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Abstract

To determine whether the use of regional climate models improves the representation of 

climate is a crucial topic in climate modelling. An improvement over coarser-scale models is 

expected  especially  in  areas  with  complex  orography  or  along  coastlines.  However,  some 

studies have shown no clear  added value for regional climate  models.  In this study a high-

resolution regional climate simulation performed with REMO 5.0 over the whole of Europe 

over the period 1958-1998 is analysed for 2 m temperature over the European Alps and their 

surroundings called the  Greater  Alpine Region (GAR).  The simulation is  driven by perfect 

boundary conditions at the lateral boundaries provided by the ERA40 reanalysis and spectral 

nudging of the large-scale wind fields towards ERA40 values for the upper layers inside the 

model domain. The added value of the regional simulation (1/6° resolution) is analysed with 

respect to the driving reanalysis (1.125° resolution).

Both the REMO simulation and the ERA40 reanalysis are validated against different 

station datasets of monthly and daily mean 2 m temperature. Correlation analysis shows that the 

temporal variability of temperature is well represented by both REMO and ERA40, whereas 

both show considerable biases. The REMO bias reaches 3 K in summer in regions known to 

experience a problem with summer drying in a number of regional models. The comparison of 

REMO and ERA40 shows that an added value of the former exists for all regions in winter.  For 

the regions surrounding the Alps the added value is absent in summer,  whereas in the inner 

Alpine subregions with most complex orography, REMO performs better than ERA40 during 

the whole year. The only moderate value added by REMO in this hindcast setup may be partly 

explicable  by  the  fact  that  meteorological  measurements  are  assimilated  in  the  ERA40 

reanalysis but not in the REMO simulation. 



1. Introduction

1.1 Hindcasts and validation

Regional Climate Models (RCMs) are an important tool for the regionalisation of global 

simulations for past and future climates performed with General Circulation Models (GCMs). 

The horizontal resolution of the GCMs is usually not finer than about 100 km, while the RCMs 

nowadays  typically  have  resolutions  between  10  km and  60  km (Giorgi  et  al.,  2001  and 

references herein; Wang et al., 2004). 

A special type of simulation for the past are global reanalyses  such as the National 

Centers  for  Environmental  Prediction/National  Center  for  Atmospheric  Research 

(NCEP/NCAR) reanalysis  (Kalnay et  al.,  1996) or  the  European Centre for  Medium-Range 

Weather Forecasts (ECMWF) reanalyses ERA15 (Gibson et al., 1997) and ERA40 (Uppala et 

al.,  2005),  where  data  assimilation  methods  are  used  to  find  optimal  estimates  for  past 

atmospheric  states  that  are  consistent  with  meteorological  observations  and  the  model 

dynamics. These global reanalyses cover the last 15 to 60 years and can be used to provide so-

called  perfect  boundary  conditions  for  RCMs  for  performing  regional  hindcasts.  These 

hindcasts  provide  reconstructions  of  a  large  number  of  meteorological  variables  in  three 

dimensions, which are needed in areas where no high-resolution data exist or in complex terrain 

where  the  observations  are  unrepresentatively distributed  (Bromwich  et  al.,  2005).  Another 

approach to obtain estimates for past atmospheric states would be regional reanalyses  using 

state-of-the-art data assimilation (e.g. Mesinger et al., 2006). However, such regional reanalyses 

are computationally demanding and are therefore in many regional climate applications replaced 

by hindcasts driven by global reanalyses. In addition to the performance of hindcasts another 

main application of RCMs is dynamical  downscaling of GCM simulations of future climate 

change. 



The validation of RCMs is mostly based on the comparison of simulations for the past 

with observations and the results are thus directly applicable to assessing the skill of hindcasts. 

Using  these  validation  results  to  assess  the  skill  of  simulations  for  the  future  is  not 

straightforward, but is nevertheless an important approach to determine the trustworthiness of 

models  for  future climate  change applications (Giorgi  et  al.,  2001;  Räisänen,  2007).  Before 

simulating  future  climate  change  with  a  RCM,  simulations  driven  by  perfect  boundary 

conditions should be validated to detect systematic biases of the RCM that are primarily caused 

by internal model dynamics and physics (Giorgi et al. 2001). Boundary conditions for present 

climate derived from standard GCM simulations would already induce errors in the large-scale 

fields due to the fact that GCMs have limited ability to simulate present climate (Christensen et 

al., 1997; Giorgi et al., 2001). The validation of RCMs driven by standard GCM simulations for 

present  climate,  which  is  a  validation  of  the  GCM-RCM-system,  is  at  best  possible  by 

statistically  evaluating  the  climatologies  and  frequency  distributions  (Giorgi  et  al.,  2001), 

whereas hindcasts do not only provide reconstructions of climate but are also crucial for the 

validation  of  RCMs for  individual  events  and  temporal  variability.  Hindcasts  covering  the 

second half of the 20th century have been analysed in many studies for pure model validation 

(e.g. Hagemann et al., 2002; Vidale et al., 2003: Feser, 2006; Sotillo et al., 2006; Bergant et al., 

2007; Silvestri  et  al.,  2008), as input for hydrological applications (e.g. Sotillo et  al.,  2005; 

Kotlarski et  al..  2005), or as high-resolution regional climate datasets (e.g. Bromwich et al., 

2005; Sotillo et al., 2006). 

A second validation approach focusing on the downscaling ability of a specific RCM 

setup are so called Big-Brother Experiments (Denis et al. 2002), where a RCM driven by a low-

pass filtered high-resolution simulation is compared to the original high-resolution simulation, 

which also contains small  spatial  scales.  Therefore,  differences are attributed only to errors 

associated with the nesting and downscaling technique.

1.2. Added value



In both applications, regionalisation of present and future climate, it is expected that 

RCMs do not only yield results with just a higher resolution but that the explicit simulation of 

smaller-scale processes and the more detailed representation of the surface boundary conditions 

(orography, land-sea-contrast, land use etc.) makes the RCM simulations more realistic than the 

GCM results (Denis et al., 2002; Wang et al., 2004).

Although the skill of RCMs has been assessed in a number of validation studies, these 

studies do not explicitly address the crucial question of whether the skill of the RCM is actually 

better than the skill of the driving global model, in other words whether the RCM adds value to 

the global model. Added value is only expected on regional scales as the large scales are already 

well  resolved  by  the  global  model  (Feser,  2005).  The  added  value  analysis  of  hindcasts 

compared to the driving reanalysis shows whether the higher resolution leads to a more realistic 

reconstruction  of  present  climate  or  whether  the  reanalysis,  which  includes  assimilated 

observations, represents present climate more realistic despite the coarser resolution. As many 

variables are spatially quite homogenous and thus may be well constrained by the assimilated 

observations, a higher resolution does not necessarily have to lead to a better representation.

The value added by RCMs appears to have been analysed in only a few studies, which 

were all published recently despite many years of use of RCMs. These studies fall into two 

groups. In the first group the RCM skill is compared to standard GCM simulations (Duffy et al., 

2006; Seth et al., 2007), while in the second group the skill of reanalysis-driven RCM hindcasts 

is compared to the driving reanalyses (Roads et al., 2003; Sotillo et al., 2005; Sotillo et al., 

2006; Feser, 2006). These studies show that a general added value of the RCM in comparison to 

the driving model or reanalysis can not be found. Duffy et al. (2006) compared different RCMs 

over  the Western United States with gridded observational  data  and found added value for 

precipitation for some, but not all RCMs, whereas for temperature they found an improvement 

for all RCMs in comparison to the driving GCM. Seth et al. (2007) compared precipitation of a 

regional and a global simulation with gridded observations over South America and concluded 



that the RCM did not add value to the driving GCM simulation. They suggest advancement of 

the physical parameterisations in both GCMs and RCMs to improve the simulations especially 

of tropical climate. 

A comparison of four different RCMs and of the driving NCEP/NCAR reanalysis with a 

gridded precipitation climatology was performed by Roads et al. (2003) over South America. 

Over  the  Andes  precipitation  is  overestimated  by  all  models  and  no  single  RCM  but  the 

ensemble mean of all RCMs performed better than the reanalysis for some months. The authors 

see a reason for this low performance in the parameterisations used in RCMs which are derived 

from GCMs, and are not optimized for the regional scales. Sotillo et al. (2005) analysed the 

improvement  of  the  RCM REMO compared  to  the  NCEP/NCAR reanalysis  at  15 offshore 

stations in the Mediterranean and Atlantic for 2 m temperature, mean sea level pressure and 10 

m wind field. For 2 m temperature they found added value introduced by REMO mainly for 

extreme values. Sotillo et al. (2006) concentrated on a winter precipitation hindcast performed 

with REMO over the Iberian Peninsula. Based on a comparison to a high-resolution station 

database,  they found added value  not  only for  total  amount  values  but  also  for  the  spatial 

distribution. Feser (2006) applied a spatial two-dimensional filter (Feser and von Storch, 2005) 

to separate the temperature and air pressure fields into large (larger than 700 km) and medium 

(250-550 km) spatial scales. The comparison of REMO simulations over Europe driven by the 

NCEP/NCAR reanalysis,  as well  as of the reanalysis,  to gridded observations yielded added 

value for temperature over Europe mainly on medium scales, which has already been suggested 

by Laprise (2003). This improvement compared to the reanalysis was even larger if the large-

scale  wind  field  was  nudged to  the  RCM.  The  positive  influence  of  spectral  nudging  was 

already shown by Weisse and Feser (2003) for wind fields and wave heights.

1.3. Station vs. grid box

The validation of RCM simulations can be performed either against gridded data or 



against station data. Obviously, the advantage of using gridded data is that grid box values in 

GCMs and RCMs represent area means. However, gridded data can include errors that have 

been  introduced  through  the  interpolation  method.  This  may  be  of  particular  concern  over 

mountainous areas or along coastlines where the estimation of area means from station networks 

may be difficult due to the relatively low correlations between values at different locations (this 

effect  is  quantitatively discussed for rainday frequency in Osborne and Hulme (1997)).  The 

estimation of absolute area means rather than anomalies is further complicated over complex 

orography by the strong height dependence of many meteorological variables combined with 

the usually non-representative height distribution of the station network. Furthermore, it should 

be noted that area means simulated in a regional model, even in a model with ``perfect'' physics, 

would differ from the real-world area means due to the differences between real and model 

orography. In other words, the model simulates a system that is different to the real one, and 

thus a comparison of simulated and real-world area means over complex orography is not a 

comparison of conceptually identical variables. Additionally, observations and simulations are 

affected  by  internal  variability  leading  to  the  conclusion  that  a  complete  agreement  is  not 

expected (Räisänen, 2007). However, a comparison is still feasible to assess the performance of 

the model.

The choice between gridded or station data for validation may also depend on what the 

RCM simulation will be used for. If area means are of interest, they are the natural choice as a 

validation  variable.  If  the  estimation  of  local  values  from  the  RCMs  without  further 

postprocessing (statistical downscaling or Model Output Statistics) is of interest,  which may 

often be the case, assessing the model skill by comparing the simulated area means against point 

observations will yield the practically relevant information. The orography-related differences 

between the model and the real world, as well as the height dependence of many variables are as 

much an issue for station-based validation as they are for the comparison of area means and 

should be taken into account in any analysis. 



Most GCM or RCM validation studies compare simulations to gridded climatologies 

and reanalyses (e.g. Noguer et al., 1998; Giorgi et al., 2003; Vidale et al., 2003; Bergant et al., 

2007; Jacob et al., 2007). Less work has been done on the validation against station temperature 

data  (Kyselý,  2002;  Moberg  and  Jones,  2004;  Bromwich  et  al.,  2005),  which  is  partly 

attributable to the limited availability of good quality, high-resolution observations (Giorgi et 

al., 2001; Wang et al., 2004; Bergant et al., 2007). Moberg and Jones (2004) compare maximum 

and minimum temperatures from a RCM simulation with 50 km resolution with station data 

over Europe. For complex areas like the Alps with large height differences between the grid 

boxes and the stations, they advise against a detailed comparison as the height differences lead 

to a different beginning of snow melting which has a large effect on temperature variability. 

However, as pointed out above, the different orography in the model and the real world would 

also affect the comparison with area means, as systematic differences between the simulated 

and the real world do not get reduced through the spatial averaging. The work by Bromwich et 

al. (2005) shows in regions with most complex orography large negative temperature biases, 

which were explained by the too coarse resolution of the RCM which they suggest led to poor 

mixing in the lower atmosphere.

In the present study a high-resolution hindcast is analysed for Alpine temperature by a 

comparison with a dense, homogenised and quality controlled station dataset covering the whole 

GAR. As stated by Giorgi et al. (2001) RCM evaluation is limited due to a general lack of good 

quality high-resolution observed data, especially in regions with complex orography. Therefore, 

this dataset gave the opportunity for the validation as it is a dense dataset with a quality higher 

than any other dataset of this region including gridded datasets. Additionally, the added value of 

the hindcast compared to the driving reanalysis  is analysed, which is of interest in the Alps 

where temperature is less spatially homogenous than in the surrounding regions. As shown by 

Sotillo et al. (2005) more added value for temperature is expected for extreme values. However, 

to  analyse  the  added  value  for  temperature  extremes  over  the  whole  Alpine  region  an 



appropriate dataset covering the GAR is necessary, which does not exist. Therefore, the analysis 

is limited to mean temperature.

This paper is organised as follows: In section 2 the regional model and the datasets used 

for the validation and the validation method are described. The results are presented in section 3 

separated for skill, added value and the comparison to daily data. Section 4 concludes the paper.

2. Data and method

2.1. Model data

The  high-resolution  simulation  analysed  in  this  study  has  been  performed  with  the 

regional climate model REMO version 5.0 (REgional MOdel; Jacob and Podzun, 1997). The 

dynamical  core of REMO is based on the numerical weather prediction model  EM (Europa 

Modell)  of  the  German  Weather  Service  (DWD)  (Majewski  and  Schrodin,  1994)  and  was 

further developed at the Max Planck Institute for Meteorology (MPI) and at the GKSS Research 

Centre. The parameterisations are taken from the ECHAM4 climate model  (Roeckner et al., 

1996) of the MPI. REMO is based on the primitive equations, which include the hydrostatic 

approximation, in a terrain-following hybrid coordinate system.  The prognostic variables are 

surface pressure, horizontal wind components, temperature, specific humidity and cloud liquid 

water. The variable relevant for the present study is 2 m temperature which is not a prognostic 

variable but is determined from the prognostic values at the surface and the lowermost model 

layer taking into account the Monin-Obukhov similarity theory (e.g. Jacobson, 2005). 

This  study  covers  the  period  1958  to  1998.  The  simulation  has  a  high  horizontal 

resolution of 1/6° x 1/6° (in rotated coordinates approximately 17 km) on 20 vertical levels in 

the troposphere and lower stratosphere. The area of interest analysed in this study, the Greater 

Alpine Region (GAR, 0° to 20°E and 40° to 50°N), is marked by a rectangle and consists of 66 

x 90 grid points (Fig. 1).



The high-resolution  simulation  is  driven  by the  global  ERA40  reanalysis  (hereafter 

ERA40; Uppala et al., 2005) through prescribing the values of the prognostic variables and of 

the sea surface temperature at the lateral boundaries and through forcing solely the large-scale 

horizontal wind field within the model domain by spectral nudging (von Storch et al., 2000) at 

every time step on levels above 850 hPa. By spectrally nudging the large-scale horizontal wind 

field, the regional model  is prevented from deviating from the driving field on large spatial 

scales.

ERA40 covers the period from September 1957 to August 2002 and has a horizontal 

resolution of 1.125° x 1.125° (in Central Europe this corresponds to approx. 80 km x 125 km). 

For the assimilation of 2 m temperature in ERA40 only those stations located within a radius of 

1000 km around the model grid point in question were used and those stations with a height 

difference to the model orography of more than 300 m were rejected (Simmons et al., 2004).

The resolution of REMO is 6.75 times larger than the resolution of ERA40 leading to a 

much more detailed representation of the Alpine orography (Fig. 2). In REMO the shape of the 

Alpine  ridge  is  more  realistic  and  single  mountain  ranges  and  large  valleys  are  resolved, 

whereas in ERA40 the Alps are represented as a single low mountain.

2.2. Station data

In  this  study  the  high-resolution  REMO  simulation  and  the  ERA40  reanalysis  are 

compared  to  different  instrumental  temperature  datasets  over  the  GAR.  The  largest  station 

dataset for this region is the HISTALP dataset covering the whole GAR and is described in 

detail in Auer et al. (2007). It consists of monthly homogenised, outlier-corrected and gap-filled 

records  of  temperature,  precipitation,  pressure,  sunshine,  cloudiness,  relative  humidity  and 

vapour pressure. The acquisition of data was challenging as the stations are located in different 

countries  and  some  changed  their  nationality,  language  and  even  their  names  over  time. 

HISTALP is therefore the only multi-variable climate database for the whole GAR with such a 



quality and station density. However, until now this dataset exists only as monthly means. In 

this study temperature and cloudiness of the HISTALP dataset are used. For temperature the 

stations are displayed in Fig. 3a.

As the HISTALP dataset does not contain daily data, a second temperature dataset is 

used in this study, which consists of daily data from 59 stations from Austria and Switzerland 

and is named ZMdaily. The Austrian data were provided by the ZAMG (Central Institute for 

Meteorology and Geodynamics) and are described in Schöner et al. (2003). The Swiss data were 

provided by Meteoswiss (http://www.meteoschweiz.ch). 23 of the 59 stations also belong to the 

HISTALP temperature dataset. The daily mean temperature station dataset is also converted in 

this study to a monthly mean station dataset (ZMmonthly). One main difference to HISTALP is 

that  the  Austrian  and  Swiss  stations  are  quality-controlled  to  a  smaller  extent  and  only 

homogenised at a national level. The ZMdaily/ZMmonthly stations are presented in Fig. 3b.

A further dataset used in this study is the CRU TS 2.0 dataset of the Climatic Research 

Unit (CRU), which is described in Mitchell et al. (2004). CRU TS 2.0 extends over the global 

land surface und covers the period 1901 to 2000. It is a gridded dataset with a resolution of 0.5° 

x 0.5° and includes the variables temperature, precipitation, diurnal temperature range, vapour 

pressure and cloud cover. In this study only temperature is used. 

2.3. Method

In this study 2 m temperature is analysed, which depends strongly on altitude. As the 

complex orography of the Alps can not be fully captured by the reanalysis and not even by the 

high-resolution REMO simulation, large differences in altitude may occur between the stations 

and  the  corresponding  grid  boxes  of  REMO and  ERA40.  To  avoid  a  bias  due  to  altitude 

differences, an altitude correction is applied to the temperature of REMO and ERA40. 

The application of a constant temperature lapse rate throughout the year might not be 

realistic and might lead to biases not caused by the model itself. Instead we use monthly varying 



lapse rates derived from the HISTALP station dataset. Seven pairs of low and high elevation 

stations are selected with a small  horizontal distance between pairs.  These pairs cover most 

areas of the Alpine chain and are listed in Table 1. The monthly mean temperature lapse rates of 

each pair are calculated from monthly values for the period 1958 to 1998 and are presented in 

Fig. 4. All pairs have nearly the same strong annual cycle with largest lapse rates from April to 

June and smallest values in December and January, meaning that the atmospheric layering is 

much more stable in winter than in late spring and early summer. The values of the lapse rates 

differ between the seven station pairs with largest differences in winter, probably reflecting the 

occurrence of temperature inversions. The shape of the annual cycle is in good agreement with a 

study by Rolland (2003), who analysed temperature lapse rates in northern Italy based on four 

datasets over at least 30 years.  In winter his lapse rates averaged over four different regions 

range between 0.4 and 0.5 K/100 m compared to the area mean lapse rate of around 0.3 K/100 

m in the present study. From April to August his mean temperature lapse rates are constant with 

values of around 0.65 K/100 m, whereas the lapse rates calculated here are constant with the 

same value of 0.65 K/100 m, but only from April to June. These differences might be due to the 

fact, that Rolland (2003) used a total of more than 600 stations and concentrated on an area 

around northern Italy. As in the present study the whole GAR is analysed, we use lapse rates 

based  on  stations  covering  large  parts  of  the  Alps  instead  of  the  lapse  rates  calculated  by 

Rolland (2003). As spatial interpolation of the regional lapse rates is problematic, we use the 

monthly varying lapse rate averaged over the seven station pairs and represented by the thick 

line in Fig. 4.

For  validation  of  the  simulations  different  measures  of  skill  are  available.  We  use 

temporal correlation and bias in order to investigate the representation of variability and the 

systematic  error of the simulation,  respectively.  To determine the reduction of error for the 

analysis of the added value, the root mean squared error (rmse), combining correlation and bias, 

is also calculated. Correlation, bias and reduction of error (defined in section 3.3) are calculated 



between the observed temperature at the stations and the altitude corrected temperature at the 

corresponding grid boxes of REMO and ERA40. The calculations are performed for each month 

separately over the whole simulation period of 41 years. It should be noted that the station data 

which we compare with REMO and ERA40 are partly assimilated in ERA40, which is  not 

problematic because of the low horizontal small-scale variability of temperature. This is further 

discussed in section 3.3.

The three different  station datasets  can be used to answer additional  questions.  The 

comparison between the results based on ZMmonthly and those based on HISTALP are used to 

analyse whether the selection of the stations has an influence on the results. The effect of the 

temporal resolution can be analysed by comparing the results based on ZMmonthly to those 

based on ZMdaily.

To  summarise  the  information  at  the  131  HISTALP  stations  and  the  59 

ZMmonthly/ZMdaily stations the validation results like correlation, bias and reduction of error 

are averaged over six subregions defined by Böhm et al. (2001). They performed a  based on 

rotated principal component  analysis,  which is described in detail  in Böhm et al.  (2001), to 

identify regions of homogeneous temperature. The subregions are named West, East, South, Po 

Plain, Central Alpine Low Level (CALL) and High Level (HL) and are shown for HISTALP in 

Fig. 3a. Subregion HL is defined as stations with heights above 1500 m above mean sea level. 

As ZMdaily and ZMmonthly contain only Austrian and Swiss stations these datasets are limited 

to subregions West, East, CALL and HL and are presented in Fig. 3b. 

3. Results

In this section the skill of REMO and ERA40 is evaluated by considering correlation 

and  bias.  Additionally,  the  performance  of  REMO  and  ERA40  is  briefly  compared.  An 

investigation  concerning  the  grid  box/station  problem,  which  was  already  outlined  in  the 

introduction, follows. Thereafter, the added value of REMO compared to ERA40 is analysed in 



detail.  Finally,  the skill  from daily data is  calculated and compared to the results  based on 

monthly data.

3.1. The skill of REMO and ERA40 compared to monthly mean observed station 

data

3.1.1. Correlation

In Fig. 5a annual cycles of temporal correlation between the monthly mean temperature 

of  HISTALP  station  data  and  REMO  and  ERA40,  respectively,  are  presented  for  the  six 

subregions. The generally very high correlations for both REMO and ERA40 indicate that the 

temporal variability of temperature in the GAR is represented quite well. For REMO, lowest 

correlations  are  observed  in  November  and  December  and  highest  values  in  March  and 

September averaged over all subregions. In March and September more anticyclonic general 

weather situations (“Großwetterlagen” based on Baur et al. (1944)) occur compared to other 

months, leading to calm weather easier to simulate, whereas in November more general weather 

situations occur, which lead to a sequence of different low pressure systems over Europe with 

more  variable  weather  (Gerstengarbe  et  al.  1999).  Subregions  with  generally  very  high 

correlations are West and East which are situated to the north of the Alps where orography is 

less complex and atmospheric circulation is less influenced by the mountains than south of the 

Alps in the lee of the mountains with regard to the prevailing wind direction (Barry,  1992). 

Here, lowest correlations are found for the subregion Po Plain during nearly the whole year. In 

summer this can be explained by frequently occurring instabilities and in winter by heavy fog, 

which may not be captured by REMO but  affects  temperature variability.  The inner Alpine 

subregions CALL and HL have the most pronounced annual cycle with lowest correlations in 

winter. These low correlations are probably due to the differences in altitude between the grid 

box and the station which lead to differences in snow fall due to different temperatures. This 

would cause different snow cover and therefore different temperature variability between the 



model and observed data (Moberg and Jones, 2004). However, validation against observations 

of snow cover is difficult (Christensen et al., 1997). 

The ERA40 correlations have a generally similar annual cycle to REMO, but slightly 

higher values in all subregions except the inner Alpine subregions CALL and HL with the most 

complex orography where REMO has higher correlations. As for REMO, ERA40 has highest 

correlations north of the Alps in subregions West and East and lower correlations south of the 

Alps, especially in the Po Plain. As the annual cycles are very similar for REMO and ERA40, 

the  low  correlations  in  winter  in  the  inner  Alpine  subregions  do  not  necessarily  identify 

limitations  specific  to  the  regional  model.  The  low  correlations  could  either  be  caused 

individually by REMO and ERA40, or could be caused by ERA40 and be inherited by REMO. 

An example for the former case is the aforementioned difference between the grid box and the 

station altitudes.

The correlations between REMO and ERA40, respectively,  and the second monthly 

mean station dataset ZMmonthly (Fig. 5b), which is limited to subregions West, East, CALL 

and HL, show similar annual cycles to the correlations with HISTALP. The only difference is 

that for REMO in subregions West and CALL correlations are slightly higher than for ERA40 

and not lower as with HISTALP. These differences are however very small and can probably be 

attributed to the selection of stations. 

3.1.2. Bias

The biases between the station datasets (HISTALP and ZMmonthly) and REMO and 

ERA40  averaged  over  the  six  subregions  are  presented  for  HISTALP  in  Fig.  5c  and  for 

ZMmonthly in Fig. 5d. For REMO the bias compared to both station datasets has similar annual 

cycles for subregions West,  East,  South and Po Plain with small values in winter and large 

positive  values in summer.  The largest  positive  bias  with a value of about  +3 K occurs in 

subregions East and Po Plain in August. In south-eastern Europe the positive summer bias is a 



common feature not only for REMO (Hagemann et al., 2002; Jacob et al., 2007) but also for 

other regional models (e.g. Christensen et al., 1997; Machenhauer et al., 1998; Noguer et al., 

1998; Hagemann et al., 2001; Vidale et al., 2003; Räisänen et al., 2004; van den Hurk et al., 

2005; Jacob et al., 2007). It is caused by too dry conditions over this region leading to reduced 

cloud  cover  which  influences  the  surface  energy  fluxes.  The  abovementioned  studies  find 

different reasons for the dry conditions in different models. Christensen et al. (1997) suggest 

deficiencies  in  the  surface scheme of  the  different  analysed  RCMs causing insufficient  soil 

water and therefore an unrealistic drying-out of the soil. After van den Hurk et al. (2005) the too 

small  depth  of  the  hydrological  soil  reservoir  in  many  RCMs  including  REMO  plays  an 

important role. However, Hagemann et al. (2001) found that the hydrological parameters like 

soil water holding capacity are well represented in HIRHAM4 and therefore are not the main 

cause for the summer drying problem. They found the inclusion of new land surface parameter 

fields (e.g. background surface albedo, vegetation cover) in the physical parameterisation to be 

more important.  Hagemann et  al.  (2002) showed that problems in the general circulation in 

REMO and other RCMs lead to too little moisture advection into the region and hence, to the 

summer drying problem and the consequent influence on surface fluxes. Note that, unlike the 

REMO simulation analysed here, the simulation of Hagemann et al. (2002) was not forced by 

spectral  nudging of the large-scale wind field inside the model  domain.  Hence,  the general 

circulation in the simulation analysed here should be represented more realistically. This was 

shown by Feser (2006)  by comparing pattern correlations for  mean sea  level  pressure over 

Europe between observations and two REMO simulations, one with and one without spectral 

nudging. Despite this improvement, the warm bias over south-eastern Europe still exists. This 

suggests that in our simulation the main cause of the positive bias may not be a problem in the 

circulation but rather in the physical  parameterisation of the surface scheme as proposed by 

most of the abovementioned studies.

In addition to the widely known positive summer temperature bias in subregion East, 



the REMO simulation analysed here shows a large positive summer bias in the subregion Po 

Plain. This was also identified in other RCMs (Christensen et al., 1997; Noguer et al., 1998; 

Räisänen et  al.,  2004;  Moberg and Jones,  2004),  but  analysed  less detailed than for south-

eastern Europe.  Moberg and Jones  (2004)  concluded by analysing  minimum and maximum 

temperatures that the positive bias is a daytime problem due to the drying out of the soil in the 

model in summer, which is a similar reason as for south-eastern Europe. Typical features in the 

Po Plain in summer are frequently occurring instabilities during daytime (Cantù, 1977), which 

might  not be captured by REMO possibly due to a too dry soil.  This might  cause too high 

temperatures due to the absence of the cooling effect of precipitation. 

To investigate the possible causes of the bias in the simulation, simulated cloud cover is 

compared to observed cloud cover over the period 1958 to 1998 for each month separately. The 

observed  values  are  taken  from  the  HISTALP  monthly  mean  cloud  cover  station  dataset 

described in section 2.2 consisting of 52 stations,  which are also included in the HISTALP 

temperature  dataset.  The  cloud cover  bias  shows that  the  present  simulation  systematically 

underestimates observed cloud cover over the whole GAR by 0.1 to 0.5 (Fig. 6), whereas the 

ERA40  bias  is  very  small  during  the  whole  year  ranging  from  -0.17  to  0.05.  The 

underestimation of REMO cloud cover is most pronounced in summer, which is consistent with 

the larger warm bias in this season, indicating a link of the temperature bias to drying. With 

respect  to  precipitation  this  REMO  simulation  has  been  validated  against  the  gridded 

precipitation climatology of Frei and Schär (1998) in a study by Scheifinger (2006). He showed 

that REMO has a negative precipitation bias for both subregions Po Plain and East, which is 

most pronounced from July to February and also contributes to the positive summer temperature 

bias. This may not explain the whole temperature bias, but a more detailed examination of the 

physical causes of this positive summer bias is beyond the scope of this paper. 

For both station datasets subregions CALL and HL have a similar annual cycle with 

positive biases in summer and negative biases in winter. As for CALL all REMO grid boxes are 



too high and for HL too low compared to the station location (not shown), the annual cycle of 

the bias can not be caused by the altitude correction. This annual cycle is in agreement with 

studies of Christensen et al. (1997), Noguer et al. (1998) and Vidale et al. (2003). They analysed 

different RCMs with a resolution of about 50 km over the whole of Europe compared to gridded 

data and showed similar results over the Alps. However, they did not distinguish between low 

and high elevations.

The warm bias in CALL and HL in summer is small compared to the summer biases in 

the other subregions and can therefore be attributed to the overall warm summer bias of REMO. 

In winter the cold biases in subregions CALL and HL are also quite small. For HL a potential 

explanation might by the slightly too low simulated cloud cover, which agrees with the result of 

Scheifinger (2006) showing that REMO underestimates precipitation at high elevations. This 

might  cause  too  strong  outgoing  radiation  and  therefore  lower  temperatures.  In  CALL the 

negative winter bias might be caused by the fact that REMO does not resolve the valleys with 

their low elevations, which might lead to a less effective mixing of the lower atmosphere by 

valley winds than in the real world as suggested by Bromwich et al. (2005). 

The REMO bias shows a quite consistent picture over the whole area when compared to 

both station datasets, with positive values in summer and small or negative values in winter. The 

comparison between HISTALP and ZMmonthly indicates that the temperature of ZMmonthly is 

in  general  higher  than  the  temperature  of  HISTALP (not  shown).  As  for  both  datasets  the 

stations have nearly the same altitude averaged over the subregions, this difference might be due 

to the quality differences between the two datasets. The HISTALP dataset was subject to an 

extensive quality control including different homogeneity tests and homogenization methods 

covering  the  whole  dataset  (Auer  et  al.  2007)  whereas  ZMmonthly  was  subject  to  a 

homogenization over smaller regions.

For HISTALP the ERA40 bias has for all subregions a different annual cycle than the 



REMO bias  and the  annual  cycles  also differ  between the  subregions.  For  ZMmonthly the 

annual cycle of the bias is quite different compared to HISTALP, whereas the annual cycle of 

the REMO bias is a robust feature for all subregions and for both HISTALP and ZMmonthly. 

The differences in the annual cycles of the biases of REMO and ERA40 lead to the conclusion 

that the strongly positive bias of REMO in summer is a clear feature of the regional model and 

identifies problematic regions. However, ERA40 also has large biases. In subregions South, Po 

Plain,  CALL  and  HL  in  winter  the  bias  compared  to  HISTALP  reaches  2  K  indicating 

problematic regions or processes in ERA40, but this must be caused by reasons different to 

those in REMO as the bias is in the opposite direction.

3.2.  A comparison of the skill determined from grid box and station data

The problems arising when comparing model grid box data to station data especially 

over complex orography like the Alps have already been outlined in the introduction. To test 

whether the validation results depend on the type of data that the simulations are compared 

with, i.e. grid box or station data, the REMO simulation has also been compared to the gridded 

temperature dataset CRU TS 2.0 of the Climatic Research Unit (CRU; Mitchell et al., 2004), 

which has a resolution of 0.5°. As for the station data, correlation and bias are calculated over 

the period 1958 to 1998 for each month and each grid box separately. To compare the results to 

those from the HISTALP station data, only the grid boxes containing a station are selected and 

averaged over the six subregions. The degree of similarity between these results from CRU and 

those from HISTALP indicates then the potential level of the grid box versus station problem. 

The correlation between REMO and the CRU data is  in general  very similar  to the 

correlation between REMO and the HISTALP station data for all months and all subregions 

(Fig. 7a). Also for the bias a general similarity can be seen with a warm summer bias and a 

small bias in winter (Fig. 7b). However, compared to CRU the bias of REMO is more positive 

than compared to HISTALP, meaning gridded CRU temperatures are lower than HISTALP 



station temperatures. This discrepancy is most pronounced in subregions Po Plain and CALL. 

One explanation for this relates to the selection of stations used in the construction of the CRU 

data, i.e. if large number of mountain compared to valley stations are included this leads to a 

lower temperature in the grid box. However, the elevation of the stations is included in the 

interpolation and influences the calculation of temperature (New et al., 1999 and 2000), but in 

areas  of  complex  orography  where  station  density  is  lower,  smaller-scale  elevation 

dependencies  are  not  captured  leading  to  an  inadequate  inclusion  of  elevation  in  the 

construction of the CRU dataset. Another explanation could be that the HISTALP stations in 

subregions  Po  Plain and  CALL are  not  representative  for  these  areas.  In  the  first  case  the 

differences would be an artefact of a technical problem, whereas they would reflect a real effect 

in the second case. However, it is beyond the scope of this paper to determine to what content 

these two reasons influence the results.

Nevertheless, the comparison grid box/grid box versus grid box/station shows that both 

comparisons have very similar results. Some larger differences occur in the Po Plain and in the 

inner Alpine regions with the most complex orography. Here, the biases should be interpreted 

with caution.

3.3. Added value of REMO compared to ERA40

The comparison of the performance of REMO and ERA40 has so far been separated 

into correlation and bias. The comparison to HISTALP showed that ERA40 has slightly higher 

correlations than REMO during the whole year, whereas the bias differences between ERA40 

and REMO vary strongly during the year.  Therefore,  one cannot  conclude directly whether 

ERA40 or REMO is closer to the observations. In order to analyse directly whether the higher 

resolution  of  REMO  leads  to  an  added  value  compared  to  ERA40,  and  to  quantify  the 

improvement, the reduction of error (RE) is calculated and shown in Fig. 8 for HISTALP and 

ZMmonthly. The RE is a measure of the skill of the regional model relative to the driving global 



reanalysis and combines the effects of correlation and bias. It is calculated by the following 

equation:

The RE ranges from -∞ to +1. Positive values indicate an improvement of REMO compared to 

ERA40, zero indicates the same performance for REMO and ERA40, while negative values 

indicate that the agreement of REMO with station data is worse than for ERA40. 

The  analysis  based  on  the  HISTALP  dataset  shows  an  improvement  of  REMO 

compared to ERA40 for subregions West, East, South and Po Plain in winter and early spring 

and for subregions CALL and HL during the whole year (Fig. 8a). The largest positive values of 

RE  for  REMO are  found  for  subregion  HL  during  the  whole  year.  Therefore,  the  higher 

resolution of the REMO simulation compared to the ERA40 reanalysis adds value especially in 

regions with the most complex orography. The performance of REMO compared to ERA40 is 

mainly influenced by the bias as the correlation differences are very small and the RE resembles 

strongly the difference between the REMO and ERA40 biases (not shown). This is most visible 

for subregions Po Plain, South and East in summer, where the performance of REMO compared 

to ERA40 is worst.

Compared to the results based on HISTALP the results based on the ZMmonthly dataset 

(Fig. 8b) show some differences in the performance of REMO. For subregion CALL negative 

values instead of positive values occur in spring but  summer  values are more positive.  For 

subregion West the annual cycle strongly changed compared to the one based on HISTALP. 

These differences can be explained by the differences between HISTALP and ZMmonthly bias 

in these regions (Fig. 5c and d). A robust feature in the performance of REMO compared to 

ERA40 is the better performance of REMO in subregion HL during the whole year. 

As mentioned in section 2.1, only temperature from stations whose elevation difference 



to  the  ERA40  orography  is  smaller  than  300  m is  assimilated  in  the  ERA40  Reanalysis. 

Therefore, an independent validation and added value analysis is possible by comparing REMO 

and ERA40 to stations with a larger elevation difference. Even though the HISTALP dataset is 

large leading to a number of potentially independent stations, only 60 out of 131 stations match 

this criterion.

The RE for HISTALP calculated only with the independent stations not assimilated into 

ERA40 is presented in Fig. 9. Compared to Fig. 8a, where all HISTALP stations are included, 

the RE does not change drastically, except for subregion South where only one station is left. 

The other noticeable differences are the disappearance of the added value in West and Po Plain 

in winter and an improvement of the added value in CALL in summer. In subregion HL nothing 

changed, because all 12 corresponding stations were not included in the assimilation. 

It was expected that REMO does not show a clear overall added value using the whole 

HISTALP dataset  because some  of  the  stations  used  for  the  comparison are  assimilated  in 

ERA40 leading to a better knowledge of temperature for ERA40. However, this analysis shows 

that the exclusion of station data used for the temperature assimilation does not have a large 

influence on the added value of REMO compared to ERA40. This is caused by the fact that the 

stations excluded from the assimilation are highly correlated to the assimilated stations nearby 

(not shown), as the horizontal small-scale variability of temperature is low. Thus, ERA40 has 

also knowledge of  the  temperature  of  the  stations  that  are  not  assimilated,  which makes  it 

difficult  for  REMO to  show an  improvement  over  ERA40.  The  horizontal  variability  was 

analysed by correlating one representative station of each subregion with all other stations for 

each month (not shown).  In summer  the correlations mainly range from 0.5 to nearly 1.  In 

winter the correlations are lower in particular for subregions CALL and HL, potentially due to 

local inversions.  

3.4. The skill of REMO and ERA40 compared to daily station data



One may expect more added value of the high-resolution regional model  on a daily 

timescale because of the higher small-scale variability associated with shorter temporal scales. 

Therefore, the monthly mean correlation, bias and RE were also calculated from daily data.

The comparison between REMO and ERA40 and the daily dataset ZMdaily only partly 

supports the hypothesis of more added value on daily timescales. As expected the correlations 

between the simulations and ZMdaily are lower than the correlations on a monthly basis for all 

subregions and both REMO and ERA40 (Fig.  10a).  As for  the  comparison to  ZMmonthly, 

REMO has slightly higher correlations than ERA40 in all subregions except East. This feature is 

most  pronounced for HL in winter,  where the ERA40 correlations are much lower than the 

correlations with ZMmonthly. This might be caused by the large altitude difference between the 

high level stations and the corresponding ERA40 grid boxes, which can lead to differences in 

snow fall as well as snow cover, which in turn affects temperature. The reason why this effect is 

stronger on daily timescales is unclear. By definition the daily bias averaged over each month is 

the same as the monthly bias and was discussed in section 3.1.2. The RE (Fig. 10b) shows as a 

measure  of  added value very similar  results  as  for  ZMmonthly.  For  subregion HL,  REMO 

performs better than ERA40 during the whole year due to the very low correlation of ERA40. 

Therefore, for the high elevation stations REMO has a definite added value compared to ERA40 

on the daily timescale, which is higher than that on the monthly timescale, except for summer 

where it is slightly lower. 

4. Summary and discussion

Within  the  present  study  a  high-resolution  regional  climate  simulation  has  been 

analysed  and  validated  for  means  and  year-to-year  variability  for  each  month  of  Alpine 

temperature for the period 1958 to 1998. The simulation has been performed with the regional 

model REMO 5.0 with a resolution of 1/6° in hindcast mode driven by the ERA40 reanalysis 

with a resolution of 1.125°. The model domain covers the whole of Europe but the focus of this 



study is on the Greater Alpine Region (GAR) with its complex orography. 

The  high  resolution of  the  simulation  and  the  recent  availability  of  a  dense station 

dataset (Auer et al., 2007) provide the opportunity to validate the model against station data in 

the orographically complex area of the GAR and to summarise the results over six quite small 

subregions shown in Fig. 3. Such a detailed validation in complex orography has been possible 

for the first  time.  Due to the partly large elevation differences between the stations and the 

corresponding grid boxes, a temperature correction based on separate lapse rates for each month 

of the year, which are based on the station data, is applied. The application of a constant lapse 

rate of 0.65 K/100 m resulted in artificially high biases (not shown). Therefore, we recommend 

applying a more realistic monthly varying lapse rate for validation studies.

To analyse the impact of different types of data on the validation results we used station 

as well as gridded data for the comparison with REMO. Similarly to Moberg and Jones (2004), 

the  present  analysis  shows  in  some  inner  Alpine  regions  large  differences  between  the 

validation against gridded and against station data. In regions with a less complex orography the 

comparison with grid box data or with station data leads to very similar results.

The validation of REMO reveals a positive summer bias, which is most pronounced in 

the eastern GAR. This is consistent with earlier studies (e.g. Noguer et al., 1998; Hagemann et 

al., 2001; Vidale et al., 2003; Räisänen et al., 2004; Jacob et al., 2007; Christensen et al., 2007). 

In the inner Alps winter temperature is underestimated, which is in agreement with Christensen 

et al. (1997), Noguer et al. (1998) and Vidale et al. (2003). For the low elevations the negative 

winter bias can be explained by the poor representation of valleys in the model and therefore the 

missing ability to simulate the effective mixing of the lower atmosphere by valley winds as 

suggested by Bromwich et al. (2005). Concerning the high elevations the study by Kotlarski 

(2007) showed that the implementation of a glacier parameterisation scheme in REMO actually 

increases  the  existing negative  winter  bias  compared  to  a  simulation  with  standard REMO 



reflecting general shortcomings of REMO in the Alps.

By  comparing  the  performance  of  a  regional  model  in  hindcast  mode  with  the 

performance of a global reanalysis we found that in regions with the most complex orography 

the higher resolution of the regional model clearly improves the representation of temperature 

compared to the reanalysis. The added value is higher on daily than on monthly time scales. As 

in these inner Alpine regions less stations are assimilated into the reanalysis (see section 2.1) 

and temperature is horizontally less homogenous, the advantage of ERA40 due to assimilation 

is reduced. Additionally, in these regions small-scale processes like valley winds and cold air 

pockets influencing temperature are possibly better represented than in the global model and 

reanalyses. Another important aspect leading to the better performance in the regions with most 

complex orography is the application of a monthly varying lapse rate based on the station data 

instead of  a  constant  lapse rate.  The improvement  of  the added value is  due to the  largest 

elevation differences between the gridbox and the station in these regions leading to a larger 

influence  of  the  more  realistic  altitude  correction  of  temperature. In  other  regions  where 

temperature is  horizontally more homogenous,  it  is  difficult  for  REMO to add value to the 

reanalysis,  as  added  value  is  expected  on  small  spatial  scales  (Feser,  2005),  leading  to  a 

sometimes better representation of ERA40. 

Besides our study there are only a few others that have analysed the added value in 

hindcasts  with regional  climate  models  relative  to  the  driving,  coarser  resolution reanalysis 

(Roads et al., 2003; Sotillo et al., 2005; Feser, 2006). They show an added value of the RCM 

only for  ensemble  means (Roads et  al.,  2003),  extreme values (Sotillo et  al.,  2005) and on 

medium spatial scales (Feser, 2006). Sotillo et al. (2005) found for temperature a larger added 

value  inland  demonstrating  the  influence  of  the  better  resolved  orography,  which  is  in 

agreement with the present study. When focusing on the Alps in the study of Feser (2006) the 

added value is less clear on medium spatial scales (250-550 km), especially in summer. A more 

detailed comparison to the present study is not possible due to the coarser resolution and the 



more general analysis over the whole of Europe. However, based on the study by Feser (2006) 

looking on both simulations with and without spectral nudging of the large-scale wind field, we 

also expect a worse added value for a simulation over the Alps without spectral nudging.

The similar performance of the regional hindcast and of the driving reanalysis in less 

complex terrain, despite the fact that observations are assimilated in the reanalysis but not in the 

regional model, and the better performance of the regional hindcast in regions with complex 

orography  found  in  this  study,  show  the  considerable  skill  of  regional  models.  However, 

improvements of RCMs and their parameterisation appear to be required to fully exploit their 

higher resolution and provide hindcasts  that  are consistently better  than the reanalyses.  The 

transferability of the results of this study to the application of the same RCM for future climate 

change is difficult as due to the assimilation of observations the reanalysis provides fields close 

to reality,  which leads to a more rigorous added value analysis  than that  performed with a 

GCM-driven regional simulation for present climate. The latter analysis, which could compare 

climatologies and frequency distributions but could not include temporal correlations, would 

yield an added value that can be expected to be similar to an added value for a downscaled 

future climate change simulation. The added value from a reanalysis-driven hindcast might thus 

serve as a lower limit of the added value of the same RCM driven by a GCM simulation for 

future climate. This means that in regions with an added value in a hindcast an added value can 

also be expected in a future climate simulation with the same RCM. When the skill of a RCM 

hindcast rather than the added value is considered, the results are likely to be an upper limit of 

the performance of the RCM when driven by a standard GCM simulation. 
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station names abbr. elev. 

difference

horiz. 

distance

yearly mean 

lapse rate

subregion

Innsbruck/Patscherkofel INN/PAK 1638 m 9.00 km 0.54K/100m CALL

Zell am See/Schmittenhöhe ZEL/SCH 1207 m 3.91 km 0.38K/100m CALL

Bad Ischl/Feuerkogel BIL/FEU 1149 m 13.00 km 0.42K/100m East

Badgastein/Sonnblick BGA/SON 2005 m 15.71 km 0.55K/100m CALL

Interlaken/Jungfraujoch ITL/JFJ 2996 m 15.78 km 0.53K/100m West

Aosta/Gr. St. Bernhard AOS/GSB 1928 m 18.15 km 0.61K/100m Po Plain

Graz/Schökl GRA/SCK 1059 m 13.44 km 0.50K/100m East

Table 1: The seven stations pairs used for the calculation of the monthly varying lapse rate with 

their  abbreviations,  elevation  differences,  horizontal  distances,  yearly  mean  lapse  rates  and 

subregion of the lower station.

Figure 1: Whole simulation area with model orography in m. The rectangle shows the study 

area, Greater Alpine Region (GAR).



Figure 2: Orography in m of REMO (a) and ERA40 (b) in the study area.



Figure 3: HISTALP (a) stations and ZMmonthly/ZMdaily (b) stations divided into subregions 

West (+), East (×), South (*), Po Plain (□), Central Alpine Low Level (CALL,○) and High 

Level(HL,▲). Shading in the background represents orography used in REMO with an interval 

of 500 m.



Figure 4: Annual cycles of lapse rates (K/100m) based on seven station pairs (thin lines) and the 

mean of all seven lapse rates (thick line). The constant lapse rate of 0.65 K/100m is indicated by 

the  dashed  thick  line.  Seven  station  pairs:  INN/PAK  (+),  ZEL/SCH  (○),  BIL/FEU  (*), 

BGA/SON (×), ITL/JFJ (□), AOS/GSB (◊), GRA/SCK (∆).



Figure 5: The annual cycles of the performance of REMO (solid) and ERA40 (dashed) are 

shown for the temperature correlation with HISTALP (a)  and with ZMmonthly (b)  and the 

temperature  bias  compared  to  HISTALP  (c)  and  to  ZMmonthly  (d)  averaged  over  the 

subregions West (blue), East (red), South (magenta), Po Plain (cyan), CALL (green) and HL 

(black).



Figure  6:  Annual  cycles  of  cloud  cover  bias  between  REMO  (black)  and  ERA40  (grey), 

respectively,  and the HISTALP monthly mean cloud cover station dataset averaged over the 

subregions West (+), East (×), South (*), Po Plain (□), CALL (○) and HL (∆).

Figure  7:  Annual  cycles  of  the performance  of  REMO compared to  the gridded CRU data 

(solid) and compared to the HISTALP stations (dashed) for temperature correlation (a) and bias 

(b) averaged over the subregions West (blue),  East (red),  South (magenta),  Po Plain (cyan), 

CALL (green) and HL (black).



Figure 8: Annual cycles of the reduction of error of REMO temperature compared to ERA40 

temperature for HISTALP (a) and ZMmonthly (b) averaged over the subregions West (+), East 

(×), South (*), Po Plain (□), CALL (○) and HL (∆).

Figure 9: Annual cycles of the reduction of error of temperature calculated with the HISTALP 

stations not assimilated in the ERA40 reanalysis averaged over the subregions West (+), East 

(×), South (*), Po Plain (□), CALL (○) and HL (∆).



Figure 10: Annual cycles of the daily temperature correlation (a) between ZMdaily and both 

REMO (black) and ERA40 (grey) and of the daily reduction of error (b) of REMO temperature 

compared to ERA40 temperature based on ZMdaily averaged over the subregions West (+), 

East (×), CALL (○) and HL (∆).
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