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Abstract

Variational constitutive updates provide a physically and mathematically sound framework
for the numerical implementation of material models. In contrast to conventional schemes
such as the return-mapping algorithm, they are directly and naturally based on the under-
lying variational principle. Hence, the resulting numerical scheme inherits all properties of
that principle. In the present paper, focus is on a certain class of those variational methods
which relies on energy minimization. Consequently, the algorithmic formulation is gov-
erned by energy minimization as well. Accordingly, standard optimization algorithms can
be applied to solve the numerical problem. A further advantage compared to conventional
approaches is the existence of a natural distance (semi metric) induced by the minimization
principle. Such a distance is the foundation for error estimation and as a result, for adaptive
finite elements methods. Though variational constitutive updates are relatively well devel-
oped for so-called standard dissipative solids, i.e., solids characterized by the normality
rule, the more general case, i.e., generalized standard materials, is far from being under-
stood. More precisely, (Int. J. Sol. Struct. 2009, 46:1676–1684) represents the first step
towards this goal. In the present paper, a variational constitutive update suitable for a class
of nonlinear kinematic hardening models at finite strains is presented. Two different proto-
types of Armstrong-Frederick type are re-formulated into the aforementioned variationally
consistent framework. Numerical tests demonstrate the accuracy and the performance of
resulting implementation.
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1 Introduction

One of the cornerstones of mechanics, or more precisely, of physics in general, are
without doubt variational principles. Even more explicitly: ”Some authors believe
that variational principles are the foundation of physics”, see [1]. The probably
best known example is given by the principle of least action a.k.a. the principle of
extremal action as originally advocated by Maupertuis. That principle was further
elaborated and extended and led finally to the most frequently applied methods in
continuum mechanics. Among them are the principle of virtual work and Hamil-
ton’s principle. For conservative systems such as elastic bodies, stationarity prin-
ciples can usually be recast into equivalent minimization problems. For instance,
the principle of virtual work defines then a state of minimum potential. However,
also for dissipative processes, minimization principles can be developed. This is not
self-evident, since the equations of motion are not self-adjoint in this case, cf. [2].
One such principle in thermodynamics is the postulate of maximum dissipation, cf.
[3,4]. It will play an important role in the present paper [2].

Besides their mathematical and physical elegance, variational principles, show sev-
eral additional advantages compared to other approaches. From a physical point
of view, the applicability of Noether’s theorem is for instance important, cf. [5].
In case of minimization principles, the advantages are even more pronounced. In
this connection, it is referred to the framework of Γ-convergence [6,7]. Frequently,
this framework represents the only avenue for analyzing the existence of solutions,
cf. [8]. In addition to the aforementioned advantages, minimization problems are
very interesting from a computational point of view as well. For example, such
principles can be taken as a canonical basis for error estimation, cf. [9–12] and
furthermore, they open up the possibility of applying state of the art optimization
algorithms. Particularly for non-smooth problems such as those in plasticity theory,
this represents an interesting feature, [13].

Though variational principles, or more specifically minimization problems, are very
promising, their derivation is oftentimes difficult. Equally importantly, even if such
a principle has been found, its transfer to a computational method is in many cases
very difficult. Certainly, the finite element method based on the principle of vir-
tual work, or Ritz method relying on the postulate of minimum potential energy
are the best known counterexamples. But regarding Hamilton’s principle or the
postulate of maximum dissipation, the opposite is true. Only relatively recently,
time integration schemes in line with the underlying variational principles were
proposed, cf. [14,15]. The same holds for the implementation of constitutive mod-
els governed by associative evolution equations, i.e., standard dissipative solids
in the sense of Halphen & Nguyen [16], cf. [17–19,13,9]. In contrast to conven-
tional (non-variational) algorithmic formulations, variationally consistent numer-
ical models are governed by their underlying variational principle and thus, they
inherit all of their properties like energy conservation. This is why they are physi-
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cally sound and very powerful.

The present paper is concerned with so-called variational constitutive updates, cf.
[17–19,13,9,20,21]. These updates make use of the postulate of maximum dissi-
pation and allow to compute all state variables, together with the unknown defor-
mation mapping, by minimizing a suitable energy functional. Also, such methods
allows to analyze the existence of solutions by using nowadays standard tools such
as those known from hyperelasticty [22,23,20], and they can be applied as a canon-
ical basis for error estimation, cf. [9–12].

Concerning associative evolution equations (standard dissipative solids), variational
updates are relatively well understood. For rate-independent models, a general nu-
merical framework suitable for their implementation was advocated in [24]. It can
be applied to almost all (possibly anisotropic) plasticity models including arbitrary
isotropic and linear kinematic hardening. In case of rate-dependent viscous-type
constitutive laws, a numerical implementation can be found in [25].

Clearly for many applications, non-associative evolution equations are used. This
is typical for models in soil-mechanics. Even though most of such models can
be described within the framework of generalized standard materials [26,27], no
governing variational principle exists. Therefore, no general variational constitu-
tive update for those models has been proposed yet. In [28], a first step towards
this extension is discussed. More precisely, a Drucker-Prager-type model based on
a volumetric/deviatoric split of the Helmholtz energy, the yield function and the
plastic potential was considered. Without going too much into detail, the resulting
variational structure is closely related to the orthogonality between the spaces of
deviatoric and hydrostatic tensors. Consequently, this approach is very specific and
thus, it cannot serve as prototype for other kinds of material laws.

In the present paper, focus is on a variational description of non-linear kinematic
hardening at finite strains. Such hardening type is necessary for capturing the Bauschinger
effect which is mandatory for describing the hysteresis in load reversals partic-
ularly for metals, cf. [29]. Similarly to the aforementioned Drucker-Prager-type
model, non-linear kinematic hardening does not obey the (classical) postulate of
maximum dissipation. Hence, there is no associated variational principle. There-
fore, new modeling techniques have to be developed.
Although non-linear kinematic, or more precisely, Armstrong-Frederick-type hard-
ening [30], is well established for linearized kinematics, the variety of its geomet-
rically non-linear extensions is numerous, cf. [31]. For this reason, two different
versions of non-linear kinematic hardening are considered in this paper and recast
into an equivalent variational framework. The first of those is based on a standard
evolution equation of the back stress within the intermediate configuration induced
by a multiplicative decomposition of the deformation gradient, see model A in [31].
The latter makes use of the so-called center configuration, originally proposed in
[32] (see also [33] for further elaborations). Similar ideas have been advocated ear-
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lier in [34].
Conceptually, the novel variational constitutive updates presented here are based
on a more general form of the postulate of maximum dissipation. However and
in contrast to associative plasticity theory, the non-associative evolution equations
are enforced explicitly. This constrained extremal principle is finally recast into an
equivalent unconstrained counterpart by utilizing a suitable parameterization of the
flow rule and the equation governing the back stress evolution, cf. [28].

The paper is organized as follows: Section 2 is concerned with a brief introduction
to finite strain plasticity based on associated evolution equations. Particularly, the
governing variational structure is emphasized and the implementation by means of
variational constitutive updates is presented. In Section 3, two different types of
non-linear kinematic hardening are discussed. While the first of those is defined
by a standard evolution equation with respect to the intermediate configuration, the
second model is related to the concept of a center configuration. A variationally
consistent re-formulation of such models, together with their numerical implemen-
tation, is elaborated in Section 4. The applicability as well as the performance and
accuracy of the resulting algorithmic formulations are highlighted in Section 5.

2 Variational updates for associative finite strain plasticity theory

This section is concerned with a concise review of variational constitutive updates
suitable for the modeling of standard dissipative solids in the sense of Halphen &
Nguyen [16]. Assuming normality rules, i.e., associative evolution equations, such
updates allow to compute all state variables, together with the unknown deforma-
tion, jointly by minimizing the stress power of the respective mechanical system,
cf. [13,9,21,20]. While the variational structure of finite strain plasticity is briefly
discussed in Subsection 2.1, a short note on the respective implementation is given
in Subsection 2.2.

2.1 Fundamentals

In line with Lee [35], a multiplicative decomposition of the deformation gradient
F := GRADϕ into an elastic part F e and a plastic part F p of the type

F = F e · F p, with det F e > 0, det F p > 0 (1)

is postulated. Based on this split, an additive decomposition of the Helmholtz en-
ergy

Ψ = Ψe(F e) + Ψp(α) (2)
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is adopted, cf. [36–38]. In Eq. (2), α ∈ Rn is a strain-like internal variable (or
a suitable set) related to plastic hardening and Ψp denotes the associated stored
energy. Clearly, Eq. (2) implies that plastic effects do not affect the elastic response,
i.e., no material degradation is present. Inserting assumptions (1) and (2) into the
dissipation inequality yields for isothermal processes

D =

(
F p · S · F pT − 2

∂Ψ

∂Ce

)
:
1

2
Ċ

e
+ S :

(
F pT · Ce · Ḟ p)

+ Q · α̇ ≥ 0.(3)

Here and henceforth, Ce := F eT ·F e, P , S := F−1 ·P and Q := −∂αΨ represent
the elastic right Cauchy-Green strain tensor, the first Piola-Kirchhoff stress tensor,
the second Piola-Kirchhoff stress tensor and a stress-like internal variable work
conjugate to α, respectively. Application of the by now standard Colemann & Noll
procedure [39–41], gives the stress response

S = 2
∂Ψ

∂C
= 2 F p−1 · ∂Ψ

∂Ce · F
p−T

(4)

and the reduced dissipation inequality

D = Σ : Lp + Q · α̇ ≥ 0 (5)

with Σ = 2 Ce · ∂CeΨ being the Mandel stresses (cf. [26]) and Lp = Ḟ
p · F p−1

denoting the plastic velocity gradient. Both objects belong to the intermediate con-
figuration.

For defining admissible stresses, the elastic domain denoted as Eσ is introduced.
In line with the dissipation inequality (5), Eσ is formulated in terms of Σ. More
precisely,

Eσ =
{
(Σ,Q) ∈ R9+n

∣∣∣ φ(Σ,Q) ≤ 0
}

. (6)

Clearly, the yield function φ spanning that space has to comply with experimental
data and has to fulfill certain regularity conditions, cf. [42]. Since in this paper focus
is on nonlinear kinematic hardening models, a family of yield functions of the type

φ(Σ, Qk) = Σeq(Σ − Qk) − Qi − Qeq
0 (7)

is considered. In Eq. (7), Qk = Qk(αk), Qi = Qi(αi), Σeq and Qeq
0 are the back

stress tensor related to kinematic hardening, a scalar-valued, stress-like internal
variable governing the isotropic counterpart, an equivalent stress measure defining
the shape of the yield function φ and the radius of the initial elastic domain Eσ,
respectively.
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Canonical or associative evolution equations can be derived in a physically and
mathematically elegant manner by enforcing the postulate of maximum dissipation

sup
(Σ,Qk,Qi)∈Eσ

D (8)

leading finally to

Lp = λ ∂Σφ α̇k = λ ∂Qφ αi = λ, (9)

together with the classical Karush-Kuhn-Tucker conditions λ ≥ 0, λ φ ≥ 0.
According to Eq. (9)2, the postulate of maximum dissipation implies linear kine-
matic hardening. Hence, this principle has to be modified, if nonlinear hardening
of Armstrong-Frederick type is to be modeled. Such an enhanced principle is elab-
orated in the next sections. Furthermore, it should be noted in advance that other,
modified evolution equations for the internal variable α based on objective time
derivatives can be applied as well. This will be briefly discussed in the next section.

In what follows, the finite strain plasticity model discussed before is re-written into
a variational form, cf. [13,20,24]. It bears emphasis that the finally presented pa-
rameterization is new. Though it is in line with the one introduced in [24,28], it is
applied directly to the analytical, i.e., to the continuous, problem. In [24,28], it has
only been elaborated for the algorithmic formulation. In this respect, the current
derivation is more consistent, since it is based on a unique framework. Concep-
tually, the variational form of plasticity is based on the stationarity of the stress
power

Ẽ(ϕ̇, Ḟ
p
, α̇,Σ,Q) := P : Ḟ + J (10)

= Ψ̇(ϕ̇, Ḟ
p
, α̇) + D(Ḟ

p
, α̇,Σ, Q) + J, (11)

cf.[13,20]. Here, J = J(Σ,Q) is the characteristic function of Eσ with Q :=
{Qk, Qi} and α := {αk, αi}. Hence, for admissible stresses J vanishes, while
inadmissible states are penalized by J = ∞. Applying the postulate of maximum
dissipation (maximization of Ẽ with respect to the stress-like variables) yields

E(ϕ̇, Ḟ
p
, α̇) = Ψ̇(ϕ̇, Ḟ

p
, α̇) + J∗(L̇

p
, α̇) (12)

with J∗ being the Legendre transformation of J . For admissible stress states and
associative evolution equations, J∗ is the dissipation. Generally, the computation
of this transformation is not trivial. However, for a broad class of plasticity models
frequently applied in solids mechanics, the equivalent stress in Eq. (7) is a positively
homogeneous function of degree one. In that case, a closed-form solution can be
derived in a straightforward manner, i.e., J∗ = λ Qeq

0 ∀(Σ,Q) ∈ Eσ, cf. [13,20,24].
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Recently, a novel implementation for variational constitutive updates was advo-
cated in [24,28]. The underlying key idea is to parameterize the restrictions im-
posed by the flow rule conveniently. More precisely, using associative evolution
equations, i.e,

Ḟ
p · F p−1 = λ ∂Σφ (13)

the rate of plastic strains can be decomposed into a direction ∂Σφ and an amplitude
λ. Consequently, a suitable description of the flow rule relies crucially on a con-
venient parameterization of the flow direction ∂Σφ. For instance, a von Mises-type
model is defined by the following constraints.

∂Σφ =
devΣ

||devΣ||
∈ M :=

{
M

∣∣∣ M = MT , trM = 0, M : M = 1
}

(14)

In [13], such constraints have been incorporated by adopting Lagrange multipliers.
Here and in line with [24,28], a different approach is emphasized. Conceptually,
pseudo stresses Σ̃ are introduced. They are not necessarily identical to their (rela-
tive) physical counterparts, i.e., Σ̃ 6= Ξ := Σ−Qk, but they result (by definition) in
the same physical flow direction, i.e., ∂Σφ|Ξ = ∂Σφ|Σ̃. Using such pseudo stresses
and focusing again for the sake of concreteness on von Mises type-models, the set
M defining the physical constraints imposed by the flow rule can be re-written as

M =

{
devΣ̃

||devΣ̃||

∣∣∣∣∣ Σ̃ = Σ̃
T
}

(15)

and thus, the determination of the flow direction results in finding the proper sym-
metric second-order tensor Σ̃. As a result, the constraints (14) can be a priori en-
forced (more precisely, they are naturally included). Employing such a parameter-
ization, the functional dependency of the stress power if given by E = E(ϕ̇, Σ̃, λ).
Then, according to [24,28], it can be shown that all unknown state variables, to-
gether with the deformation mapping, follow jointly from minimizing the potential
E , i.e.,

(ϕ̇, Σ̃, λ) = arg inf
Σ̃,λ

E(ϕ̇, Σ̃, λ). (16)

Since such schemes are, despite their efficiency and mathematical and physical el-
egance, nowadays still not standard, the validity of the minimization principle (16)
is briefly shown in what follows. For that purpose, it is proved that the stationarity
condition of E with respect to Σ̃ and λ complies completely with the underlying
associative plasticity model. Since for that purpose, the partial derivatives of E with
respect to Σ̃ and λ are considered, the deformation mapping is assumed as constant
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without loss of generality, i.e.,

ϕ = const ⇒ Ḟ = 0 ⇒ Ḟ
e
= −F e · Lp. (17)

As a result, the stress power reads

E = Ψ̇ + D = −
(
F eT · ∂Ψe

∂F e

)
: Lp + λ Qk : Lp + λ Qi + λ Qeq

0 (18)

for a combined isotropic/kinematic hardening model. Hence, the stationarity con-
dition with respect to the plastic multiplier is obtained as

δλE =
{
−Σ : ∂Σφ|Σ̃ + Qk : ∂Σφ|Σ̃ + Qi + Qeq

0

}
δλ = 0

⇔ −φ = 0.
(19)

Accordingly, the resulting Euler-Langrange equation enforces the yield function.
Finally, a variation with respect to the pseudo stresses leads to

δΣ̃E = λ
{
−Σ : ∂2

Σφ|Σ̃ + Qk : ∂2
Σφ|Σ̃

}
: δΣ̃ = 0

⇔ Ξ : ∂2
Ξφ = 0.

Ξ := Σ − Qk. (20)

In what follows, only positively homogeneous yield functions of degree one will
be considered (more precisely, the equivalent stress Σeq is positively homogeneous
of degree one). According to [28], for such yield functions, the flow rule obeys
Eq. (20) exactly. As a consequence, the variational principle (16) indeed naturally
includes the flow direction as well.

Once the minimization problem infΣ̃,λ E has been solved, the stresses P can be
computed from the reduced potential, i.e.,

P = ∂Ḟ inf
Σ̃,λ

E . (21)

Further details can be found in [24,28].

2.2 Numerical implementation

Conceptually, variational constitutive updates are simply an approximation of the
minimization problem (16). A first step towards this approximation is obtained by
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applying a time integration to the stress power E(ϕ̇, Σ̃, λ), i.e.,

(∆λ, Σ̃) = arg inf
∆λ,Σ̃

Iinc, (22)

with

Iinc =

tn+1∫
tn

E(ϕ̇, Σ̃, λ) dt = Ψn+1 − Ψn + Qeq
0 ∆λ (23)

Here, the notations ∆λ :=
tn+1∫
tn

λ dt and (•)n := (•)(tn) have been introduced.

Furthermore, a positively homogeneous yield function of degree one resulting in
the dissipation D = λ Qeq

0 has been assumed. Since E is highly non-linear, the
definition of the incrementally defined potential Iinc requires a proper time integra-
tion scheme. In this respect, the minimization problem (22) is not unique. However,
if a consistent time integration is applied, consistency of the variational update is
indeed guaranteed, i.e., the algorithm converges to the original problem (16), if
∆t → 0. One such consistent approximation is given by the first-order scheme

F p
n+1 = exp [∆λ ∂Σφ|Σ̃] · F p

n

αi|n+1 = αi|n − ∆λ

αk|n+1 = αk|n − ∆λ ∂Σφ|Σ̃ .

(24)

By inserting Eqs. (24) into the integrated stress power, the incremental potential

Iinc(F n+1, Σ̃, ∆λ) = Ψn+1(F n+1, Σ̃, ∆λ) − Ψn + Qeq
0 ∆λ (25)

is obtained. Most frequently and in line with classical computational plasticity the-
ory [38,37], the minimization problem inf Iinc is solved in a staggered fashion.
More precisely, at a certain material point (the integration point), the material re-
sponse is computed by keeping the deformation mapping fixed (F = const, com-
pare to the return-mapping algorithm, cf. [38,37]). Hence, the problem

(∆λ, Σ̃) = arg inf
∆λ,

˜Σ
Iinc|F=const (26)

is considered which gives rise to the introduction of the reduced potential

Ired
inc (F ) = inf

∆λ,
˜Σ

Iinc|F=const. (27)
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This potential, in turn, defines the stress response, i.e.,

P = ∂FIred
inc , (28)

compare to Eq. (21). In contrast to the locally defined problem (26), the compu-
tation of the deformation mapping of the body Ω necessary for determining the
stresses requires a globally conforming description, e.g., by adopting a finite ele-
ment discretization. More precisely, the problem

ϕ = arg inf
∫
Ω

Ired
inc dV (29)

is to be solved. In case of externally applied forces, the energy from such work
has to be considered as usual. It bears emphasis that problem (29) is equivalent
to the principle of virtual work. Further details are omitted. They can be found in
[13,20,24,28].

3 Finite strain plasticity theory with non-linear kinematic hardening

This section is concerned with the fundamentals of non-linear kinematic hardening
at finite strains. More precisely, two different models of Armstrong-Frederick-type
[30] are presented. While a rather straightforward extension of the geometrically
linearized case is addressed in Section 3.1, a model relying of the concept of a cen-
ter configuration is discussed in Section 3.2, cf. [32].
According to Section 2, isotropic hardening obeys the postulate of maximum dissi-
pation anyway. Hence, it is not critical for our considerations and therefore, it can
be neglected for the sake of simplicity here.

3.1 Model I

The first model suitable for the modeling of non-linear kinematic hardening of
Armstrong-Frederick-type at finite strains can be considered as a straightforward
extension of the original model [30]. While in Paragraph 3.1.1 the fundamentals
are briefly discussed, a (standard) numerical implementation based on the return-
mapping scheme is sketched in Paragraph 3.1.2.

3.1.1 Fundamentals

Analogously to the class of models analyzed in Section 2, a multiplicative decom-
position of the deformation gradient and an additive split of the Helmholtz energy
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are assumed, i.e.,

Ψ = Ψe(Ce) + Ψp(α), Ψp =
1

2
c α : α. (30)

Furthermore, according to Eq. (30), a quadratic function has been chosen for de-
scribing the effects due to non-linear hardening. Here and henceforth, α is a strain-
like variable energetically conjugate to the backstress Q. Since isotropic hardening
is neglected for the sake of simplicity, the indices k (kinematic) and i (isotropic)
are not necessary anymore. Based on Eq. (30), the reduced dissipation inequality

D = Σ : Lp + Q : α̇ ≥ 0, Q := −∂αΨp = −c α (31)

is derived. According to Eq. (31) the material time derivative of α naturally ap-
pears. It is well known that evolution equations for the backstrain depending on
that time derivative might lead to unphysical results, cf. [43]. For this reason, mod-
ified equations based on objective time derivatives are frequently applied, see [31]
and references cited therein. However, it bears emphasis that simply replacing α̇
by an objective counterpart would change the physical dissipation and hence, such
a procedure is not physical at all. However, if the condition of isotropy of Ψp(α) is
taken into account, the material time derivative can be related to an objective time
derivative. More precisely,

Ψ̇p = Q : α̇ = Q : P�( ˙P�(α)), (32)

cf. [44]. In Eq. (32), P�(α) and P�(α) denote a push-forward and a pull-back
operation of α with respect to a certain configuration, cf. [5]. Depending on that
configuration P�( ˙P�(α)) can represent a convective time derivative such as a Lie-
derivative or a co-rotational time derivative such as the Jaumann derivative, see
[44,45]. Eq. (32) is a direct consequence, of the covariance of Ψp, cf. [5,44]. For
further details, the reader is referred to [44] and [45].

In line with the previous section, the space of admissible stresses is defined by
means of a yield function

φ = Σeq(Σ − Q) − Qeq
0 (33)

which in turn depends on an equivalent stress measure Σeq being a positively homo-
geneous function of degree one. In the numerical examples presented in Section 5,
a von Mises yield function of the type

φ = ||dev(Σ) − Q|| − Qeq
0 (34)
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is adopted. In contrast to Section 2, different evolution equations than those induced
by φ are considered here. Following the framework of generalized standard mate-
rials [26,27] a plastic potential Ω 6= φ is introduced and the evolution equations are
postulated as

Lp := Ḟ
p · F p−1 = λ ∂ΣΩ, α̇ = λ ∂QΩ. (35)

Though such equations do evidently not obey the classical principle of maximum
dissipation, the second law of thermodynamics is a priori fulfilled, if Ω is convex
(in Σ and Q), cf. [29]. For non-linear hardening of Armstrong-Frederick-type

Ω = φ +
1

2

b

c
Q : Q, Ω 6= φ (36)

is a suitable choice, see [29]. Application of Eq. (36) yields the evolution equations

Lp = λ ∂Σφ, α̇ = −λ ∂Σφ − λ b α, (37)

and finally, the dissipation inequality

D = λ Qeq
0 + λ

b

c
Q : Q ≥ 0. (38)

Accordingly, since Ω is convex, the predicted dissipation is non-negative. For a
better understanding of the material parameters b and c the saturation behavior of
Eqs. (37) is analyzed. By considering the limiting case α̇ = 0 the relations

||α|| → ||∂Σφ||
b

, ||Q|| → c
||∂Σφ||

b
(39)

are obtained. Consequently, in case of a von Mises yield function of the type (34)
implying ||∂Σφ|| = 1, Eqs. (39) yield ||α|| → 1

b
and ||Q|| → c

b
. Furthermore, a

purely isochoric evolution law is guaranteed then, i.e.,

trLp = 0, trα̇ = 0. (40)

3.1.2 Implementational aspects

Most frequently, constitutive models such as those described in the previous para-
graph are implemented by employing the classical return-mapping scheme, cf.
[37,38]. Hence, in case of a plastic loading step, the evolution equations (37) are
integrated by utilizing an implicit backward-Euler integration and subsequently, the
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resulting non-linear algebraic system of equations is solved by applying Newton’s
methods. Here, the slightly different implicit first-order approximation

F p
n+1 = exp(∆λ ∂Σφ) · F p

n (41)

is considered for the flow rule. In contrast to a classical backward-Euler scheme,
Eq. (41) preserves isochoric constraints exactly, cf. [37]. Contrariwise, the standard
backward-Euler method resulting in

αn+1 =
αn − ∆λ ∂Σφ

1 + ∆λ b
(42)

is adopted for the backstrain. It bears emphasis that other evolution equations based
on objective time derivatives can be discretized similarly (compare to Eq. (32)).
However, that will not be discussed in the present context. The nonlinear equa-
tions (41) and (42), together with the yield condition φ = 0, are solved in a standard
fashion. For instance, if ∆λ and Σ are chosen as unknowns, they result from the
non-linear problem

R = R(∆λ,Σ) = [φ; RFp

] = 0, RFp

:= −F p
n+1 + exp(∆λ ∂Σφ) · F p

n.(43)

3.2 Model II

The second geometrically non-linear extension of the original Armstrong-Frederick
model presented here makes use of the so-called center configuration, originally
proposed in [32] (see also [33] for further elaborations). Similar ideas have been
advocated earlier in [34]. A comparison between this model and the one discussed
before can be found in the present paper or in [31]. Following the structure of
the previous section, the fundamentals are addressed first and subsequently, a brief
comment on a standard numerical implementation by means of the return-mapping
algorithm is given.

3.2.1 Fundamentals

In sharp contrast to Section 3.1 the non-linear kinematic hardening model advo-
cated in [32] is based on the so-called center configuration induced by the addi-
tional multiplicative decomposition

F p = F̃
k · F k−1

. (44)

Physically speaking, F p does still represent the plastic deformation, while analo-
gously, F k governs the possibly independent kinematic hardening effects. By com-
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bining this interpretation with the objectivity condition, a Helmholtz energy of the
type

Ψ = Ψe(Ce) + Ψp(Ck), Ck := F kT · F k (45)

is adopted. Accordingly and in line with the fundamentals of hyperelasticity, plas-
tic hardening effects are defined by a potential. Consequently, this model naturally
avoids oscillation problems as evident in some other approaches, cf. [32,46]. In-
serting Eqs. (44) and (45) into the dissipation inequality yields

D = Σ : Lp − Qk : Lk ≥ 0. (46)

Here, the internal backstress Qk defined as

Qk := 2 Ck · ∂Ψp

∂Ck , Lk := F k−1 · Ḟ k
(47)

has been introduced. As expected, it shows the same structure as the Mandel stresses.
This is a direct consequence of the similarity of Ψe = Ψ(F e) and Ψp = Ψp(F k).
The model is completed by postulating a yield function of the type

φ = Σeq(Σ − Qk) − Qeq
0 , (48)

together with evolution equations

Lp = λ ∂ΣΩ, Lk = −λ ∂QkΩk (49)

based on a plastic potential

Ωk := φ +
1

2

b

c
Qk : Qk, Ω 6= φ (50)

being identical to that utilized in the previous subsection (compare to Eq. (36)).
Consequently,

Lp = λ ∂Σφ, Lk = λ∂Σφ − λ
b

c
Qk. (51)

The dissipation predicted by that model is computed by inserting Eqs. (51) into the
reduced dissipation, finally resulting in

D = λ Qeq
0 + λ

b

c
Qk : Qk ≥ 0. (52)

14



As in Section 3.1, convexity of Ω guarantees positive dissipation. More precisely,
all equations such as Eq. (51) and Eq. (52) are formally identical to their coun-
terparts presented in the previous subsection. Hence, in case of a von Mises-type
model, the backstress inherits the isochoric property, i.e.,

trQk = 0. (53)

Remark 1 It bears emphasis that although both non-linear kinematic hardening
approaches look similar, the material parameters b and c defining those models
have a different physical interpretation. More precisely, by comparing the uniaxial
tension test as predicted by those models it can be shown that the hardening pa-
rameters have to be divided by a factor of 2 for the approach related to the center
configuration. Further details are omitted. They can be found in [44].

3.2.2 Implementational aspects

In line with Paragraph 3.1.2, the implementation of the aforementioned plasticity
model by means of the return-mapping algorithm is briefly discussed. Hence, an
exponential implicit integration scheme is employed again for the irreversible parts
of the deformation gradient, i.e.,

RFp

:= −F p
n+1 + exp(∆λ ∂Σφ) · F p

n = 0 (54)

and

RFk

:= −F k
n+1 + F k

n · exp

[
∆λ ∂Σφ − ∆λ

b

c
Qk

]
= 0 (55)

and finally, the unknowns such as ∆λ, Σ and Qk are computed from the system of
non-linear algebraic equations

R = [φ; RFp

; RFk

] = 0, R = R(∆λ,Σ, Qk) = 0. (56)

Alternatively, Eq. (55) could be enforced a priori (by a certain post-processing step,
i.e., a staggered scheme) and hence, the reduced residual would read

Rred = Rred(∆λ,Σ) = [φ; RFp

] = 0. (57)

Clearly, in this case, the post-processing step is defined by the non-linear subprob-
lem

F k
n+1 = F k

n+1(∆λ, Σ̃). (58)
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Though such a procedure is not standard, it proves to be well suited for the varia-
tional constitutive update presented in the next section.

4 Variational updates for plasticity models with non-linear kinematic hard-
ening

According to Section 2, the underlying idea of variational updates is the minimiza-
tion of the integrated stress power. This variational principle governs every aspect
of the respective physical problem. Unfortunately, the derivation of this scheme
is based on the classical postulate of maximum dissipation which is not fulfilled
for non-associative evolution equations. As a result, the original variational update
cannot be applied to the class of non-linear hardening models as presented in the
previous section. For this reason and in line with [28], an extended principle is
considered. Conceptually, the integrated stress power is still minimized. However,
by utilizing a suitable parameterization, the non-associative evolution equations are
a priori prescribed. Interestingly, this parameterization results finally in an uncon-
strained minimization problem.

Following Section 2, the integrated stress power

inf Iinc, Iinc = Ψn+1 − Ψn +

tn+1∫
tn

D dt (59)

represents the starting point of the extended variational constitutive updates. Since
the dissipation as defined by Eq. (38) and that by Eq. (52) are formally identical,
both models result eventually in a similar minimization problem. The numerical
implementations discussed in the following subsections are based on a backward-
Euler time discretization of the dissipation, i.e.,

tn+1∫
tn

D dt ≈ ∆λQeq
0 + ∆λ

b

c
Qn+1 : Qn+1 =: ∆D. (60)

Clearly, other (consistent) approximations are possible as well.

In Subsection 4.1, a variational constitutive update is developed for the non-linear
kinematic hardening model as described in Subsection 3.1. A variational princi-
ple, together with its numerical implementation, for the model based on the center
configuration as discussed in Subsection 3.2 is advocated in Subsection 4.2.
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4.1 Model I

4.1.1 The continuous case: Differential equations

In line with Subsection 2, the stress power is considered. If linear kinematic hard-
ening is replaced by the non-linear counterpart as described in Subsection 3.1, the
stress power reads (compare to Eq. (18))

E(λ, Σ̃) = −
(
F eT · ∂Ψe

∂F e

)
: Lp + Q : (Lp + λ b α) + λ Qeq

0 + λ
b

c
Q : Q

= (−Σ + Q) : ∂Σφ|Σ̃ λ + Qeq
0 λ.

(61)

Accordingly, a minimization of E with respect to the plastic multiplier yields

δλE = {(−Σ + Q) : ∂Σφ|Σ̃ + Qeq
0 } δλ = 0

⇔ −φ = 0.
(62)

Consequently, the yield condition is consistently included within the variational
(minimization) principle inf E . The stationarity condition with respect to the pseudo
stresses is identical to that of the associative model (cf. Subsection 2). More pre-
cisely, a straightforward calculation leads to

δΣ̃E = λ
{
(−Σ + Q) : ∂2

Σφ|Σ̃
}

: δΣ̃ = 0

⇔ Ξ : ∂2
Ξφ = 0.

(63)

As mentioned earlier, Eq. (63) is identically fulfilled, if the yield function is posi-
tively homogeneous of degree one, see [28]. Hence, the yield function and the flow
direction predicted by the minimization principle inf E are equivalent to those of
the original (not variational) model (Subsection 3.1).

4.1.2 The discrete case: Time discretization

Next, consistency of the proposed variational constitutive update is proved. Hence,
it will be shown that the minimization principle inf Iinc as defined by Eq. (59) con-
verges to the underlying analytical counterpart inf E for ∆t → 0. More precisely,

∂Iinc

∂∆λ

∣∣∣∣∣
∆t→0

!
= −φ,

∂Iinc

∂Σ̃

∣∣∣∣∣
∆t→0

!
= Ξ : ∂2

Ξφ. (64)
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Since a variation is only considered for the (unknown) new state tn+1, the index
n + 1 will be omitted in what follows, i.e., α := αn+1.

For checking consistency, i.e., the validity of Eqs. (64), the partial derivatives

∂α

∂∆λ
=

−1

1 + b ∆λ
(∂Σφ|Σ̃ + b α) (65)

∂α

∂Σ̃
=

−∆λ

1 + b ∆λ
∂2
Σφ

∣∣∣
Σ̃

(66)

∂Ψe

∂∆λ
= −

[
(F e

trial)
T · ∂Ψe

∂F e

]
: D exp [− ∆λ ∂Σφ|Σ̃] : ∂Σφ|Σ̃ (67)

∂Ψe

∂Σ̃
= −

[
(F e

trial)
T · ∂Ψe

∂F e

]
: D exp [− ∆λ ∂Σφ|Σ̃] : ∂2

Σφ
∣∣∣
Σ̃

∆λ (68)

∂Ψp

∂∆λ
=

1

1 + b ∆λ
(∂Σφ|Σ̃ + b α) : Q (69)

∂Ψp

∂Σ̃
=

∆λ

1 + b ∆λ
Q : ∂2

Σφ
∣∣∣
Σ̃

(70)

∂∆D
∂∆λ

= Qeq
0 − b Q : α + 2 b

∆λ

1 + b ∆λ
(∂Σφ|Σ̃ + b α) : Q (71)

∂D
∂Σ̃

= 2 b
∆λ2

1 + b ∆λ
Q : ∂2

Σφ
∣∣∣
Σ̃

(72)

will be utilized. Here and henceforth, F e
trial := F n+1 · F p

n
−1 are the elastic trial

strains (see [37,38]) and D exp(•) is the derivative of the exponential mapping, cf.
[47,48]. By combining Eqs. (65)–(72), consistency of the algorithm can be verified,
i.e.,

∂Iinc

∂∆λ

∣∣∣∣∣
∆t→0

= −Σ : ∂Σφ|Σ̃ + Q : ∂Σφ|Σ̃ + Qeq
0 = −φ (73)

and

∂Iinc

∂Σ̃

∣∣∣∣∣
∆t→0

= ∆λ
[
−Σ : ∂2

Σφ
∣∣∣
Σ̃

+ Q : ∂2
Σφ

∣∣∣
Σ̃

]
= ∆λ Ξ : ∂2

Ξφ. (74)

In the numerical examples presented in Section 5, the minimization problem inf Iinc

is solved by employing a gradient-type approach. Consequently, the function to be
minimized, together with its gradient ∇Iinc, are required. Evidently, such gradient
can easily be computed by Eqs. (65) – (72). In case of a Newton-type method, the
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second derivatives are required as well. Although they are very lengthy, they can be
derived in a straightforward manner. Having computed the minimization principle
inf Iinc|F = const, the stress can be computed analogously to hyperelasticity, i.e.,

P = ∂F inf
∆λ,Σ̃

Iinc, (75)

compare to [24,28].

4.2 Model II

4.2.1 The continuous case: Differential equations

Following the previous subsection, the analytical problem inf E is analyzed first.
Therefore, the stress power is computed. By employing Eq. (59) and Eq. (60), to-
gether with Subsection 3.2, the stress power results in

E(λ, Σ̃) = λ

{
−Σ : ∂Σφ|Σ̃ − Qk : ∂QkΩk + Qeq

0 +
b

c
Qk : Qk

}
= λ

{
(−Σ + Qk) : ∂Σφ|Σ̃ + Qeq

0

}
.

(76)

Thus, the related stationarity conditions are given by

δλE =
{
(−Σ + Qk) : ∂Σφ|Σ̃ + Qeq

0

}
δλ = 0

⇔ −φ = 0
(77)

and

δΣ̃E = λ
{
(−Σ + Qk) : ∂2

Σφ|Σ̃
}

: δΣ̃ = 0

⇔ Ξ : ∂2
Ξφ = 0.

(78)

As a result and analogously to the previous subsection, the proposed minimization
principle is equivalent to its underlying (non-variational) counterpart as summa-
rized in 3.2.

4.2.2 The discrete case: Time discretization

Consistency of the variational constitutive update as obtained from discretizing the
integrated stress power (76) by utilizing a backward-Euler integration is checked
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here. According to Paragraph 3.2.2 and in contrast to Subsection 4.1, a standard
parameterization of the minimization principle would require 3 unknowns: ∆λ, Σ̃
and additionally, the direction of Lk. Clearly, this could be done by introducing
an additional set of pseudo stresses defining Lk. However, a different approach
is elaborated here. In line with the modified return-mapping scheme presented in
Paragraph 3.2.2, the evolution equation governing F k is a priori fulfilled by enforc-
ing

F k
n+1 = F k

n+1(∆λ, Σ̃). (79)

By doing so, the only unknowns within the minimization principle inf Iinc are ∆λ
and Σ̃ – the same as in the previous subsection. Hence, both algorithms are easily
mutually comparable. In what follows, the flow direction and the hardening direc-
tions are denoted by

N := ∂Σφ|Σ̃ , N̂ := ∂Σφ|Σ̃ − b

c
Qk. (80)

Since both models for non-linear kinematic hardening considered in this paper lead
to the same elastic part of the Helmholtz energy Ψe (and the same plastic flow rule),
the derivatives ∂∆λΨ

e and ∂Σ̃Ψe are given by Eq. (67) and Eq. (68). The remaining
derivatives necessary for solving the minimization problem Iinc by using gradient-
type algorithms are summarized in what follows.

With Eqs. (80), the derivative of F k with respect to the plastic multiplier can be
computed from the implicit equation

∂F k
n+1

∂∆λ
= F k

n ·
[
D exp

(
∆λ N̂

)
:
(
N̂ + ∆λ ∂∆λN̂

)]
. (81)

For that purpose, the derivative

∂∆λN̂ = −b

c
∂FkQk : ∂∆λF

k (82)

is inserted into Eq. (81), leading finally to

∂F k
n+1

∂∆λ
= A−1 :

[
F k

n · D exp
(
∆λ N̂

)
: N̂

]
. (83)

Here, the fourth-order tensor

A = I + ∆λ
b

c
F k

n · D exp
(
∆λ N̂

)
: ∂FkQk (84)
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has been introduced. Evidently, Eq. (82) can only be applied, if the evolution direc-
tion defining Lk is correct. This is why Eq. (79) has to be enforced. Analogously,
the derivative of F k with respect to the pseudo stresses can be computed. More
precisely,

∂F k
n+1

∂Σ̃
= ∆λ A−1 :

[
F k

n · D exp
(
∆λ N̂

)
: ∂2

Σφ
∣∣∣
Σ̃

]
. (85)

Hence, the gradients of Ψp and those of ∆D are given by

∂Ψp

∂∆λ
=

∂Ψp

∂F k
n+1

:
∂F k

n+1

∂∆λ
(86)

∂Ψp

∂Σ̃
=

∂Ψp

∂F k
n+1

:
∂F k

n+1

∂Σ̃
(87)

∂∆D
∂∆λ

= Qeq
0 +

b

c
Qk : Qk + 2 ∆λ

b

c
Qk :

∂Qk

∂F k
n+1

:
∂F k

n+1

∂∆λ
(88)

∂∆D
∂Σ̃

= 2 ∆λ
b

c
Qk :

∂Qk

∂F k
n+1

:
∂F k

n+1

∂Σ̃
. (89)

By utilizing such gradients, together with Eq. (67) and Eq. (68), the gradient of Iinc

required for an optimization scheme can be computed. In case of a Newton-type
method, the second derivatives are necessary as well. Although they are lengthy,
they can be derived in a straightforward manner. Once this minimization problem
has been solved, the stresses follow again from Eq. (75).

Next, consistency of the resulting algorithm is proved. By considering the lineariza-
tions

∂F k
n+1

∂∆λ

∣∣∣∣∣
∆t→0

= F k
n+1 · N̂ (90)

and

∂F k
n+1

∂Σ̃

∣∣∣∣∣
∆t→0

= ∆λ F k
n+1 · ∂2

Σφ
∣∣∣
Σ̃

(91)

the stationarity conditions

∂Iinc

∂∆λ

∣∣∣∣∣
∆t→0

= −Σ : ∂Σ︸ ︷︷ ︸
=∂∆λΨe|∆t→0

+ Qk : N̂︸ ︷︷ ︸
=∂∆λΨp|∆t→0

+ Qeq
0 +

b

c
Qk : Qk︸ ︷︷ ︸

=∂∆λ∆D|∆t→0

= −φ = 0 (92)
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and

∂Iinc

∂Σ̃

∣∣∣∣∣
∆t→0

= −∆λ Σ : ∂Σφ|Σ̃︸ ︷︷ ︸
=∂

Σ̃
Ψe|∆t→0

+ ∆λ Qk : ∂Σφ|Σ̃︸ ︷︷ ︸
=∂

Σ̃
Ψp|∆t→0

= ∆λ Ξ : ∂Σφ|Ξ = 0 (93)

are finally obtained. In Eq. (93), ∂Σ̃∆D|∆t→0 = 0 has already been included, see
Eq. (89). Hence, consistency of the algorithm is guaranteed.

5 Numerical examples

The applicability as well as the performance of the proposed variational constitutive
updates are demonstrated in this section by means of different numerical examples.
While Subsection 5.1 is associated with the uniaxial tension and the simple shear
test, a more complex boundary value problem is considered in Subsection 5.2. To
be more precise, it is a strip with a circular hole.

5.1 Uniaxial tension and simple shear

The representative hardening behavior corresponding to the Armstrong-Frederick-
type model can be visualized best by analyzing one loading cycle for simple shear
or uniaxial tension. Following [31], the material parameters characterizing a mild
steel CK15 are chosen. They are summarized below.

shear modulus: µ = 80000 Mpa

bulk modulus: K = 173333 Mpa

yield stress: Qeq
0 =

√
2/3 300 Mpa

hardening modulus: c = 1900 Mpa

saturation parameter: b = 8.5

As already mentioned in Remark 1, the hardening parameters have to be divided
by a factor of 2 for the model based on the center configuration. Concerning the
elastic response, a standard isotropic neo-Hooke-type Helmholtz energy is adopted.
However, since the elastic strains are relatively small, the choice of the elasticity
model is not crucial.

The predicted stress-strain responses for the two different loading cases are shown
in Fig. 1. As evident from these diagrams, both proposed variational constitutive
updates lead to almost identical results. This holds particularly for the simple shear
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Fig. 1. Uniaxial tension and simple shear test: Comparison between different finite strain
plasticity models. Rate model is based on the standard evolution equation of the internal
variables (see Subsection 3.1), while hyper. model is based on the kinematics associated
with the center configuration (see Subsection 3.2). For the sake of comparison, the results
as reported in [31] are shown as well.

test. According to Fig. 1, the results are in good agreement to those previously
reported in [31].

5.2 A strip with a circular hole

Next, a more complex mechanical problem characterized by an inhomogeneous
stress state is numerically analyzed. The strip with a circular hole shown in Fig. 2
represents a standard benchmark being frequently applied to investigate the robust-
ness and performance of plasticity models, cf. [49,38]. For the purpose of compari-
son, the material model is chosen in line with that in [49,38], i.e., isotropic elasticity
and associative von Mises plasticity theory. As in the previous examples, the elastic
strains are relatively small. Thus, the choice of the elasticity model does not play an
important role. For this reason and in line with the previous subsection, an isotropic
neo-Hooke-type model is adopted. In contrast to the cited references, where only
linear hardening was considered, the four different hardening models summarized
in Tab. 1 are applied.

The distributions of the internal variable α := maxij |αij| as predicted by the dif-
ferent hardening models are given in Fig. 3. As evident from this figure all compu-
tations lead to almost identical results. This is in line with [24]. In the cited paper,
only a marginal influence of the hardening behavior on the distribution of α was ob-
served (linear isotropic hardening and linear kinematic hardening were analyzed).
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L 36
B 20
D 10
t 1.0

Material parameters:

E 70 kN/cm2

ν 0.2 cm
Qeq

0

√
2/3 0.242 kN/cm2

cref

√
2/3 0.2 kN/cm2

bref 1.0 -

Fig. 2. Strip with a circular hole: geometry, boundary conditions, finite element discretiza-
tion (10-node purely displacement-driven tetrahedron elements) and material parameters. t
denotes the thickness.

no hardening: perfect plasticity, i.e., c = 0.0

linear hardening: Prager-Ziegler model, i.e., α̇ = Lp

rate model: Armstrong-Frederick-type hardening

based on standard rate equation (see Subsection 3.1), c = cref , b = bref

hyper. model: Armstrong-Frederick-type hardening

based on center configuration (see Subsection 3.2), c = cref/2, b = bref/2
Table 1
Strip with a circular hole: Different hardening models utilized within the numerical analy-
ses

Although all different hardening models lead to similar distributions of the internal
variable α, the resulting load-displacement diagrams show a larger scattering, cf.
Fig. 3. As expected, the model without hardening predicts the softest response. Due
to geometrical nonlinearities, the forces are monotonically decreasing beyond the
ultimate load. The other limiting case, i.e., the strongest hardening effect, is rep-
resented by linear kinematic hardening. Again a global softening behavior is ob-
served at large deformations. However, in contrast to perfect plasticity, the soften-
ing is less pronounced (different modulus) and occurs at a later stage. The proposed
novel constitutive updates based on nonlinear kinematic hardening of Armstrong-
Frederick-type are bounded by the aforementioned limiting cases. More precisely,
they lead to identical results as the linear hardening model at the onset of plasticity,
while for large deformations, i.e., when the internal variable α has already satu-
rated, the global softening modulus is identical to that of perfect plasticity. Clearly,
this transition is consistent with the underlying theory. Although both models based
on nonlinear kinematic hardening give reasonable results, their force-displacement
curves are not completely identical. In contrast to the simple shear test and uni-
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no hardening linear hardening

nonlinear hardening –
rate model

nonlinear hardening –
hyper. model

0 2.0α

Fig. 3. Strip with a hole: Distribution of the internal variable α := max |αij |. Comparison
between different finite strain plasticity models. Rate model is based on the standard evolu-
tion equation of the internal variables (see Subsection 3.1), while hyper. model is based on
the kinematics associated with the center configuration (see Subsection 3.2).

axial tension, the difference between the models is more pronounced. The reason
for this is the comparably higher strain level (α := maxij |αij|| ≈ 2, see Fig. 3).
Furthermore, differences between similar Armstrong-Frederick-type formulations
have already been reported earlier, cf. [31].
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Fig. 4. Strip with a hole: Load-displacement diagrams predicted by different finite strain
plasticity models. Rate model is based on the standard evolution equation of the internal
variables (see Subsection 3.1), while hyper. model is based on the kinematics associated
with the center configuration (see Subsection 3.2).

6 Conclusions

In this paper, non-linear kinematic hardening of Armstrong-Frederick-type at finite
strains was critically analyzed and recast into a variationally consistent framework.
Within this framework, all unknown state variables, together with the deforma-
tion mapping, follow jointly from minimizing a suitable energy potential. In line
with standard dissipative solids, i.e., solids governed by associative evolution equa-
tions, this energy potential is given by the (integrated) stress power. By utilizing a
well adapted parameterization, the non-associative evolution equations defining the
class of non-linear kinematic hardening models of Armstrong-Frederick-type were
naturally enforced and incorporated in the minimization principle. By doing so,
a computationally efficient unconstrained minimization problem was developed.
Since, the extension of the original Armstrong-Frederick model to finite strains is
not unique, two different approaches were considered and consistency of the result-
ing variational constitutive updates was proved. Numerical benchmarks showed the
accuracy and performance of the advocated numerical implementations.
This is the second variational constitutive update proposed for a class of non-
associative plasticity theory. However, it is not clear yet, which conditions have
to be fulfilled in general such that an extended variational principle exists. Hence,
in the future existence conditions are to be carefully derived.
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