Σeq has been used. Thus,
stability is equivalent to enforcing physically admissible stresses, i.e. φ ≤ 0. Stationarity with respect to
the second-order tensor M depends on the parameterization. Formally, the respective condition can be
written as

∂E
∂M

= −λ Ξ : ∂2
ΞMφ = 0. (20)

In the next sections, it will be shown that Eq. (20) enforces the correct flow rule provided the parame-
terization is physically sound.

In summary, the resulting variational constitutive update is given by the natural minimization prin-
ciple

(λ,M) = arg inf
λ,M
E|ϕ̇=0 (21)

and the stresses follow subsequently from

P =
∂

(
arg inf

λ,M
E
)

∂Ḟ
(22)

4 On the influence of the flow rule parameterization on varia-
tional constitutive updates

In this section, different implementations for variational constitutive updates are critically analyzed.
For that purpose, the respective fundamentals are briefly given in Subsection 4.1. Subsequently, two
implementations are discussed in detail. The first of those is based on a direct parameterization of the
flow rule (see Subsection 4.2), while the second relies on the concept of so-called pseudo stresses (see
Subsection 4.3).

4.1 Fundamentals
The overriding idea associated with the numerical implementation of variational constitutive updates is
very natural: Based on the time-continuous problem (21) (see also Eq. (18)), a discrete approximation
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can be obtained by considering a time discretization over the interval t ∈ [tn; tn+1]. More specifically,
introducing the abbreviation ∆λ :=

∫ tn+1
tn

λ dt, the respective discrete optimization problem reads

(∆λ,M) = arg inf
∆λ,M

Iinc (23)

with

Iinc = Ψn+1 −Ψn +
tn+1∫
tn

D dt. (24)

Evidently, the underlying equations are highly nonlinear and thus, Eq. (24) cannot be computed analyti-
cally in general. For this reason, a time discretization is applied. In this respect, the resulting variational
constitutive update is not uniquely defined, but depends on precisely this discretization. However, if a
consistent integration is used, consistency of the algorithm is expected. Thus and regardless of the time
discretization, the algorithm should converge to the time-continuous problem (21) (see also Eq. (18)) for
vanishing time steps (∆t = tn+1 − tn → 0). This has to be proved explicitly.

In the present paper, the nonlinear function (24) is computed by employing a standard implicit
backward Euler time integration, i.e.

Iinc = Ψn+1 −Ψn + ∆λ Qeq
0 + ∆λ b

Hk
||Qk|n+1||2. (25)

Analogously, the evolution laws α̇k = λ ∂Qkg = −λ (b αk + ∂Ξφ) and α̇i = λ ∂Qig = −λ defining the
internal variables are also integrated by a standard implicit backward Euler time integration yielding

αk|n+1 = αk|n −∆λ ∂Ξφ|n+1

1 + ∆λ b , αi|n+1 = αi|n −∆λ. (26)

Contrariwise, an implicit exponential mapping of the type

F p
n+1 = exp [∆λ ∂Ξφ|n+1] · F p

n (27)

is used for the flow rule. Here, exp(•) is the exponential mapping of second-order tensors, cf. [31]. By
inserting Eq. (26) and Eq. (27) into the potential (25), the only unknown variables are the integrated
plastic multiplier ∆λ and the flow direction M at time tn+1, i.e., Iinc = Iinc(∆λ,M).

Remark 3 Similarly to the classical return-mapping scheme, loading is checked by an elastic predictor
step. More precisely, stability of the energy Iinc requires in this case

∂Iinc

∂∆λ

∣∣∣∣
∆λ=0

= −φtrial
n+1 ≥ 0. (28)

Accordingly, plastic loading is only possible, if φtrial
n+1 > 0. For improving the numerical efficiency of the

algorithm, the optimization problem (23) is only solved, if φtrial
n+1 > 0.

Remark 4 Since kinematic hardening does not influence the parameterization of the flow rule, it is
neglected in what follows.

4.2 A direct parameterization of the flow rule
The most natural representation of the flow rule is a direct parameterization. Thus, Lp respectively
∆Lp is the unknown defining the flow direction as well as the plastic multiplier (implicitly). Such a
parameterization has already been published in [10] for isotropic models. In this case, ∆Lp is coaxial to
the elastic trial right Cauchy-Green tensor and thus, only the eigenvalues of ∆Lp are unknown. However,
the more general framework discussed in Subsection 2.2 is considered here.

4.2.1 Fundamentals

Choosing ∆Lp as the unknown within the variational constitutive update, the exponential mapping (27)
reads

F e
n+1 = F e trial · exp

[
−∆Lp

n+1
]
, with F e trial := Fn+1 · F p

n
−1. (29)
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Using this parameterization, the integrated plastic multiplier is computed as

∆λ =
||∆Lp

n+1||
||∂Σφ|n+1||

. (30)

Unfortunately, this function cannot be solved in closed form in general. For instance, if φ is anisotropic,
||∂Σφ|n+1|| is not constant, but it depends on the final stress state. However, even for fully isotropic
models (yield function and hardening) and equivalent stresses Σeq being positively homogeneous of degree
one, ||∂Σφ|n+1|| is not constant in general. One such example is given by the equivalent stress Σeq =√

Σ1 Σ2 with Σi denoting the eigenvalues of the Mandel stress tensor Σ.
Although the aforementioned parameterization can be modified for yield functions not fulfilling the

constraint ||∂Σφ|n+1|| = const (see Remark 5), such modifications are not discussed in detail here. For
this reason, the assumption

c := ||∂Σφ|n+1|| = const (31)

is made. It is, for instance, fulfilled for the family of Drucker-Prager-type yield functions

φ = γ trΣ + θ || dev Σ|| −Qi −Qeq
0 with trΣ = 1 : Σ, dev Σ = Σ− 1

3 trΣ 1 (32)

containing, among others, the von Mises (γ = 0, θ = 1) as well as a purely volumetric yield function
(γ = 1, θ = 0). With this choice, the integrated stress power (25) without kinematic hardening reads

Iinc = Ψn+1(Fn+1,∆Lp
n+1)−Ψn + 1

c
||∆Lp

n+1|| Q
eq
0 . (33)

Based on Eq. (33), the unknown incremental plastic flow ∆Lp
n+1 can be computed from the minimization

principle

∆Lp
n+1 = arg inf

∆Lp
n+1

Iinc|Fn+1=const . (34)

However, a direct unconstrained minimization of Iinc would not lead to physically sound results, since
the constraints implied by the flow rule have not been considered within the parameterization yet. For
enforcing such constraints, a simple projection technique is employed within the present subsection.
Introducing the arbitrary tensor K̃ ∈ R9, this technique can be formally written as

∆Lp
n+1 = P : K̃ (35)

Here, P represents the respective projection operator. According to Eq. (35), the tensor K̃ can be
interpreted as the incremental plastic flow without considering the constraints induced by the flow rule.
For instance, P is the deviatoric projection P = I− 1

31⊗ 1 in case of a von Mises yield function. Clearly,
symmetry of ∆Lp could be guaranteed by using a similar technique. However, this is enforced directly
within the present implementation by setting explicitly [∆Lp]21 = [∆Lp]12.

Employing the aforementioned projection technique, the necessary condition associated with Eq. (34)
is computed as

∂Iinc

∂∆Lp
n+1

:
∂∆Lp

n+1

∂K̃
=
[
−Σ?

n+1 : Dexp
[
−∆Lp

n+1
]︸ ︷︷ ︸

= ∂Ψ/∂∆Lp
n+1

(36)

+ 1
c

∆Lp
n+1

||∆Lp
n+1||

(Qi +Qeq
0 )
]

: P = 0

with

Σ?
n+1 := (F e trial)T · P e

n+1. (37)

In Eq. (36), Dexp(•) represents the first derivative of the exponential mapping with respect to (•).
Eq. (36) can be efficiently solved by means of Newton’s method. This will be discussed in the next
subsection.



8 N. Bleier and J. Mosler

For showing consistency of the algorithm, stationarity condition (36) is analyzed for ∆t→ 0. In this
case, Dexp

[
−∆Lp

n+1
]
→ I and Σ?

n+1 → Σn+1 leading to

∂Iinc

∂K̃n+1

∣∣∣∣
∆t→0

=
[
−Σn+1 + 1

c

∆Lp
n+1

||∆Lp
n+1||

(Qi +Qeq
0 )
]

: P = 0. (38)

This is equivalent to the flow rule

∆Lp
n+1 : P =

||∆Lp
n+1|| c

Qi +Qeq
0

Σn+1 : P. (39)

Thus, if P is a projection in the sense of linear algebra (P : P = P), Eq. (39) results in

∆Lp
n+1 =

||∆Lp
n+1|| c

Σeq Σn+1 : P (40)

where the identity Σeq = Qeq
0 + Qi holding for plastic loading has been used. Consistency of Eq. (40)

can be verified in a straightforward manner. For instance, in case of von Mises plasticity (γ = 0, θ = 1,
Σeq = ||dev Σ||, P = I− 1

31⊗ 1), Eq. (40) yields

∆Lp
n+1 = ||∆Lp

n+1||
dev Σn+1

|| dev Σn+1||
, (41)

while a shear independent yield function (γ = 1, θ = 0, Σeq = 1 : dev Σ, P = 1
31⊗ 1) gives

∆Lp
n+1 = ||∆Lp

n+1|| 1. (42)

Evidently, both equations comply with the underlying yield functions and associative flow rules. As a
result, the variational constitutive update naturally enforces the correct flow rule.

Finally, it will be shown that the advocated variational framework also includes the yield function,
i.e., it avoids inadmissible states. For verifying this, the condition of energy stability is rewritten as

∂Iinc

∂K̃n+1

∣∣∣∣
∆t→0

: A ≥ 0 ∀A. (43)

Choosing A as the incremental plastic flow, i.e. A = ∆Lp
n+1, Eq. (43) implies

∂Iinc

∂K̃n+1

∣∣∣∣
∆t→0

: ∆Lp
n+1 = −

[
c
||Σ : P||2

Σeq − (Qeq
0 +Qi)

]
||Lp

n+1|| ≥ 0 (44)

⇒
[
c
||Σ : P||2

Σeq − (Qeq
0 +Qi)

]
≤ 0. (45)

Again, a straightforward computation shows that Ineq. (45) is equivalent to φ ≤ 0. In case of von
Mises plasticity (γ = 0, θ = 1, Σeq = ||dev Σ||) or a shear independent yield function (γ = 1, θ = 0,
Σeq = 1 : dev Σ, P = 1

31 ⊗ 1) this can be directly seen. In summary, the variational reformulation (34)
combined with the projection method is thus consistent.

Remark 5 One way of modifying the proposed algorithm for isotropic yield functions not fulfilling the
constraint ||∂Σφ|| = const is the application of an explicit/implicit integration scheme of the type

∆λ =
||Lp

n+1||
||∂Σφ|n||

. (46)

However, such purely numerically motivated modifications will not be discussed in detail here.

4.2.2 Numerical implementation

Eq. (36) is efficiently solved by means of Newton’s method. For that purpose, the residual (36) has to be
linearized resulting in the set of linear equations

∂Iinc

∂K̃
+ ∂2Iinc

∂K̃2
: ∆K̃ = 0 ⇒ ∆K̃. (47)
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By combining the chain rule

∂2Iinc

∂K̃2
= PT : ∂2Iinc

∂(Lp
n+1)2 : P, [PT ]ijkl = [P]klij (48)

with

∂2Iinc

∂(Lp
n+1)2 = ∂Σ?

∂F e

∣∣∣∣
n+1

(1)
: Dexp

[
−Lp

n+1
] (3)

: Dexp
[
−Lp

n+1
]
−Σ?

n+1 : D2exp
[
−Lp

n+1
]

(49)

+ 1
c

∂2||Lp
n+1||

∂(Lp
n+1)2

∣∣∣∣
n+1

(Qi +Qeq
0 )

the Hessian matrix ∂2Iinc/∂K̃
2 can be computed. Here, the terms

∂Σ?

∂F e

∣∣∣∣
n+1

= (F e trial)T · ∂P
e

∂F e

∣∣∣∣
n+1

(3)
· F e trial (50)

and

∂2||Lp
n+1||

∂(Lp
n+1)2 = 1

||Lp
n+1||

[
1⊗1−

∂||Lp
n+1||

∂Lp
n+1

⊗
∂||Lp

n+1||
∂Lp

n+1

]
(51)

have been introduced. Furthermore (1⊗1)ijkl = δikδjl denotes the fourth-order identity tensor, D2exp(•)
is the second derivative of the exponential mapping with respect to its argument (•) and the index i in the
expression

(i)
: indicates the first component of the tensor on the right hand side over which the summation

has to be performed, i.e. [a
(2)
· C]jkl = ai Cjikl and [A

(2)
: C]il = Ajk Cijkl. It bears emphasis that

standard projections P show major symmetry and thus, PT = P.
For obtaining an asymptotically quadratic convergence also on the structural level, the consistent

tangent moduli are required. They follow from the linearization

dP = d
(
∂Iinc

∂F

)
=
[
∂2Iinc

∂F 2 + ∂2Iinc

∂F ∂K̃
: dK̃dF

]
︸ ︷︷ ︸

= dP /dF

: dF . (52)

The derivative dK̃/dF in Eq. (52) is computed by linearizing the residual (36) at a converged stage.
More explicitly, considering ∂Iinc/∂K̃ = 0 yields

dK̃
dF = −

[
∂2Iinc

∂K̃
2

]−1

: ∂2Iinc

∂K̃∂F
. (53)

Here, the mixed derivative is given by

∂2Iinc

∂K̃∂F
= −

[
∂Σ?

∂F e : ∂F
e

∂F

]
(1)
: Dexp

[
−∆Lp

n+1
]

: P. (54)

By inserting Eq. (54) into Eq. (53) and combing the result with Eq. (52), the consistent tangent moduli
are finally obtained as

dP n+1

dF n+1
= ∂2Iinc

∂F 2
n+1
− ∂2Iinc

∂F n+1∂K̃
:
[
∂2Iinc

∂K̃
2

]−1

: ∂2Iinc

∂K̃∂F n+1
. (55)

As can be seen from Eq. (55), the tangent matrix automatically preserves the symmetric structure of
the underlying constitutive model. This is a direct consequence of the variationally consistency of the
approach.

4.2.3 Concluding remarks

By rewriting the gradient (36) into the residual form

R(K̃) := ∂Iinc

∂K̃
, (56)
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the proposed algorithm can be compared to the classical return-mapping scheme, cf. [1, 2]. By doing so,
two things can be observed. First, both algorithms are based on the same time integration scheme and the
underlying residuals show a similar structure. However, while the standard residual of the return mapping
scheme is ten-dimensional (dimF p + dimλ = 10), the variational constitutive update is formulated in
a space with reduced complexity. The dimension of that space is defined by the rank of the projection
operator P. In this connection, the upper bound is nine (dim K̃). However, for many practically relevant
constitutive models the rank of P is significantly less that nine. For instance, in case of a von Mises
yield function (trLp = 0) and elastic isotropy (Σ = ΣT ), the residual (56) is five-dimensional. By
summarizing the aforementioned points, it is expected that the proposed variational constitutive update
is slightly numerically more efficient than the classical return-mapping scheme and that it shows a similar
numerical stability. This could be verified by numerical experiments which will be shown in Section 6.

Besides the positive features of the analyzed variational constitutive update, the resulting algorithm
has also some shortcomings. More precisely, it can only be applied, if the respective yield function is fully
isotropic. Furthermore, the norm of the flow direction has to be constant, cf. Remark 5. This narrows
the range of application considerably.

4.3 A parameterization of the flow rule direction by using pseudo stresses
A parameterization not showing such shortcomings was proposed in the series of paper [6, 10, 18, 19]. It
is based on the concept of so-called pseudo stresses. In what follows, the fundamentals of this param-
eterization, together with a complete description of a numerical implementation by means of Newton’s
method, will be given. Finally, the resulting algorithm is critically analyzed.

4.3.1 Fundamentals

In contrast to the previously discussed direct parameterization (29) of ∆Lp
n+1, the flow direction is defined

here by employing the concept of pseudo stresses. Such stresses denoted as Σ̃ are not identical to their
physical counterparts Σ. Based on Σ̃, the flow rule is parameterized by

Lp(λ, Σ̃) = λ ∂Σφ|Σ=Σ̃. (57)

Accordingly, the flow rule is evaluated for the pseudo stresses. By doing so, all constraints induced by
the yield function are naturally included. For instance, in cases of von Mises plasticity,

1 : ∂Σφ|Σ=Σ̃ = 0 ∀Σ̃ (58)

is automatically fulfilled and thus, the flow is purely deviatoric. A further advantage of this concept is the
decomposition of the plastic strain rate into a direction and an amplitude. Hence, the plastic multiplier
is explicitly used within this framework and does not need to be computed implicitly, see Eq. (30).

Employing the aforementioned parameterization, the plastic part of the deformation gradient at time
tn+1 can be computed as

F e
n+1 = F e trial · exp [−∆λ ∂Σφ|Σ=Σ̃] , with F e trial := Fn+1 · F p

n
−1 (59)

where Σ̃ are the pseudo stresses at time tn+1, i.e., an implicit integration scheme is considered. As a
result, the variational constitutive update reads now

(∆λ, Σ̃) = arg inf
∆λ,Σ̃

Iinc|Fn+1=const, P = ∂Fn+1 inf
∆λ,Σ̃

Iinc (60)

Iinc = Ψn+1(F n+1,∆λ, Σ̃)−Ψn + ∆λ Qeq
0 .

Again, kinematic hardening has been neglected, since it does not modify the resulting algorithm essen-
tially, cf. [6]. It bears emphasis that a positive plastic multiplier has to be enforced in Eq. (60). This
can be implemented either by inserting ∆λ = a2 or by replacing ∆λ by its absolute value. Within the
numerical simulations it turned out that the latter concept was numerically more stable.

For solving minimization problem (60), Newton’s method is employed. The respective residual of that
scheme reads

R(∆λ, Σ̃) = [R∆λ(∆λ, Σ̃);RΣ̃(∆λ, Σ̃)] (61)
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with

R∆λ(∆λ, Σ̃) = ∂Iinc

∂∆λ = Σ?
n+1 : T1 +Qi +Qeq

0 , (62)

RΣ̃(∆λ, Σ̃) = ∂Iinc

∂Σ̃
= Σ?

n+1 : T2. (63)

Here and henceforth, the abbreviations ∆Lp
n+1 = ∆λ∂Σφ|Σ=Σ̃, Eq. (37) and

T1 := − Dexp
[
−∆Lp

n+1
]

: ∂Σφ|Σ=Σ̃ (64)
T2 := −∆λn+1 Dexp

[
−∆Lp

n+1
]

: ∂2
Σφ
∣∣
Σ=Σ̃ (65)

are used. Starting from Eq. (62) and Eq. (63), consistency of the algorithm can be easily verified. More
specifically, evaluating such equations for ∆t→ 0 gives T1 = − ∂Σφ|Σ=Σ̃ and T2 = −∆λn+1 ∂2

Σφ
∣∣
Σ=Σ̃.

Combining this with Σ?
n+1 = Σn+1 (∆t→ 0) yields

∂Iinc

∂∆λ

∣∣∣∣
∆t→0

= − Σn+1 : ∂Σφ|Σ=Σ̃ +Qi +Qeq
0 = −φ (66)

∂Iinc

∂Σ̃

∣∣∣∣
∆t→0

= −∆λn+1 Σn+1 : ∂2
Σφ
∣∣
Σ=Σ̃ (67)

According to Eq. (66), stability of Iinc with respect to the plastic multiplier leads to φ ≤ 0 and hence, it
naturally avoids inadmissible stress states. Furthermore, stationarity condition ∂Iinc/∂Σ̃ = 0 is a com-
patibility condition between the stresses Σ and their pseudo counterparts Σ̃. The physical interpretation
of this equation becomes more obvious, if the positive homogeneity of degree one of the equivalent stress
Σeq is accounted for. With this condition,

Σeq = ∂ΣΣeq : Σ ⇒ Σ : ∂
2φ

∂Σ2 = 0 (68)

can be derived. Thus, comparing Eq. (68)2 to Eq. (67) shows that the stationarity condition ∂Iinc/∂Σ̃ = 0
enforces the correct flow rule. As a result, the variational constitutive update based on pseudo stresses
is consistent as well.

4.3.2 Numerical implementation

The second derivatives of Iinc necessary for Newton’s method result eventually in
∂2Iinc

∂∆λ2 = ∂Σ?

∂F e
(1)
: T1

(3)
: T1 + Σ? : T3 + ∂Qi

∂∆λ, (69)

∂2Iinc

∂∆λ∂Σ̃
= ∂Σ?

∂F e
(1)
: T1

(3)
: T2 + Σ? : T4 + Σ? : T2, (70)

∂2Iinc

∂Σ̃2
= ∂Σ?

∂F e
(1)
: T2

(3)
: T2 + Σ? : T5 + Σ? : T6. (71)

where the notations

T3 := D2exp
[
−∆Lp

n+1
] (3)

: ∂Σφ|Σ=Σ̃
(5)
: ∂Σφ|Σ=Σ̃ , (72)

T4 := ∆λn+1 D2exp
[
−∆Lp

n+1
] (3)

: ∂2
Σφ
∣∣
Σ=Σ̃

(5)
: ∂Σφ|Σ=Σ̃ , (73)

T5 := ∆λ2
n+1 D2exp

[
−∆Lp

n+1
] (3)

: ∂2
Σφ
∣∣
Σ=Σ̃

(5)
: ∂2

Σφ
∣∣
Σ=Σ̃ , (74)

T6 := −∆λn+1 Dexp
[
−∆Lp

n+1
]

: ∂3
Σφ
∣∣
Σ=Σ̃ (75)

have been introduced. Since, Iinc is sufficiently smooth (in case of a plastic load step), ∂2
∆λ Σ̃Iinc =

∂2
Σ̃ ∆λIinc. The additional derivatives with respect to the deformation gradient required for the consistent

tangent moduli are given by
∂2Iinc

∂∆λ∂F =
[
∂Σ?

∂F e : ∂F
e

∂F

]
(1)
: T1, (76)

∂2Iinc

∂Σ̃ ∂F
=
[
∂Σ?

∂F e : ∂F
e

∂F

]
(1)
: T2. (77)

For the sake of conciseness, no further explicit details about the Hessian matrix as well as the tangent
moduli will be given here. They will be discussed in detail in the next section where an extended version
of the variational constitutive update based on pseudo stresses will be elaborated.
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4.3.3 Concluding remarks

The most important advantage of the algorithm described in the present subsection is its range of ap-
plication. Except for the positive homogeneity of degree one of Σeq no further assumption is required.
Consequently, arbitrary anisotropic yield functions are consistently included within this framework. How-
ever, this generalization leads to a higher numerical complexity. This can be seen by comparing the Hes-
sian (49) to the Hessian defined by Eqs. (69)-(75). For instance, only the Hessian depending on pseudo
stresses requires the third derivative of the yield function. In summary, the more general algorithm based
on the pseudo stresses is thus numerically less efficient. Certainly, this is not surprising.

However, a more serious issue is related to the numerical stability of the algorithm discussed in the
present subsection. More precisely, if Newton’s method is applied, the Hessian matrix is highly ill-
conditioned. Therefore, numerical problems occurred, even when a solver for indefinite matrices was
employed. A careful analysis reveals different main sources for this pathological response. The first of
those is related to the yield function. Since this function is positively homogeneous of degree one,

∂φ

∂Σ

∣∣∣∣
Σ=Σ̃

= ∂φ

∂Σ

∣∣∣∣
Σ=cΣ̃

∀c ∈ R+ (78)

holds. Accordingly, the energy Iinc is invariant with respect to pseudo stresses being parallel to each
other, i.e.

Iinc(F n+1,∆λ, Σ̃) = Iinc(F n+1,∆λ, c Σ̃) ∀c ∈ R+. (79)

An additional source for the singularity of the Hessian matrix is associated with the space implicitly
induced by the yield function. More specifically, the energy Iinc is constant for variations of the pseudo
stresses in the direction of the kernel (denoted as “ker“) of the projection operator P (see Eq. (35)). This
property can be written as

Iinc(F n+1,∆λ, Σ̃) = Iinc(F n+1,∆λ, Σ̃ +A) ∀A ∈ ker(P). (80)

For instance, if a von Mises function is considered ∂φ/∂Σ = dev Σ/||dev Σ||,

dev Σ̃
||dev Σ̃||

=
dev

[
Σ̃ +A

]
||dev

[
Σ̃ +A

]
||

∀A ∈ ker(P) = {1 c | ∀c ∈ R+}. (81)

The final and probably least important issue concerning a parameterization depending on pseudo stresses
is the symmetry of the flow rule in case of an elastically isotropic material model. Clearly, this problem
could be solved by a projection method or by enforcing the respective constraints directly.

5 A numerically efficient variational constitutive update by means
of a novel flow rule parameterization

In the present section, the aforementioned numerical problems associated with the variational constitutive
update based on pseudo stresses are eliminated by combining the approach with another physically sound
parameterization of the pseudo stresses. In this respect, the resulting algorithm can be understood as a
multiple projection scheme.

5.1 Fundamentals
The singularity of the Hessian matrix due to the invariance of the energy Iinc with respect to the length
of the pseudo stresses Σ̃ can be simply eliminated by parameterizing the eigenvalues of Σ̃k by spherical
coordinates (ψ,ρ). Thus, denoting the eigenprojection of Σ̃ as Bk, the representation

Σ̃ :=
3∑
k=1

Σ̃k(ψ, ρ) Bk (82)

with the eigenvalues

Σ̃1 = sinψ cos ρ, Σ̃2 = sinψ sin ρ, Σ̃3 = cosψ (83)
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is considered in what follows. By using the parameterization (83) the constraint ||Σ̃|| = 1 is automatically
fulfilled. For the sake of simplicity, three different eigenvalues are assumed here. Introducing the eigen-
projections Btrial

k of the Mandel trial stresses, the tensors Bk can be obtained by an unknown rotation
tensor R. More explicitly and not enforcing a symmetric flow rule,

Bk(ϕ1, ϑ1, χ1, ϕ2, ϑ2, χ2) = R(ϕ1, ϑ1, χ1) ·Btrial
k ·RT (ϕ2, ϑ2, χ2) (84)

where the rotation tensor R is defined in standard manner as

R(ϕ, ϑ, χ) = R1(ϕ) ·R2(ϑ) ·R3(χ) (85)

with

R1(ϕ) :=

1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 (86)

R2(ϑ) :=

cosϑ 0 − sinϑ
0 1 0

sinϑ 0 cosϑ

 (87)

R3(χ) :=

 cosχ sinχ 0
− sinχ cosχ 0

0 0 1

 . (88)

If (ϕ, ϑ, χ) = (0, 0, 0), the rotation tensor R equals the identity tensor and hence, Bk = Btrial
k . This

is precisely the initial value of those angles in the resulting Newton iteration. In summary, the pseudo
stresses are parameterized by means of the eight-dimensional representation

Σ̃(ψ, ρ, ϕ1, ϑ1, χ1, ϕ2, ϑ2, χ2) = R(ϕ1, ϑ1, χ1) ·
[ 3∑
k=1

Σ̃k(ψ, ρ) Btrial
k

]
·RT (ϕ2, ϑ2, χ2). (89)

Clearly, for elastically isotropic material models, the Mandel stresses and their pseudo counterparts are
symmetric. In this case, Eq. (89) has to be replaced by the five-dimensional parameterization

Σ̃(ψ, ρ, ϕ, ϑ, χ) = R(ϕ, ϑ, χ) ·
[ 3∑
k=1

Σ̃k(ψ, ρ) Btrial
k

]
·RT (ϕ, ϑ, χ). (90)

If the yield function is also isotropic resulting in the coaxiality between the elastic right Cauchy-Green
trial strains Ce trial and the Mandel stresses Σ, the identity Bk = Btrial

k holds. Accordingly, Eq. (90) can
then be further simplified yielding

Σ̃(ψ, ρ) =
3∑
k=1

Σ̃k(ψ, ρ) Btrial
k . (91)

Consequently, if the model is fully isotropic (Ψe as well as φ), only two unknowns are required for spanning
all admissible flow directions. Thus, the overall minimization problem depends on the three unknowns
∆λ, ψ, ρ. It bears emphasis that the classical return-mapping in principal axes depends on four unknowns,
cf. [1]. As a result, the proposed variational constitutive update is numerically even more efficient than
the return-mapping scheme in this case. Furthermore and in line with this by now standard scheme, the
numerically expensive tensorial derivatives of the exponential mapping (see [31]) can be avoided, since the
eigenprojections are constant within the local stress update. For this reason, the variational constitutive
update for fully isotropic constitutive models is highly efficient.

Besides the already discussed constraints included in the parameterizations (89)-(91), some yield
functions induce an additional invariance within the energy Iinc (see Eq. (80)) and thus, they lead to an
ill-conditioned Hessian matrix, if no further stabilization technique is used. One of the probably most
practically relevant sources for such a singularity is concerned with the decomposition of the stress tensor
into purely deviatoric and purely volumetric parts (see Eq. (81)). This is, for instance, relevant for von
Mises- or Hill-type yield functions which are frequently employed in numerical simulations.

For a yield function (or some parts of that) only depending on the deviator dev Σ, the resulting flow
rule is traceless, i.e. 1 : ∂Σφ = 0. Considering the parameterization (89), this constraint requires

3∑
k=1

Σ̃k = 0. (92)
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Solving the characteristic polynomial of the stress tensor by means of Cardano’s method with respect to
the constraint Eq. (92) yields the parameterization

Σ̃k(ψ) =
√

2
3 sin

[
2
3 π k − ψ

]
, k = {1, 2, 3}. (93)

This parameterization will be used in the numerical examples presented in Section 6. According to
Eq. (93), the respective implementation of the variational constitutive update for fully isotropic constitu-
tive models depends only on the two unknowns ∆λ and ψ and therefore, it is numerically very efficient –
even compared to the return-mapping scheme which requires a description depending on four unknowns
in this case (using a Hencky model for Ψe, both algorithms can be reduced to scalar-valued equations,
cf. [1, 3]).

Consistency of the algorithm

(∆λ,Γ) = arg inf
∆λ,Γ

Iinc|Fn+1=const, P = ∂Fn+1 inf
∆λ,Γ

Iinc (94)

Iinc = Ψn+1(F n+1,∆λ,Γ)−Ψn + ∆λ Qeq
0 .

can be proved in a straightforward manner. Here and henceforth, Γ is the collection of all angles defining
the respective parameterization. Thus, Γ is an eight-dimensional vector in the general case (see Eq. (89)),
while it is one-dimensional for a fully isotropic constitutive model based on a von Mises yield function
(see Eq. (93)). For distinguishing between the energy in Eq. (94) and that in Eq. (60), a superposed
tilde sign is used for the parameterization depending directly on pseudo stresses (Eq. (60)). Denoting the
composition of two functions in standard manner by ◦, the two different variational constitutive updates
can be written as

Iinc = Ĩinc ◦ P̃ (95)

with
P̃ : (R3×3,R+,R8) → (R3×3,R+,R3×3)

(F n+1,∆λ,Γ) 7→ (F n+1,∆λ, Σ̃). (96)

Therefore, the original structure is not affected by the novel parameterization and thus, the algorithm is
consistent as well. This can be explicitly seen by analyzing the gradient of Iinc which is multiplicatively
decomposed into the gradient of Ĩinc and the gradient of the parameterization P̃.

5.2 Numerical implementation
5.2.1 The general case

In the general, not fully isotropic case, the unknown flow direction is either parameterized by the eight-
dimensional representation (see Eq. (89)) or by the five-dimensional representation (see Eq. (90)). In-
dependent of the considered case, all unknowns defining the flow direction are collected in the vector
Γ. Thus, the incremental energy is assumed to be of the type Iinc = Iinc(F n+1,∆λ,Γ) in what follows.
The resulting stress update algorithm (94) is effectively solved by a Newton-Raphson scheme. In this
connection, the residual is introduced as

RNewton(∆λ,Γ) = [R∆λ(∆λ,Γ);RΓ(∆λ,Γ)] (97)

with

R∆λ(∆λ, Σ̃) = ∂Iinc

∂∆λ = Eq. (62) (98)

RΓ(∆λ, Σ̃) = ∂Iinc

∂Γ = ∂Iinc

∂Σ̃︸ ︷︷ ︸
= Eq. (63)

: ∂Σ̃
∂Γ . (99)

Clearly, the gradient with respect to the plastic multiplier is not affected by the parameterization of the
pseudo stresses and thus, it is equivalent to that previously derived. Furthermore and in line with the
composition (95), residual (99) corresponding to the flow direction is multiplicatively decomposed into
the gradient with respect to the pseudo stresses and the additional parameterization. This additional
nonlinear projection is precisely the reason why the resulting scheme is numerically very stable.
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The second derivatives of Iinc necessary for a Newton-Raphson scheme can be computed in a straight-
forward fashion. They result in

∂2Iinc

∂∆λ2 = Eq. (69) (100)

∂2Iinc

∂Γ2 =
[
∂Σ̃
∂Γ

]T
: ∂2Iinc

∂Σ̃2︸ ︷︷ ︸
= Eq. (71)

: ∂Σ̃
∂Γ + ∂Iinc

∂Σ̃︸ ︷︷ ︸
= Eq. (63)

: ∂
2Σ̃
∂Γ2 (101)

∂2Iinc

∂∆λ∂Γ = ∂2Iinc

∂∆λ∂Σ̃︸ ︷︷ ︸
= Eq. (70)

: ∂Σ̃
∂Γ . (102)

Finally, if a certain convergence criterion is met within the iterative algorithm, the tangent moduli
required for a Newton-Raphson algorithm at the structural level can be computed as

dP n+1

dF n+1
= ∂2Iinc

∂F 2
n+1

+ ∂2Iinc

∂F n+1∂∆λ︸ ︷︷ ︸
= Eq. (76)

⊗ d∆λ
dF n+1

+ ∂2Iinc

∂F n+1∂Σ̃︸ ︷︷ ︸
= Eq. (77)

: ∂Σ̃
∂Γ : dΓ

dF n+1
. (103)

The linearizations d∆λ/dF n+1 and dΓ/dF n+1 in Eq. (103) follow again from linearizing the converged
residual (97) with respect to ∆λ, Γ and F n+1. Since this procedure has already been discussed in detail
in Subsection 4.2.2 (see Eq. (53)), further details are omitted here.

5.2.2 Models based on an elastically isotropic response and an isotropic yield function

In case of an elastically isotropic response combined with an isotropic yield function, the trial elastic right
Cauchy-Green tensor is coaxial to its converged counterpart which is in turn coaxial to the converged
Mandel stresses. The eigenprojection of those tensors are again denoted as Bk and for the sake of
simplicity three different eigenvalues are assumed. However, the more general case does not raise any
additional problem and has been accounted for within the final implementation.

With the aforementioned assumptions, the exponential mapping involved in the time integration of
F p (see Eq. (27) and [31]) simplifies to

exp [∆λ ∂Σ|Σ=Σ̃ φ] =
3∑
k=1

exp
[
∆λ ∂Σk

φ|Σk=Σ̃k

]
Bk (104)

and accordingly, the elastic right Cauchy-Green strain tensor is given by

Ce
n+1 := F eT

n+1 · F
e
n+1 =

3∑
k=1

λC
e trial

k exp
[
−2 ∆λ ∂Σk

φ|Σk=Σ̃k

]
Bk. (105)

Details concerning the exponetial mapping formulated in eigenvalues can be found in [31]. Here, λCe trial

k

are the eigenvalues of the elastic right Cauchy-Green tensor corresponding to the trial state. Since an
elastically isotropic response is assumed, only the eigenvalues of Ce

n+1 enter the stored energy potential.
As implied by Eq. (105), such eigenvalues can be written as

λC
e

k = λC
e trial

k exp
[
−2 ∆λ ∂Σk

φ|Σk=Σ̃k

]
. (106)

They depend on the plastic multiplier as well as on the parameterization of the eigenvalues Σ̃i. Conse-
quently, the resulting minimization problem reads

inf Iinc with Iinc(F n+1,∆λ,Γ) = Ψn+1(F n+1,∆λ,Γ)−Ψn + ∆λ Qeq
0 (107)

where
Γ = [ψ, ρ] (108)

is two-dimensional in the more general case (see Eq. (82)), while it is one-dimensional for yield functions
based on a volumetric/deviatoric decomposition of the stress tensor (see Eq. (93)), i.e.

Γ = [ψ]. (109)
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As a result, the local stress update is based on a three- or two-dimensional optimization problem. Fur-
thermore, the numerically expensive tensorial exponential mapping does not need to be computed. Con-
sequently, the final algorithm is highly efficient. It bears emphasis that except for special cases, the
return-mapping scheme for fully isotropic constitutive models requires the computation of four unknowns
and is thus, often numerically more expensive.

Within the implementation, minimization problem inf∆λ,Γ Iinc has again been solved by a Newton-
Raphson iteration and the consistent tangent moduli have been used at the structural level. Since the
steps necessary for the respective derivations are identical to those already previously explained, further
details are omitted here. A summary of the algorithm can be found in the appendix of the present paper.

6 Numerical examples
The performance of the proposed variational constitutive update is analyzed here. While the accuracy
as well as the numerical efficiency of the stress update algorithm are discussed in Subsection 6.1 by
means of a study at the material point level, a more complex boundary value problem is considered in
Subsection 6.2.

6.1 Accuracy and performance analysis of the proposed variational constitu-
tive update

For numerically analyzing the accuracy and the stability of the advocated variational constitutive updates,
the concept of iso-error maps is employed, cf. [1, 2, 32–34]. Accordingly, a certain material point is
considered and the stresses Σ are computed for different loading paths and different load step sizes
(strain-controlled). By comparing the results to the analytical solution Σ0 (sufficiently small load steps),
the error δ can be calculated. In this connection, this error is defined as

δ =
√

(Σ−Σ0) : (Σ−Σ0)√
Σ0 : Σ0

· 100 %. (110)

Within the current analysis, a fully isotropic constitutive model is adopted. While the elastic response is
captured by a standard neo-Hooke-type law (Lamé constants λ and µ), plastic effects are accounted for
by a von Mises yield function without hardening. The material parameters used within the numerical
analyses are summarized in Tab. 1.

λ [kN/cm2] µ [kN/cm2] Qeq
0 [kN/cm2]

67.27 81
√

2
3 0.10

Table 1: Material parameter defining the elastoplastic response. The Lamé constants λ and µ define the
neo-Hooke-type energy for the elastic response, while Qeq

0 represents the initial yield stress.

The computed iso-error maps are illustrated in Figs. 1-3. As can be seen, the novel variational
constitutive update (left hand side in Figs. 1-3) and the return-mapping scheme (right hand side in
Figs. 1-3) show the same accuracy. This is not very surprising, since both methods rely on first-order
accurate time integration schemes. It bears emphasis that in contrast to the variational constitutive
update formulated in eigenvalues, the employed return-mapping scheme does not take advantage of the
isotropy of the underlying constitutive model. For that purpose, the example was re-analyzed by using
the variational constitutive update without considering the material symmetry. The respective results,
not explicitly shown here, look identical to those of the implementation based on eigenvalues. For this
reason, they have not been included in the paper.

Having discussed the accuracy of the method, focus is now on the numerical efficiency. The computing
times necessary for different stress-update algorithms are summarized in Tab. 2. For every load case,
the times are normalized with respect to that of the return-mapping scheme. Regarding the variational
constitutive update, two different implementations are considered. The first of those does not take
advantage of the material symmetry. It has been discussed in detail in Subsection 4.2. The second is an
optimized code for fully isotropic models showing a deviatoric-type yield function and has been presented
in Subsection 5.2.2. According to Tab. 2, the computational time of the standard parameterization is
comparable to that of the classical return-mapping scheme. It bears emphasis that the computational
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Figure 1: Iso-error maps for the fully isotropic von Mises plasticity model. Load case: uniaxial tension.
Left hand side: error implied by the variational constitutive update based on a parameterization in
terms of (∆λ, ψ) (see Eq. (107) and Eq. (109)). Right hand side: error corresponding to a classical
return-mapping scheme

Figure 2: Iso-error maps for the fully isotropic von Mises plasticity model. Load case: biaxial tension.
Left hand side: error implied by the variational constitutive update based on a parameterization in
terms of (∆λ, ψ) (see Eq. (107) and Eq. (109)). Right hand side: error corresponding to a classical
return-mapping scheme

return-mapping scheme variational constitutive updateLoad case unknowns ∆λ, F p standard formulation eigenvalues
Simple tension 100% 108% 12%
Biaxial tension 100% 110% 14%
Pure shear 100% 61% 8%

Table 2: Numerical efficiency of different stress update algorithms for the fully isotropic von Mises
plasticity model without hardening. The computing time for every load case is related to that of the
return-mapping scheme (100%).

times depend strongly on the calculation of exp(•), Dexp(•) and D2exp(•). In this connection, a method
based on the spectral decomposition was significantly more efficient than that relying on a Taylor series,
cf. [31]. If the material symmetry is accounted for, the complexity of the numerical scheme can be reduced
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Figure 3: Iso-error maps for the fully isotropic von Mises plasticity model. Load case: pure shear. Left
hand side: error implied by the variational constitutive update based on a parameterization in terms of
(∆λ, ψ) (see Eq. (107) and Eq. (109)). Right hand side: error corresponding to a classical return-mapping
scheme

significantly resulting in an highly efficient implementation. As shown in Tab. 2, the respective computing
times are thus considerably smaller.

6.2 A strip with a hole
Next, a more complex boundary value problem is numerically analyzed. The mechanical system depicted
in Fig. 4 represents a standard benchmark, cf. [2, 35]. In line with [2, 35] the elastoplastic response of

L

BD

Geometry [cm]:
L 36
B 20
D 10
t 1.0

Material parameters:
E 70 kN/cm2

ν 0.2 -
Qeq

0
√

2/3 0.242 kN/cm2

Hi
√

2/3 0.2 kN/cm2

Figure 4: Strip with a circular hole: geometry, boundary conditions and material parameters. t denotes
the thickness of the strip.

the strip with hole is modeled by means of an isotropic neo-Hooke-type model for the elastic response
and an isotropic von Mises yield function with associative evolution equations for plastic deformation.
Hardening is accounted for by an isotropic model with constant hardening modulus Hi. The numerical
computations have been performed in a displacement-controlled manner.

The mechanical response predicted by the variational constitutive update is summarized in Fig. 5.
As expected, the plastic deformation is large and localized in the vicinity of the hole. The remaining
part of the structure deforms mostly elastically. The contour plot in Fig. 5 is in good agreement with
the results previously reported in [6]. The same holds also for the load-displacement diagram. In line
with [6] a softening behavior can be observed, although isotropic hardening is accounted for. Therefore,
this softening is due to geometrical effects. Since the results of all different variational constitutive
updates are identical, only those based on a direct parameterization of the flow rule are shown here (see
Subsection 4.2). Furthermore, a difference between the accuracy of the return-mapping scheme and the
variational constitutive update cannot be seen. However, it bears emphasis that particularly for highly
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Figure 5: Strip with a circular hole: mechanical response as predicted by the novel variational constitutive
update. The spatial discretization consists of 8-node tri-linear standard finite elements. Left hand side:
distribution of the internal variable αi corresponding to isotropic hardening; right hand side: load-
displacement diagram

nonlinear problems, the variationally consistent method shows several significant advantages compared
to the conventional return-mapping scheme. One such advantage is associated with effective line search
strategies. More precisely, since the variational constitutive update is based on energy minimization, the
considered numerical implementation possesses a natural process direction.

7 Conclusions

In the present paper, a novel implementation for variational constitutive updates has been advocated.
The resulting scheme allows computing all state variables of a finite strain plasticity model naturally by
minimizing the stress power of the considered solid. The presented framework is very general and can
be applied to models showing an elastically anisotropic response, anisotropic yield functions as well as
a combined isotropic, non-linear kinematic hardening behavior. For fully isotropic material models, an
adapted algorithm has also been discussed. It is formulated in terms of eigenvalues and thus, it reduces
the numerical complexity significantly and is highly efficient. More precisely, the respective algorithm
depends on only three unknowns (two in case of purely deviatoric yield functions) and hence, it is even
more efficient than a return-mapping scheme formulated in principal stress space which requires in each
case one unknown more.

The development of the novel variational constitutive updates depended crucially on carefully ana-
lyzing different parameterizations of the flow rule. It turned out that a direct parameterization of the
flow rule combined with a projection scheme is numerically stable. However, this projection scheme can
only be applied to a relatively small family of yield function and thus, it narrows the range of application
considerably. By way of contrast, a parameterization depending on the concept of pseudo stresses does
not show this shortcoming. Unfortunately, an implementation of this method by using Newton’s method
led to an ill-conditioned Hessian matrix. This singularity could be effectively eliminated by means of an
additional parameterization.

Numerical experiments indicated that the proposed variational constitutive update is at least as ac-
curate as the conventional and well established return-mapping scheme. Furthermore, the novel stress
update algorithm is highly efficient and in many cases even more efficient than the return-mapping scheme.
Certainly, it has already been known that variational constitutive updates show several advantages com-
pared to classical methods known from computational plasticity theory. However, in the present paper
is was shown that the underlying variational structure can also be used for developing highly efficient
numerical implementations. For this reason, the authors hope that this mathematically and physically
elegant method will be applied more often in the future.
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1. Compute trial state
given: F p

n , αi|n,Fn+1

compute trial strains: F trial
n+1 , Ce trial, λCe trial

k , Btrial
k , see Eq. (105)

compute trial stresses: Σtrial
n+1, Σ̃trial = Σtrial

n+1/||Σtrial
n+1||

compute trial angles: ψtrial, ρtrial, see Eq. (83)

2. Set initial values
ψ0 = ψtrial, ρ0 = ρtrial, ∆λ = 0

3. UNTIL ||R|| > tol DO:

(a) Compute gradient of incremental energy Iinc (residual) R := [R∆λ;R∆ψ;R∆ρ]

R∆λ = −2
3∑
k=1

{
λC

e trial

k

∂Ψe

∂λCk
exp

[
−2 ∆λ ∂Σk

φ|Σk=Σ̃k

]
∂Σk

φ|Σk=Σ̃k

}
+Qi +Qeq

0

R∆ψ = −2 ∆λ
3∑
k=1

{
λC

e trial

k

∂Ψe

∂λCk
exp

[
−2 ∆λ ∂Σk

φ|Σk=Σ̃k

]
∂2

Σkψ
φ
∣∣
Σk=Σ̃k

}

R∆ρ = −2 ∆λ
3∑
k=1

{
λC

e trial

k

∂Ψe

∂λCk
exp

[
−2 ∆λ ∂Σk

φ|Σk=Σ̃k

]
∂2

Σkρ
φ
∣∣
Σk=Σ̃k

}

(b) Compute the Hessian matrix H of Iinc, i.e., the gradient of R with respect to ∆λ, ρ and ψ
(c) Update the unknowns U = [ψ; ρ,∆λ] (with or without line search, cf. [36])

Un+1 = Un −H−1 ·R

4. Update of the deformation gradient F p

F p
n+1 = exp [∆λ ∂Ξφ|n+1] · F p

n

5. Update of the stresses: F e
n+1 = Fn+1 · F p−1

n+1, Sn+1 = 2 F p−1
n+1 ·

∂Iinc

∂Ce · F
p−T
n+1

Figure 6: Variational constitutive update for fully isotropic models briefly: stress update algorithm in
principal axes. Loading is checked by the discrete loading condition φtrial > 0.

A Variational Constitutive update in principal axes for fully
isotropic models

In this appendix, the variational constitutive update for fully isotropic models briefly discussed in Subsec-
tion 5.2.2 is summarized. The resulting algorithm for the computation of the stresses is shown in Fig. 6.
For deriving the consistent tangent moduli, the algorithm is first linearized for fixed principal axes. Sub-
sequently, it is transformed to the general stress space. Since this procedure is nowadays standard and
can be found, e.g. in [1], further details are omitted here.
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