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ABSTRACT – Deformation anisotropy of sheet aluminium alloy 2198 (Al-Cu-Li) has been 
investigated by means of mechanical testing of notched specimens and Kahn-type fracture 
specimens, loaded in the rolling direction (L) or in the transverse direction (T). Fracture 
mechanisms were investigated via scanning electron microscopy. Contributions to failure are 
identified as growth of initial voids accompanied by a significant nucleation of a second 
population of cavities and transgranular failure. A model based on the Gurson-Tvergaard-
Needleman (GTN) approach of porous metal plasticity incorporating isotropic voids, direction-
dependent void growth, void nucleation at a second population of inclusions and triaxiality-
dependent void coalescence has been used to predict the mechanical response of test samples. 
The model parameters have been calibrated by means of 3D unit cell simulations, revealing the 
interaction between the plastic anisotropy of the matrix material and void growth. The model 
has been successfully used to describe and predict direction-dependent deformation behaviour, 
crack propagation and, in particular, toughness anisotropy.  
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1 INTRODUCTION 

Aluminium alloys have been widely used since the early 1900s for structural engineering 
applications, in transportation industries and in civil engineering. New aluminium alloys have 
been further developed to satisfy the demands of transportation industries for high strength, 
improved damage resistance, as well as reduction of production cost. High strength, good 
corrosion properties and improved fracture toughness are some of the criteria to be met by 
newly developed alloys, which usually come with disadvantages such as higher weight or poor 
fatigue performance. Assessment of residual strength of aircraft structures has been a focus since 
the launch of NASA’s ASIP (Airframe Structural Integrity Program) [1], and several authors 
have contributed to the development of models, methods and procedures to characterise and 
predict crack extension in aircraft aluminium alloys, e.g. [2-5]. Characterisation of alloys with 
respect to resistance against ductile crack extension has become an essential part of a damage-
tolerance concept, which acknowledges the existence of cracks and structural damage. However, 
the R-curve approach of classical fracture mechanics and the respective standards are not suited 
to describe crack extension in thin sheets and shells, in particular because the deformation 
behaviour of rolled sheets is strongly anisotropic. Damage mechanics provides a unified 
approach combining the constitutive equations for anisotropic deformation with equations 
describing the degradation of the material, taking full advantage of the potential of the local 
approach [6, 7]. The use of damage mechanics is generally not restricted to assessment 
problems. This approach has become popular in metal forming and machining [8, 9].  

Ductile damage is usually approached by using isotropic damage models, in which voids are 
assumed to be spherical while the matrix material is assumed to be isotropic. Assuming plastic 
isotropy of the matrix only, many authors have investigated the influence of the void geometry 
on the homogenised response of the material [10-12]. In these studies, the matrix has been 
treated by continuum plasticity, being homogenous and isotropic. For many materials, e.g. 
multiphase steels, composite materials and high-strength aluminium alloys this assumption 
cannot be used. Recently, an anisotropic plastic potential has been used to address delamination 
fracture in Al-Li-alloy under small scale yielding (SSY) conditions [13]. Apparently, there is a 
coupling between anisotropy and void growth due to the constraint added in the vicinity of the 
void. In order to account for this effect in a general way, a homogenisation procedure has to be 
carried out, which finally leads to a set of constitutive equations comprising a plastic potential, a 
flow rule, and an evolution equation for the porosity. For the sake of simplicity, porosity is 
commonly expressed as a scalar quantity; its evolution is therefore assumed to be isotropic. But 
evolution equations for non-isotropic voids require at least a non-scalar damage measure, e.g. 
for the modelling of ellipsoidal voids [14-16] or general anisotropic damage [17-19]. For 
orthotropic material like rolled sheets, various yield criteria are available, e. g. [20-23]. 
Anisotropy is expressed by using a structural tensor, which is based on the axes of orthotropy. In 
damage models this framework may be used together with the assumption that effects caused by 
matrix anisotropy and void shape are independent [24]. This is called ‘weak coupling’ of 
damage and anisotropy.  
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The material considered in the present study is a new member of the Al-Cu family, developed in 
view of applications in aerospace industry (2xxx series). These alloys are specifically designed 
to have good mechanical properties in order to use them for structural components in aircrafts. 
They have copper (Cu) as the major alloying element and hardening is achieved by aging. The 
new alloy Al 2198 contains also lithium as an alloying element to reduce the density and 
increase Young's modulus and thus to save weight. The marriage of Li to Al offers the promise 
of substantially reducing the weight of aerospace alloys, since each 1 wt. % Li added to Al 
reduces density by 3% and increases the elastic modulus by about 6%. It has been solution heat 
treated, cold worked to improve strength, and artificially aged (T8 temper). It has superior yield 
strength to the well established alloy Al 2024, and it is claimed by the producer to have 
improved damage tolerance, higher corrosion and fatigue resistance, and thermal stability. If 
true, this would make the alloy ideal for aircraft fuselage skin and other similar applications 
[25]. Actual research aims on the optimisation of its damage tolerance, which is of particular 
relevance for commercial (civil) aircrafts. 

This paper studies orientation-dependent deformation under static loading conditions, failure 
and damage mechanisms, and their prediction by numerical models. Fractography clarifies the 
basic mechanisms of failure, which will be modelled using a damage model combined with a 
description of anisotropic plastic deformation. This material model was realised in the 
framework of finite elements. The respective parameters are calibrated from simulations of 
voided representative volume elements (RVEs), which are assumed to be typical for the 
microstructure. Special emphasis is laid on the interaction between material anisotropy and void 
growth. Mechanical tests of U-notched tensile specimens machined for different orientations of 
the sheet metal as well as Kahn fracture mechanics specimens provide additional information on 
damage and fracture mechanisms. The constitutive model is finally applied to simulate the 
experimental tests.  

2 CONSTITUTIVE BEHAVIOUR: ANISOTROPY AND DAMAGE 

The main focus of the present investigation is on the interaction of plastic anisotropy and void 
growth and coalescence. The material selected for validation is a commercial aluminium alloy, 
for which non-quadratic yield criteria are recommended. In a previous investigation [26], it was 
proven that the Bron model [27] based on an anisotropic yield surface is able to predict the 
direction-dependent deformation response of different types of flat specimens machined from 
rolled sheets. This particular constitutive model (a detailed description of the model is given in 
the Appendix) has been extended in order to incorporate the effect of hydrostatic pressure on the 
growth of micro-voids. This was done by replacing the equivalent stress in the yield function of 
a voided aggregate, Eq. (A16), by the respective definition of the anisotropic deformation 
model, Eq. (A12). A similar approach has been proposed by Bron and Besson [28] based on the 
Rousselier model [29]. Hardening and damage evolution are assumed to be isotropic, expressed 
by the plastic equivalent strain, p, and the void volume fraction, f.  
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The mathematical model was realised in the object-oriented FE code Zébulon [30]. It has been 
linked via the material library Z-Mat to the commercial finite element program 
ABAQUS/Standard, which was used to perform the simulations in the present contribution.  

The model parameters were identified sequentially. The strain hardening function in terms of 
true stress and true (logarithmic) plastic strain was taken from a tensile test in L-direction up to 
the load maximum and extrapolated using a power-law function 

0.1202468 [MPa] (1 40.95 )p  .  (1) 

The elastic constants were set to be E=73000 MPa and =0.33. Assuming that the effect of 
damage on yielding is negligible, the values for the shape parameters of the yield surface a, b1, 
b2 and  as well as the parameters describing the orthotropy ci

k were calibrated based on force-
elongation and reduction of width signal taken from smooth and notched samples. Details of the 
identification procedure can be found in [26]. Table 1 summarises the values used for the 
material under investigation. It is worth mentioning that the ‘best’ tensile properties among the 
three tested orientations were obtained for L-orientation, leading to the highest yield strength 
and ultimate strength, see Table 2.  

For the use of porosity-base damage models, an initial cavity fraction has to be defined. This 
was done by analysing different cross sections of the material and measuring the area fraction of 
visible particles. The material contains coarse intermetallic phases containing iron and silicon 
which act as damage initiation sites during straining of the material. As these phases are 
relatively brittle they tend to break or debond during the early stages of deformation. For that 
reason they are considered as initial porosities, f0 . The material also contains secondary particles 
such as dispersoids and strengthening precipitates. Dispersoids may lead to void nucleation for 
high strain levels. Another damage mechanism in Al-Li alloys is grain boundary decohesion 
which is observed in the present case. In this work it is assumed that secondary nucleation only 
starts when a critical strain level is reached (0). The nucleation rate (parameter A in Eq. (A19)) 
is then high, representing rapid material failure by both void nucleation on secondary particles 
and grain boundary decohesion. 

Despite the fact that more rigorous approaches exist to model anisotropic damage evolution, an 
isotropic description of damage is chosen here. This is motivated by the material’s inclusion 
morphology, which appears isotropic rather than anisotropic. Moreover, the use of a rather 
simple isotropic model masks the inherent difficulties with finding appropriate evolution laws 
for different damage components or the restrictions to axisymmetric void shapes anticipating the 
use of those models in orthotropic sheet material.  

3 CELL MODELS 

In order to quantify the effect of porosity evolution, stress triaxiality, void shape, and void 
distribution on void growth and coalescence, unit cell approaches are commonly used [31-35]. 
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Micromechanically motivated values for a critical porosity, corresponding to plastic collapse of 
a cell, can be derived by this means. The continuum is imagined as a periodic array of 
representative volume elements (RVEs), which are assumed to be statistically representative for 
the microstructure. Usually in the context of models describing isotropy, a hexagonal cylindrical 
unit cell containing a spherical void is considered. The hexagonal cylinder is then approximated 
by a circular cylinder allowing for axisymmetric calculations, and due to symmetry, only a 
quarter model has to be considered.  

In the presence of deformation anisotropy, however, these simplifications are not justified. 
Mesoscopic deformation and void growth then depend on the main loading direction and are a 
function of the material anisotropy. To investigate this effect, 3D configurations have to be 
considered, similar to the approach presented by Yerra et al. [36] for voided single crystals using 
the framework of crystal plasticity. Here, the RVE calculations are used for two reasons: (i) to 
calibrate the model parameters of the damage model on the basis of the unit cell behaviour, (ii) 
to investigate the effect of the anisotropic deformation behaviour on void growth.  

The configuration used in the present studies requires a primitive cubic arrangement of voids. It 
consists of a cube of initial edge lengths 2L0 containing a spherical void in its middle. This set-
up was chosen from among other possible configurations (e.g. hexagonal or body centred cubic 
arrangements) because it provides a response close to the one of the frequently used 
approximation by hexagonal arrangements and axisymmetric cells [34]. While the choice of the 
arrangement plays a major role for large voids, i.e., high volume fractions, it might be negligible 
for small void volume fractions. In a microstructural analysis the nearest neighbour distance was 
evaluated for three orthogonal cross sections [37] of the material. It was found that there are no 
significant differences in particle’s neighbour distances. However, a possible alignment of 
particles in lines in or perpendicular to the rolling direction is not reflected by the nearest 
neighbour distance. For the sake of simplicity, a homogenous arrangement of voids is assumed 
here. An anisotropic spacing could be realised by changing the aspect ratio of the unit cell 
accordingly, see [15]. 

The matrix around the void is assumed to deform elastic-plastically as a consequence of external 
tractions applied to the RVE’s outer surfaces. The principal axes of the RVE are set to be 
collinear with the axes of orthotropy. The void’s surface is assumed to be traction-free. While 
loading is applied in the directions of orthotropy, threefold symmetry can be exploited. 
Consequently, only 1/8 of the RVE has to be modelled. The void radius, R0, is determined by 
the void volume fraction, f0, and the RVE’s dimension, L0 :  

03
0 0

6 f
R L


 . (2) 

The initial void volume fraction was taken as 0.0027 [26] for the material under consideration. 
The principal axes of the cube coincide with the rolling direction (L), transverse (T) and short 
transverse (S) direction. Figure 1  
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shows a typical symmetric cell used here. 

The cell is subjected to ‘mesoscopic’ true principal tractions, 1  2 = 3, which are the average 
reaction forces at the cell boundaries per current areas. The ratio of surface tractions 1 and 
2 are calculated from the stress triaxiality T 

h 1

e

Σ 1 2

Σ 3
 


  

 2  (3) 

using the definition of the effective stress provided in (A12) and the model parameters given in 
Table 1. The respective ratios 2/1 for monotonous loading are infinite (T=0.33, uniaxial 
tension), 0.1428 (T=0.5), 0.2940 (T=0.75), 0.3999 (T=1), 0.4782 (T=1.25), 0.5384 (T=1.5) and 
0.6249 (T=2). Interestingly, these values differ only by 0.08 % from those which can be 
calculated using the von Mises effective stress instead of Eq. (A12) 

In order to guarantee continuity, the boundaries of the cell are constrained to remain straight and 
orthogonal during deformation. The ‘mesoscopic’ principal strains, Ei (i = 1, 2, 3), are defined as 
a function of the displacements u1, u2 and u3: 

1 2
1 2 3

0 0

ln 1 ; ln 1 ; ln 1
u u

E E E 3

0

u

L L L

     
          

     
, (4) 

A ‘mesoscopic’ effective strain can be defined as 

     
1

2 2 2
1 2 1 3 2 3

2

3eE E E E E E E       
2

. (5) 

The Riks algorithm in the FE-program ABAQUS is used in order to prescribe a constant stress 
triaxiality during the loading process. The constitutive response of the matrix material is taken 
as elastic-plastic following the Bron model, with parameters described in the previous section.  

For the FE-model, isoparametric linear 3D elements were used. To investigate the effect of 
material orientation, a local coordinate system specifying L-, T- and S- direction was used. By 
this means three different configuration are investigated: The main loading direction (x-axis) the 
L-direction, the T-direction, and the direction which has an angle of 45° from the L-direction, 
which  is called the D-orientation. In case the main loading direction is the L- or T-direction, the 
symmetry of the problem was exploited. For the D-orientation in general, the symmetry 
conditions perpendicular to the S-direction cannot be used. Therefore a half model instead of an 
1/8 model is required. However, test simulations revealed that the influence of symmetry 
conditions is negligible for the material parameters used here. Thus, for all configurations, a 1/8 
model was used to make computations more efficient. 

The mechanical response in terms of mesoscopic effective stress vs. effective strain of the cell is 
evaluated and compared for the stress triaxialities 0.33 (uniaxial tension), 0.5, 0.75, 1.0, 1.25, 
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1.5 and 2.0. Furthermore, the current void volume fraction was evaluated via the volume of all 
finite elements in the model and the outer dimensions of the RVE, 

   
1

0 1 0 2 0 3

1

n

i
i

V
f

L u L u L u
 

  


. (6) 

This allows monitoring the void growth rate and specifying the ’critical‘ state of the cell defined 
as the beginning of strain localisation. The onset of void coalescence becomes apparent by the 
sudden drop of the effective stress, which is generally caused by an intervoid necking 
mechanism in the cell perpendicular to main loading direction. At this stage the void volume 
fraction starts to evolve strongly with increasing effective mesoscopic strain.  

It should be mentioned here that the assumption that 1   = 3, made for the macroscopic 
loading of the cell, implies an axi-symmetric stress state. In this case, the triaxiality is 
determined by one ratio of principal stresses, 2/1. As the triaxiality alone generally cannot 
uniquely describe a stress field, multiple stress states with different principal stress ratios can 
result in the same stress triaxiality, and the macroscopic stress–strain response as well as the 
void growth and coalescence behaviour of the voided cell are different for each stress state, see 
e.g. [38, 39]. In order to characterise the effects of stress triaxiality on the macroscopic stress–
strain behaviour of the unit cell and on void growth, a function of the principal stress ratios must 
be in the modelling. The aforementioned restriction with respect to stress states has been used 
here because, beside its simplicity, it provides a lower bound for the void growth behaviour and 
thus leads to conservative predictions of the void volume fraction at coalescence [39].  

4 U– NOTCHED AND KAHN SPECIMENS  

In order to investigate the mechanical deformation and fracture behaviour of the material, tests 
of U-notched and Kahn type specimens [40] were performed. U-notched specimens were used to 
study the deformation and damage behaviour at elevated triaxialities and to calibrate the damage 
parameters of the constitutive law. Kahn specimens were observed for the purpose of studying 
crack initiation and extension and to validate the material model. All specimens were machined 
from the same rolled sheet of thickness 3.1 mm. Tests were performed under displacement 
control using a servo hydraulic Zwick 1484 testing machine (maximum force 200 kN) with a 
constant cross head speed of 0.5 mm/min. Measured values were tensile force and notch opening 
displacement (NOD). The test results are presented as force vs. NOD curves. 

4.1 U-notch tensile specimens 

Two different kinds of specimens were used: specimens with notch radius of 1 mm and notch 
radius of 2 mm. The shape and dimensions of the tested specimens are given in [26]. Specimens 
were machined in three directions with respect to the rolling direction of the sheet: 
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 along the rolling direction, L ’Longitudinal‘, three specimens each radius, 

 perpendicular to the rolling direction, T ’Transversal‘, three specimens each radius, 

 45º to the rolling direction, D ’Diagonal‘, three specimens each radius. 

Despite the fact that the specimen thickness is comparably small, 3D discretisation has to be 
used for the simulations to properly capture the void evolution [41]. Quadratic elements with 
reduced integration (3D bricks with 20 nodes) were used. The threefold geometrical symmetry 
of the specimens was exploited, thus one eighth of the specimen was modelled.  

A coarse mesh was used for the model except for regions of stress concentration and necking. In 
these regions the mesh was refined to allow good simulation of necking and constraints caused 
by the notch. Models were meshed with three elements in the half thickness, 23 and 20 elements 
in the half width for models with radius 1 mm and 2 mm respectively. The element’s dimension 
along the main loading direction is almost equal to its dimension along the width direction. 
Figure 2 shows the FE-discretisation of the centre regions of the U-notched specimens. Crack 
initiation and extension is modelled using the Gurson model. A crack has grown by the length of 
one element if the damage variable f* reached the value of 0.99/q1 . At this stage the stress 
carrying capacity is almost zero. For numerical reasons then the stiffness of the completely 
damaged element is set to a fraction of Young’s modulus, i.e. 1/73000 E.  

 

4.2 Kahn Tear specimens 

Shape and dimensions of the test specimens are shown in Figure 3. Specimens were machined in 
two directions with respect to the rolling direction of the sheet: 

 along the rolling direction, L ’Longitudinal‘, three specimens, 

 perpendicular to the rolling direction, T ’Transversal‘, three specimens, 

For the FE-model of the specimen, one fourth of the specimen was modelled due to the twofold 
symmetry. The complete specimen was constructed with 3D quadratic solid elements with 
reduced integration. Figure 4 shows the respective quarter model. It should be mentioned that 
symmetry conditions can be exploited because the specimen’s orientations are along the axes of 
orthotropy. Figure 5 shows the different levels of stress triaxiality appearing in the notched and 
Kahn specimens used in the investigations described here. Along the midplane ahead of the 
notch or crack tip the triaxiality exceeds the typical value of 0.66 for plane stress strates. 

During crack extension, energy is dissipated in the layer of elements in the process zone ahead 
of the crack tip. These elements comprise the layer located at the symmetry surface normal to 
the loading direction, see Figure 4. Energy is required to damage the elements until failure. This 
energy is proportional to the element dimension in the main loading direction. Therefore, the 
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mechanical behaviour outcome of the simulation is directly related to that dimension [42, 43]. 
Thus, the element dimension in the loading direction is considered as an additional parameter 
that is to be fitted to reproduce the experimental results. This characteristic dimension is usually 
correlated to the measured physical value of the mean nearest neighbour distance, d, of second 
phase precipitates in the alloy, which was determined to equal 14 m for this material. The 
characteristic dimension (element height h) is fixed to 50 microns, which leads to a reasonable 
h/d-ratio of 3.6 [44] Four elements were used over the half thickness and 250 along the crack 
propagation direction (i.e. a size equal to 100 micron along the crack growth direction). 

Experiments show that the crack initiates with a flat triangle and propagates in a slant mode of 
ductile tearing. It remains however difficult to match at the same time a slanted crack path and a 
correct load-displacement curve. Due to the difficulties encountered in modelling the transition, 
the crack is also modelled here as being flat, as in [28, 45]. 

5 RESULTS: UNIT CELL CALCULATIONS  

5.1 Cell Models 

Figure 6 reveals the overall stress response of the voided anisotropic RVEs. As expected, the 
maximum stress for each triaxiality depends on the orientation. The stress level of the L-
orientation is highest, followed by that of the T-orientation. With D as the main loading 
direction, the stress level is significantly smaller. This is in line with the experimental findings 
and modelling results of macroscopic specimens [26]. More remarkable, however, is the 
difference in localisation or collapse strain between the orientations, indicated by the sudden 
drop of the effective stress. The L-orientation shows the smallest critical strain, increasing for 
the T- and D-orientations. This tendency holds for all triaxialities greater than 0.5. For 
mesoscopic stress states close to being uniaxial, localisation does not appear in a realistic range 
of strain: voids tend to elongate in the loading direction and contract in the transverse direction 
preventing the internal necking process from setting in. The well-known dependency of the 
fracture strain on the triaxiality [38] is reproduced by the RVE model in any case. 

Another feature of the RVE models is shown in Figure 7: its ability to link the critical strain of 
void coalescence and the corresponding void volume fraction. The normalised void volume 
fraction is analysed as a function of the cell’s equivalent strain. With increasing strain the void 
volume fraction evolves in an exponential manner. Once the critical strain of the cell is reached, 
an upturn in the void volume fraction is usually observed. In the present case this upturn is 
hardly visible. In order to identify the critical void volume fraction, the lateral strain, -(Ey+Ez) is 
analysed as a function of the equivalent strain. Beyond the collapse point the lateral strain 
remains constant, whereas the effective strain and the void volume keep increasing. The collapse 
points identified for the different triaxialities and orientations are depicted in Figure 7 by solid 
circles. By comparing the three parts of Figure 7, it can be concluded that the orientation 
strongly affects the critical strain, Ec. For all triaxialities, Ec is larger in the D-orientation than in 
the T-orientation, which again is larger than in the L-orientation. However, the dependency of 
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the critical void volume fraction, fc, on triaxiality for the different orientations, is less 
pronounced. Figure 8 summarises the relation derived from 3D RVE simulations, providing a 
micromechanical interpretation of the material’s coalescence behaviour. For comparison, similar 
unit cell calculations based on axisymmetric structures obeying the same plastic hardening law, 
eqn. (1), have been performed and evaluated; the respective results are included in Figure 8. 
Although the mesoscopic ductility, Ec, is highest in the D-orientation, see Figure 6, the values 
for the critical void volume fraction are the smallest among the three orientations. This confirms 
that the anisotropy of the matrix affects the void growth rate. Void growth is retarded in the D-
direction while plastic strain can easily accumulate. This effect is also visible for the T-
orientation, leading to slightly smaller value of fc compared to the L-orientation. This implies 
that for modelling the overall specimen behaviour, a direction-dependent fc should be used. 
Beside this, Figure 8 shows the dependency of the critical porosity on triaxiality. The cell model 
results have been fitted by exponential functions as shown, providing that for all values of 
triaxialities the value of fc is finite. This dependency has been incorporated in the continuum 
model, eqn. (A17). In detail, the following functions were obtained for L, T and D as the main 
loading direction: 

0

0

0

T 0 422
L 13 465 19 0

0 386

T 0 422
T 13 465 16 5

0 386

T 0 422
D 13 465 14 5

0 386

c

c

c

.
: f = f . exp .

.

.
: f = f . exp .

.

.
: f = f . exp .

.

       
       
       

 (7) 

It is assumed that when f has reached the critical value for the onset of coalescence fc(T), 
coalescence cannot be deactivated with fc being fixed to the value reached when coalescence 
was first detected. 

5.2 Parameter Calibration 

In the Gurson model it is assumed that damage is governed by growth and coalescence of 
spherical voids. It is assumed in the following that the Gurson damage model including the 
definition of equivalent stress, eqn. (A12) gives the same mechanical response as the cell model 
explained earlier, provided that the initial void volume fraction, f0, is the same. It is worth 
mentioning that voids in Gurson model are assumed to grow isotropically even though the 
matrix material is anisotropic. In the cell model, the void’s shape will evolve because of the 
direction-dependent plastic hardening. This effect cannot be captured by a damage model using 
only one scalar variable related to the void volume fraction.  

The FE model of the homogenous solid cube representing the behaviour of the Gurson damage 
model is simple and consists of a single element loaded under constant triaxiality. In the cell 
model no void nucleation is considered. Consequently, void nucleation in Eq. (A16) is not used. 
Parameters q1 and q2 depend on the matrix material and have been calibrated so that the stress-
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strain responses of the single element for different triaxialities match those of the cell model. 
Increasing either parameter will decrease the maximum stress and the reverse. The fit has been 
performed on the L-direction. Unlike the approach used in [45], the void evolution will be 
captured here by one numerical ’experiment’ conducted in the L-direction only. For this 
orientation, the effect of q2 is pronounced for higher triaxialities, while the effect of q1 is almost 
identical for all triaxialities. The final calibrated values are q1=1.22 and q2=1.16. Figure 9 shows 
the cell model simulations for different triaxialities, and the corresponding fitted single element 
simulations.  

Apparently, void growth becomes direction-dependent, but strain hardening has been calibrated 
from one test in the L-orientation only. Moreover, the parameters q1 and q2 of the continuum 
model do not depend on the direction either. Thus it might be conjectured that the model hardly 
can cope with the evolution of void volume fraction. In Figure 10 this has been proven not to be 
true. For two selected triaxialities, the void evolution predicted by the continuum model for the 
orientations in the T and D directions follows that of the cell model. In particular the growth rate 
is smaller for D loading. The modified GTN model can capture this trend as the ratio  /R(p), 
see Eq. (A16), is smaller for this direction which is the softer one. Note that  /R(p) is direction 
independent whereas the hydrostatic stress, h , will depend on the loading direction for a given 

plastic strain level. From this it can be concluded that the implemented material law will predict 
the growth phase of initial voids realistically – at least from the viewpoint of micromechanics. It 
has to be noted that so far all parameters have been derived from uniaxial (mechanical) tests and 
analyses of RVEs. Further information, of course, can be obtained from mechanical tests aiming 
at the failure behaviour of the material. 

6 RESULTS: SIMULATIONS OF TESTS 

6.1 Fractography 

The fracture surfaces of two Kahn specimens in the L- and T-directions were investigated by 
Scanning Electron Microscopy (SEM) to study their general geometrical characteristics, and to 
identify the failure mechanism. Subsequent to testing, several cross sections of the Kahn 
specimen loaded in the T-direction were investigated by SEM to confirm the failure mechanism 
and to study the region below the fracture surface.  

Figure 11 shows that the crack initiates in a flat manner at the notch root (right in the picture). In 
both cases it turns later to a slanted fracture mode. In these specimens, two slanted surfaces are 
formed and the flat region between them has a shape of triangle. The slanted fracture surfaces 
make an angle of approximately 45 degrees with the loading direction as can be seen in the cross 
section, see Figure 12. Inspection of the entire set of tested Kahn specimens revealed that the 
fracture starts with a flat region – forced by the geometry of the notch – and then tilts at a certain 
point to form one or more slanted surfaces. The shape of the flat region, the transition from flat 
to slanted surface, the number and shape of slanted surfaces all vary from one specimen to 
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another. No special features could be found at the transition area from flat to slanted surface. 
While in the flat triangular zone ductile failure is predominant, along the slanted surfaces two 
mechanisms seem to be active: small regions of dimples and larger areas with transgranular 
separation along grain boundaries, which appear as flat surfaces. 

Figure 13 reveals dimples being dominant on the fracture surface of the triangular zone. This 
structure results from ductile fracture by void growth and coalescence. Large dimples are 
present at the grain facets, while a larger number of smaller dimples are aligned at intergranular 
facets. The alloy Al 2198 is hardened by aging. In such alloys, the main source of voids is the 
disintegration between large inclusions with Fe and Si, dispersoids (Al3Zr), fine hardening 
precipitates (Al2CuLi, Al3Li and Al2Cu) and matrix material [46]. During loading, voids 
nucleate at these precipitates and grow, while new voids will be generated by further 
disintegration of precipitates from the matrix, and by breaking of precipitates. This can be seen 
from Figure 13 showing precipitates inside some dimples. Moreover, Figure 15 clearly shows 
the presence of voids at the tips of precipitates as well as broken precipitates originating voids. 
All this justifies the use of a porosity based model to address damage, at least for the description 
of crack initiation and the beginning of crack extension.  

A mixed fracture mode consisting of transgranular and intergranular facets was observed in the 
slanted areas, see Figure 14 and Figure 16. The described mechanism might be complemented 
by a partially brittle behaviour. The fact that the surface always tilts and becomes slanted by 
approx. 45 degrees (the direction of maximum shear stress) supports this assumption. This 
partial brittleness explains the zig-zag shape of experimental (force vs. NOD) curves after load 
maximum, which is explained in the following section. It has to be mentioned here that it is 
questionable if the transition from a ductile damage mechanism to a transgranular failure can be 
described with a single continuum damage model. 

6.2 U-notched specimens 

The scatter between test results of each direction was negligible. Therefore, one specimen was 
chosen for each direction to represent the respective mechanical behaviour. Figure 17 displays 
the experimental results of the representative specimens in the three directions and the 
corresponding simulation results for notch radius 1 mm and 2 mm respectively. As already 
pointed out in [26], the maximum force of the specimen oriented in the T-direction is highest for 
notch radii of 1 mm and 2 mm, while the D-orientation shows a significantly lower force level. 
The direction-dependent force-elongation behaviour has been used in the past to calibrate the 
parameters in the anisotropic deformation model. By this means, the reverse of ’strength‘ order 
of the L- and T-directions between uniaxial tests (see table 2) and tests on notched specimens 
could be simulated [26]. In the present contribution special emphasis is put on the effect of 
damage evolution and realistic prediction of the ductility. Thus, the elongation at failure and the 
load decrease before final failure have to be exploited from the mechanical tests. The elongation 
at failure observed in the experiments is sorted in increasing order L, T, D for both notch 
geometries. While L and T-orientation differ only slightly, D shows a significantly higher failure 
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strain. This effect correlates well with the fracture surface appearance, where the amount of 
dimples is significantly higher on D-oriented specimens compared to those with L- or T-
orientation revealing an increased ductility.  

In order to capture this effect in the simulations, a void nucleation function was introduced with 
Eq. (A19). A constant nucleation intensity (A=10 for L-, T- and D-direction) was chosen here. 
In all cases it is assumed that independent of the initial porosity f0=0.0027 being equal for all 
orientations, additional voids start to nucleate by particle fracture and/or debonding at a strain of 
0=0.4. The high value chosen for the nucleation intensity is required to trigger the sharp drop of 
the load in simulations of the notched bar tests. The critical void volume fraction was defined to 
be triaxiality-dependent as explained in the previous paragraph, see Eq. (7). The acceleration 
factor for void coalescence was set to be equal 3. By this means, the damage and failure 
behaviour of the specimens with notch radius 2 mm has been successfully predicted, see Figure 
17a. In the case of the sharp notch, Figure 17b, its higher triaxiality leads to a slight 
underestimation of the failure elongation. However, aiming at meeting the failure points of both 
geometries, the achieved result is acceptable. Interestingly, the sudden drop of the load in the 
simulations appears at different values of the total elongation for the L-, T- and D orientation, 
although the same nucleation function and the same damage parameters were used. The highest 
elongation is experimentally obtained for the D-direction, followed by the T-direction. This 
trend is reproduced in the simulations. 

 

6.3 Kahn Tear Test 

Figure 18 shows the behaviour of the six Kahn type specimens tested in terms of notch opening 
displacement, NOD, and applied force, F. Before reaching their respective load maximum, 
specimens oriented in the L-direction show a slightly higher load level compared to those 
oriented in the T-direction. This result is compatible with measurements performed by 
Morgeneyer [47] on Al-Cu-Mg alloy. At load maximum, after some crack extension, a transition 
to a more brittle failure behaviour can be seen. The crack extends rapidly leading to a significant 
stepwise decrease of the applied load. This behaviour is more pronounced for the L-oriented 
specimens. The T-oriented specimens show a more stable crack extension over the whole test 
range, leading to a higher toughness. 

As the scatter between the test results of each orientation is negligible, one specimen was chosen 
for each direction to represent the respective mechanical behaviour. FE-simulations using the 
damage model were conducted to mimic the force-NOD behaviour. Figure 19 displays the 
experimental results of the two representative specimens and the corresponding simulation 
results. One can see from the simulation results that slight differences in a specimen’s ‘pre-
fracture’ deformation behaviour between the L- and T-orientation exist. Interestingly, the 
simulation predicts the opposite trend to that observed in the experiment: the T-orientation 
generally appears to be more fracture resistant than the L-orientation. In any case, the difference 
is small in the experimental data and hardly visible in Figure 19.  
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Furthermore, the simulations under predict the maximum force, but meet the decreasing part of 
the load-CMOD curve. This implies that the stable crack extension phase is not exactly met by 
the simulations, whereas the mixed-mechanism-phase is. This goes back to the calibration of the 
nucleation function used, Eq. (A19), which is based on the sudden load decrease obtained from 
the notched samples originating from a turn to a slanted failure mode. Consequently, the use of 
the strong nucleation rate aims rather at an assessment of the slanted failure mode instead of 
meeting the stable crack extension correctly. 

For comparison, two simulations of the mechanical behaviour neglecting damage (f=0) are 
included in Figure 19. In this case, the trend of the T-direction’s being stronger than the L-
direction is also present, however less pronounced than in the simulations including damage 
evolution, indicating the presence of plastic anisotropy. The simulated curves follow the 
experimental ones closely up to the respective load maxima, which indicate that up to this point 
the macroscopic behaviour is primarily influenced by plastic deformation. For this kind of test 
the amount of stable crack extension is small.  

 

7 CONCLUSIONS 

These investigations provide new insight into two different fields of damage mechanics, namely 
the interaction of plastic anisotropy and evolution of void volume fraction on a general level and 
its application to the simulation of toughness anisotropy the fracture mechanisms of a 
commercial aluminium alloy in particular. The second part is complemented by a detailed 
investigation of the failure mechanisms obtained from fractography, revealing that two failure 
modes are present during crack extension.  

In the first part, representative volume elements of a voided material are analysed under 
monotonous loading conditions in order to derive a micromechanically based criterion for void 
coalescence. It has been shown in a straight forward way that the evolution of a spherical void 
depends on the directionality of the surrounding material. This difference in void evolution 
influences the stage of beginning coalescence, which is direction-dependent and a function of 
the stress triaxiality. The method obviously has its limitations, as localisation in this type of unit 
cell does not appear for triaxialities less than 0.5 [15]. The obtained relationships for triaxiality, 
strain hardening and plastic anisotropy can be used to simulate the damage behaviour of an 
initially porous material on the basis of a modified Gurson-Tvergaard-Needleman constitutive 
model. Cell model simulations moreover help to fit Gurson parameters q1 and q2 in a systematic 
way. In this way, isotropic damage and plastic anisotropy are combined successfully.  

Some remarks on the interaction between initial voids and a second population (of nucleated) 
voids in the unit cell simulations are justified here. The effect of strain controlled void 
nucleation on the failure strain (and hence on the porosity at coalescence) is nicely described 
e.g. in [48]. In the mentioned manuscript the authors state that the presence of a second 
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population of nucleated voids does not affect the growth of the first population of voids, but 
only their coalescence. In order to determine the critical volume fraction for this case, nucleation 
intensity and nucleation strain have to be known a priori. This is not the case in the current 
context, as the nucleation parameters have been determined from notched bars using the 
previously calibrated fc-function considering primary voids only. Certainly the sequence matters 
here, and it depends on someone’s preference whether the initial porosity and nucleation 
parameters are fixed first and the fc-function is determined on this basis, or the nucleation 
function is added later. 

Another controversial point might be the unit cell’s aspect ratio. As pointed out before, 
assuming a cubic cell implies that voids are equally spaced in all three directions. In rolled 
sheets, however, an alignment of particles is often observed, which may lead to an easier 
coalescence in the direction perpendicular to the alignment direction. In the present case, the 
different ductilities of the material in the L-, T- and D-orientation could be predicted by 
assuming an isotropic void morphology. Consequently the particles’s alignment does not play a 
role here.  

Verification of the derived parameters was conducted by comparing simulation results to tests 
on notched tensile samples with two different notch radii, which differ with respect to the 
triaxiality exposed in the ligament. The different load evolutions in the three directions could be 
reproduced, but in order to meet the point of global failure a nucleation function at second-phase 
particle population had to be included in the model. This nucleation function was calibrated on 
the basis of these tests, and it turned out that the required nucleation rate starts at high values of 
plastic strain and contributes significantly to the overall failure. Although for all tested 
directions (L, T and D) the same set of model parameters (see Table 1) has been used, the 
differences in failure strain of notched samples could be predicted. This indicates that the void 
growth rate depends on the anisotropy of the matrix material. The lowest growth rate is here 
experienced in the D-orientation, the highest in the L-orientation. 

Fracture tests on Kahn-specimens revealed two different fracture modes, which can be identified 
from the fracture surface as well as from the load-displacement record: a initial stage of ductile 
crack extension followed by a more pronounced ductile/brittle mode causing a sharp load drop. 
This load drop is more pronounced for specimens loaded in the L-direction (crack extension in 
the T-direction) than for those loaded in the T-direction (crack extension in the L-direction). 
This can be explained by the microstructure, because intergranular separation along elongated 
grains generally results in a higher toughness than separation perpendicular to the grain main 
axis. Simulations based on the void nucleation function are able to predict this behaviour and are 
thus suited for structural assessment. However, the load maximum will be well-predicted only if 
the nucleation function is not used, at the price of overestimating the toughness in the slanted 
failure regime.   
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APPENDIX 

 

The anisotropic plastic potential used in this work is based on a yield surface according to Bron 
and Besson [27] incorporating the effect of hydrostatic pressure on the growth of micro-voids. 
Hardening and damage evolution are assumed as isotropic. With regard to the description of 
anisotropic yielding, a Voigt notation is used for all tensors in the following. The second order 
symmetric stress tensor is represented by a six-component vector, 
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As in the classical theory of incremental, rate-independent plasticity, yielding is modelled by a 
convex yield surface, which encloses all stress states causing elastic deformations and expands 
isotropically during plastic deformation. The yield condition is written as 

p( , ) ( ) 0R p     , (A9) 

where   is an appropriately defined equivalent stress, R(p) the current flow stress, and p the 
associated accumulated equivalent plastic strain. As the hydrostatic stress, i.e. the first invariant 
of the stress tensor,  
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does not affect plastic yielding, the yield surface is described by the deviatoric stresses 
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Isotropic behaviour requires that the equivalent stress,  , depends on the stress invariants, only.  

Bron and Besson [27] defined an equivalent stress  
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by the superposition of two functions 
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where , ,  (k = 1, 2) are the principal values of two modified stress deviators 

defined as 
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The four material parameters a, b1, b2, , affect the shape of the yield surface, but not its 
anisotropy, which is controlled by the 12 constants , k = 1, 2, i = 1, ..., 6. Altogether, the 

yield function contains 16 parameters. To ensure convexity and differentiability,  and 
 is required as Bron and Besson [27] showed. In the case of  and , 

Bron’s yield function corresponds to that of Karafillis and Boyce [49], and for  = 1 to the yield 
function of Barlat et al. [50]. The yield function of von Mises, Eq. (6), is obtained for  = 1 and 
ci = 1 if a = 2 or 4, and that of Tresca if a = 1 or +.  
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Damage of the material results in softening and requires the incorporation of the hydrostatic 
stress into the yield function. The most common model for isotropic damage in ductile materials 
is the GTN model named after Gurson [51], Tvergaard and Needleman [52], who proposed a 
yield surface described by 
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f* is a scalar internal variable of damage related to the void volume fraction or porosity, f, and 
q1, q2 are additional model parameters. Here, the von Mises stress has been replaced by the 
effective stress as in [28]. To account for void coalescence, damage is accelerated by using a 
stepwise linear function of the void volume fraction, 
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 T

f



 . (A17) 

The porosity develops by two contributions, namely by void nucleation and void growth,  

nuc growthf f f   
 . (A18) 

For the nucleation term different functions have been proposed. Following the popular 
assumption to link nucleation rate to plastic equivalent strain, a constant nucleation rate starting 
at a threshold value of the plastic equivalent strain is used in the present contribution,  

 0nucf A H p   , (A19) 
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with H being the Heaviside function and A and 0 model parameters. This was chosen to support 

void nucleation at high plastic strains on a phenomenological basis.  

Void growth evolves following 

   
3

p p
vol

1

1 1growth kk
k

f f f 


      , (A20) 

starting with an initial porosity f0.  
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Table 1: Model parameters used in the simulations 

Parameter Value Parameter Value 

E [MPa] 73000  0.3 

α 0.5 b1 16 

a 16 b2 16 

(1)
1c (2)

1c 1.010  1.128 

(1)
2c (2)

2c 1.073  0.810 

(1)
3c (2)

3c 1.005  0.945 

(1)
4c (2)

4c 1.243  1.003 

(1)
5c (2)

5c 1.000  1.000 

(1)
6c (2)

6c 1.000  1.000 

f0 0.0027 - - 

0  0.4 AL/AT/AD 10/10/10 

fc fc(T) K 3 

q1 1.22 q2 1.16 

 

Table 2: Measured mechanical properties of Al 2198 T8 

Tensile 
direction 

Yield stress 
[MPa] 

Tensile strength 
[MPa] 

R-value 
[.] 

Fracture strain 
[.] 

L 469 510 0.7 0.14 

T 452 498 1.5 0.13 

D 394 436 2.0 0.16 
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Figure 1: FE-model of a primitive cubic unit cell (1/8 model): initial and deformed 
configuration; the applied triaxiality is 0.5 
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Figure 2: 3D FE discretisations of the U-notched specimens (r=2 mm, r=1 mm) using full 
symmetry 

 

Figure 3: Sketch of the Kahn specimen used in the present investigation (dimensions in mm) 
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Figure 4: FE-mesh of a Kahn specimen, magnification of the initial crack tip region 
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Figure 5: Stress triaxiality in the midplane of the three investigated specimens at maximum load 
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Figure 6: Mechanical responses of the unit cells for different orientations and triaxialities in 
terms of mesoscopic stresses and strains 
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Figure 7: Mechanical response of the unit cells for different orientations and triaxialities in 
terms of void evolution as a function of equivalent macroscopic strain. Circles indicate states of 
void coalescence 
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Figure 8: Dependency of critical void volume fraction on triaxiality and material orientation 
derived form 3D simulations. Axisymmetric model is shown for comparison (f0=0.0027). 
Dashed lines represent the fitting functions. 
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Figure 9: Determination of the Gurson parameters by reconciling with cell model predictions  
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Figure 10: Void evolution in the case of T and D being main loading directions for cell and 
continuum model for two values of triaxiality 

 

28



 

 

 

Figure 11: Global view of a Kahn specimen fracture surface (top: L main loading direction, 
bottom: T main loading direction) showing crack initiation and extension, flat and slanted 
regions 
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Figure 12: Overview of serial sectioning of Kahn specimen’s ligament (T main loading 
direction) 
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Figure 13: Fractograph showing the triangular zone of crack transition in a Kahn specimen (T 
main loading direction) with its dominant dimple structure 

 

Figure 14: Fracture surface of a Kahn specimen taken form the slanted region showing a dimple 
structure and transgranular debonding along grain boundaries (T main loading direction) 
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Figure 15: Region below the fracture surface (section 1, zone of flat separation, see Figure 12) 
showing a high number of voids (black) and partly broken precipitates (white) 

 

 

Figure 16: Region below the fracture surface at the slanted crack front (section 3, see Figure 12) 
showing less features of ductile failure 
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Figure 17: Response of the U-notched samples =2 mm (a) and =1 mm (b) – experiment and 
simulation using the damage model 
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Figure 18: Results of the Kahn tear tests for specimens loaded in L- and T-orientation 
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Figure 19: Results of the FE-simulations of the Kahn tear tests in comparison with experimental 
data 
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