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Abstract

In this paper, an enhancedvariational constitutive updatesuitable for a class of non-
associative plasticity theories at finite strain is proposed. In line with classical numerical
formulations for plasticity models, such as the by now established return-mapping algo-
rithm, variational constitutive updatesrepresent a numerical method for computing the
unknown state variables. However, in contrast to conventional algorithms,variational con-
stitutive updatesare fully variational, i.e., all unknown variables follow jointly from min-
imizing a certain potential. In addition to the physical andmathematical elegance of these
variational schemes, they show several practical advantages as well. For instance, numer-
ically efficient and robust optimization schemes can be directly employed for solving the
resulting minimization problem. Since mathematically, plasticity is a non-smooth problem
and often, it leads to highly singular systems of equations as known from single crystal
plasticity, a robust implementation is of utmost importance. So far,variational constitutive
updateshave been developed for different classes of standard dissipative solids, i.e., solids
characterized by associative evolution equations and flow rules. In the present paper, this
framework is extended to a certain class of non-associativeplasticity models at finite strain.
All models falling into this class show a volumetric-deviatoric split of the Helmholtz energy
and the yield function. Typical prototypes are Drucker-Prager or or Mohr-Coulomb models
playing an important role in soil mechanics. The efficiency and robustness of the resulting
algorithmic formulation is demonstrated by means of selected numerical examples.
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1 Introduction

Variational principles such as the minimum of the potentialenergy or Hamilton’s
principle have been playing an important role in classical mechanics for several
centuries. These methods continue to be widely used in modern (i.e., computa-
tional) mechanics. More precisely, since almost every numerical scheme is based on
variational principles, the importance of such approachesis continuously increas-
ing. The probably best known development is given by the finite element method
(of Bubnov-Galerkin-type).

In the present paper, focus is on a certain subset of variational methods, also known
asvariational constitutive updates. Conceptually in line with the pioneering work
by von Mises to whom the postulate of maximum dissipation is usually credited
(see [1]), variational constitutive updates allow to recast plasticity theories into
equivalent minimization problems, cf. [2–7]. More specifically, every constitutive
model falling into the range of so-calledstandard dissipative solidsin the sense of
Halphen & Nguyen [8] (see also [9]) can be implemented by applying the afore-
mentioned concept. The advantages resulting from such a variational constitutive
update are manifold. On the one hand, the existence of solutions can be analyzed
by using the same tools originally designed for hyperelastic material models, cf.
[10,11,6]. On the other hand, a minimum principle can be taken as a canonical ba-
sis for error estimation and thus, for adaptive finite element methods, cf. [5,12–14].

Variational constitutive updates date back, at least, to the pioneering works by Comi
and co-workers, cf. [2,3]. By recourse to time discretization, these authors, derived
a Hu-Washizu functional whose minimum corresponds to the solution of the dis-
cretized algebraic differential equations defining the constitutive model. In contrast
to by now classical computational plasticity [15,16], the underlying constitutive
model was enforced in a weak sense. The ideas proposed by Comiand co-workers
were further elaborated by Ortiz and co-workers, cf. [4,5].In line with the standard
one-field description (the deformation mapping) usually applied in computational
plasticity, Ortiz considered the constitutive model in a pointwise manner (at the
integration points). By doing so, the minimization problemassociated with varia-
tional constitutive updates can be decomposed into two subproblems. The first of
those is purely local and its solution gives the updated state variables together with a
reduced incremental potential. The second minimization problem depending on the
aforementioned potential is global in nature and yields theunknown deformation
mapping. Clearly, this structure coincides with standard computational plasticity,
see [15,16] and allows to separate the constitutive model from the governing equa-
tions. Evidently, this is very convenient from an implementational point of view.

Since the works by Comi and co-workers [2,3] and the contributions by Ortiz and
co-workers [4,5], variational constitutive updates represent an active and ongoing
research area, cf. [17,6,7,18–21,14], and they are continuously further elaborated.
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For instance, the extensions necessary to include temperature effects were dis-
cussed in [22,23]. A novel numerical implementation covering isotropic and kine-
matic hardening as well as isotropic and anisotropic elasticity and yield functions
was advocated in [24].

Although the algorithmic framework proposed in [24] can be applied to a broad
range of different constitutive models, it still relies on the assumptions associated
with standard dissipative solidsin the sense of Halphen & Nguyen [8]. More pre-
cisely, all material models belonging to the class of standard dissipative solids are
defined by means of only two potentials being the Helmholtz energy and the yield
function. Consequently, the plastic flow and hardening mechanisms are assumed
to be governed by associative laws (normality rule). In other words and focusing
on plasticity theory for now, the plastic potential and the hardening potential are
identical to the yield function.

The present paper represents a first step towards generalizing variational constitu-
tive updates to non-associative plasticity models at finitestrain. For that purpose,
three potentials are utilized: the Helmholtz energy, the yield function and a plastic
potential. Roughly speaking, the idea is to minimize the integrated stress power
subjected to the constraints imposed by the yield function.For a prototype model
based on a volumetric-deviatoric split of all potentials, it is shown to that this con-
strained model can be recast into an equivalent unconstrained minimization prob-
lem. For that purpose, additional assumptions are necessary: the yield function and
the plastic potential are represented by positively homogeneous functions of degree
one and the plastic flow is either purely volumetric or purelydeviatoric. While the
first assumption is not very restrictive, the latter is indeed more drastic. However, it
is noteworthy that both assumptions are fulfilled for many constitutive models fre-
quently applied in soil mechanics. For instance, non-associative Drucker-Prager- or
Mohr-Coulomb-type models with a deviatoric flow rule complywith the aforemen-
tioned restrictions.

The paper is organized as follows: In Section 2, a concise state-of-the-art review
on variational constitutive updates is given. First, the fundamentals associated with
finite strain plasticity theory based on a multiplicative decomposition of the defor-
mation gradient are briefly presented for the sake of notation, cf. Subsection 2.1.
Subsequently, standard dissipative solids, together withtheir defining variational
framework, are discussed in Subsection 2.2. Section 2 is completed by an efficient
numerical implementation for the aforementioned models (Subsection 2.3). The
main contribution of the present paper dealing with a novel numerical implemen-
tation suitable for a class of non-associative plasticity theories is addressed in Sec-
tion 3. Starting with the assumptions concerning the hyperelastic response (Sub-
section 3.1) and the plastic behavior (Subsection 3.2), a class of non-associative
elastoplastic models is defined. Finally, the numerical implementation of this class
is presented in Subsection 3.3. The efficiency and performance of the resulting
constitutive update is demonstrated by means of selected numerical examples (Sec-
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tion 4).

2 Standard dissipative solids – Variational constitutive updates

This section is concerned with a concise review and some further elaborations as-
sociated with variational constitutive updates for standard dissipative solids, i.e.,
solids governed by normality rules.

2.1 Finite strain plasticity theory – Fundamentals

For the sake of concreteness, focus is on finite strain plasticity theory based on a
multiplicative decomposition of the deformation gradientF := GRADϕ into an
elastic partF e and a plastic partF p of the type

F = F e · F p, with det F e > 0, det F p > 0, (1)

cf. [25]. Applying the split (1), the Helmholtz energy of theconsidered solid can
be written as

Ψ = Ψ(F e, α) (2)

see [26,27,15,16]. Here and henceforth,α ∈ R
n denotes a collection of some suit-

able strain-like internal variables corresponding to hardening or softening. In line
with plasticity theory, the elastic response characterized by the elastic free energy
Ψ̄e depends only on the elastic part of the deformation gradientF e and thus, the
resulting Helmholtz energy decomposes additively, i.e.,

Ψ = Ψ̄e(F e) + Ψp(α) (3)

with Ψp representing the stored energy due to plastic work. Finally, by enforcing
the principle of material frame indifference, Eq. (3) can bere-written as

Ψ = Ψe(Ce) + Ψp(α), Ce := F eT · F e. (4)

Further details are omitted. They may be found, e.g., in [28].

Adopting the framework of rational thermodynamics in the sense of Coleman &
Noll [29–31], the evolution equations completing the constitutive model are derived
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by means of the restrictions imposed by the second law of thermodynamics. For
isothermal conditions, the dissipation inequalityD ≥ 0 reads

D =

(

F p · S · F pT − 2
∂Ψ

∂Ce

)

:
1

2
Ċ

e
+ S :

(

F pT · Ce · Ḟ p)

+ Q · α̇ ≥ 0(5)

with P andS := F−1 · P being the first and the second Piola-Kirchhoff stress
tensor andQ := −∂αΨ denoting the stress-like internal variable work conjugate
to α. Ineq. (5), together with the by now standard procedure by Coleman & Noll,
gives rise to

S = 2
∂Ψ

∂C
= 2 F p−1 · ∂Ψ

∂Ce · F p−T

(6)

and the reduced dissipation inequality

D = Σ : Lp + Q · α̇ ≥ 0. (7)

Here,Σ = 2 Ce · ∂CeΨ are the Mandel stresses (cf. [32]) andLp = Ḟ
p · F p−1

is the plastic velocity gradient. Evidently, both objects belong to the intermediate
configuration induced by the multiplicative split (1). It isobvious that Ineq. (7)
alone is not sufficient for deriving evolution equations forLp andα̇, respectively.
More precisely, loading conditions are needed.

For deciding whether purely elastic unloading or plastic loading occurs, a switch is
required. For that purpose and following classical plasticity theory, an admissible
stress spaceEσ is introduced, cf. [26]. Consistently with Ineq. (7),Eσ is formulated
in terms of Mandel stresses, i. e.,

Eσ =
{

(Σ, Q) ∈ R
9+n

∣
∣
∣ φ(Σ, Q) ≤ 0

}

. (8)

Here and henceforth,φ is the yield function. It has to be convex, sufficiently smooth
and to comply with restrictions imposed by experimental observations. As well
known, if (Σ, Q) ∈ intEσ, the solid deforms purely elastically. Only if(Σ, Q) ∈
∂Eσ, a plastic response is possible.

Combining Eq. (8) and Ineq. (7), the evolution equations forLp and α can be
derived. They can be naturally obtained from the postulate of maximum dissipation,
i.e.,

max
(Σ̃,Q̃)∈Eσ

[

Σ̃ : Lp + Q̃ · α̇]
]

(9)
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resulting in

Lp = λ ∂Σφ α̇ = λ ∂Qφ, (10)

together with the Karush-Kuhn-Tucker conditions

λ ≥ 0 φ λ ≥ 0. (11)

As a result, plastic deformations (Lp 6= 0) require(Σ, Q) ∈ ∂Eσ. The plastic
multiplier λ is obtained from the consistency condition

φ̇ = 0. (12)

Evolution laws of the type (10) are characterized by the property that the rates of
the internal variables (together withLp) are normal to the yieldsurface (φ = 0).
Clearly, such laws are referred to asassociated flow rulesor normality rules. In the
present section, only such evolution laws will be considered.

2.2 Standard dissipative solids

The fundamentals of standard dissipative solids are addressed in this subsection. It
follows to a large extent [4,6]. The ultimate goal of this subsection is to recast the
constitutive framework summarized before into an equivalent minimization prob-
lem.

Roughly speaking, the potential to be minimized is the stress power

P(ϕ̇, Ḟ
p
, α̇,Σ, Q) = P : Ḟ = Ψ̇(ϕ̇, Ḟ

p
, α̇) + D(Ḟ

p
, α̇,Σ, Q). (13)

Note that Eq. (13) makes only sense from a physical point of view, if the stressesΣ
and the internal variablesQ defining the plastic flowLp and the strain-like variables
α, respectively, are admissible. Following [4,6], this constraint can be enforced by
introducing the characteristic function ofEσ, i.e.,

J(Σ, Q) :=







0 ∀(Σ, Q) ∈ Eσ

∞ otherwise
. (14)

With J , the constrained problem associated with Eq. (13) reads now

Ẽ(ϕ̇, Ḟ
p
, α̇,Σ, Q) = P(ϕ̇, Ḟ

p
, α̇,Σ, Q) + J(Σ, Q). (15)
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The interesting properties of the functional (15) become apparent, if the stationarity
conditions are computed. A straightforward calculation yields

δ(Σ,Q)Ẽ = 0 ⇒ (Lp, α̇) ∈ ∂J

δ(α̇)Ẽ = 0 ⇒ Q = −∂Ψ

∂α

δ
(

˙F
p

)
Ẽ = 0 ⇒ Σ = F eT · ∂Ψ

∂F e = 2 Ce · ∂Ψ

∂Ce .

(16)

Here,∂J is the subdifferential ofJ , cf. [33]. According to Eqs. (16), the stationarity
condition ofẼ results in the flow rule, the constitutive relation for the internal stress-
like variables and the constitutive relation for the MandelstressesΣ.

So far, a stationarity principle equivalent to associativeplasticity theory at finite
strain has been discussed. It can be shown that mathematically, this principle is
represented by a saddle point problem (minimization with respect to (̇α, Ḟ

p
), max-

imization with respect to (Σ, Q)). However, as advocated in [4,6], it is possible
to derive a reduced functional whose minimum yields the evolution equations. For
that purpose the dual ofJ (the dissipation), i.e.,

J∗(L̄
p
, ˙̄α) = sup

{

Σ : L̄
p

+ Q · ˙̄α
∣
∣
∣ (Σ, Q) ∈ Eσ

}

, (17)

defined by a Legendre transformation is required. Insertingthe reduced dissipation
Ineq. (7) into the stress power (13) and subsequently, into Eq. (15), together with
the Legendre transformation (17), yields finally the reduced counterpart of Eq. (15)

E(ϕ̇, Ḟ
p
, α̇) = Ψ̇(ϕ̇, Ḟ

p
, α̇) + J∗(L̇

p
, α̇). (18)

Hence, the only unknown variables areϕ̇, Ḟ
p

andα̇. They follow jointly from the
minimization principle

◦

Ψred (ϕ̇) := inf
Ḟ

p
,α̇
E(ϕ̇, Ḟ

p
, α̇) (19)

which, itself, gives rise to the introduction of the reducedfunctional
◦

Ψred depending

only on the deformation mapping. Furthermore, by recallingthat
◦

Ψred represents
indeed the stress power and making use of Eq. (13), the first Piola Kirchhoff stress
tensor results conveniently from

P = ∂(Ḟ )

◦

Ψred (ϕ̇). (20)

As evident, this equation is identical to that of standard hyperelasticity with the sole

exception that the potential
◦

Ψred is incrementally defined, i.e., it varies in time. For a
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more detailed derivation of the variational framework addressed in this subsection,
the interested reader is referred to [4,6].

2.3 Numerical implementation

The numerical implementation of the variational method discussed before, depends
heavily on the Legendre transformation (17). Clearly, thistransformation, in turn,
is affected by the yield function. For the sake of concreteness,φ is assumed to be
of the type

φ = Σeq(Σ − Qk) − Qi(αi) − Qeq
0 (21)

with Σeq, Qk, Qi and Qeq
0 denoting an equivalent stress, a backstress tensor, a

stress-like internal variable associated with isotropic hardening and the initial yield
strength, respectively. Furthermore,αk andαi represent the strain-like variables
conjugate toQk andQi. If Qk andQi are stress-like,Σeq should be a linear map-
ping. More precisely,Σeq is chosen to be a positively homogeneous function of
degree one. This restriction is fulfilled for many yield functions such as Rankine,
von Mises, Hill, Drucker-Prager, Tresca, Mohr-Coulomb or crystal plasticity. Pos-
itive homogeneity implies

Σeq = ∂Σφeq : Σ (22)

and consequently,

dΣeq = ∂Σφeq : dΣ = ∂Σ[∂Σφeq : Σ] : dΣ = ∂Σφeq : dΣ + [Σ : ∂2
ΣΣ

φ] : dΣ

⇒ Σ : ∂2
ΣΣ

φ = 0 .
(23)

This conditions will be used for proving consistency of the algorithm. By postulat-
ing associative evolution equations, they are obtained from Eq. (21) as

Lp = λ ∂Σφ, α̇k = λ ∂Qφ = −λ ∂Σφ, α̇i = −λ (24)

Inserting Eqs. (24) into the dissipation (7), the second lawof thermodynamics
yields

D φ=0
= λ Qeq

0 ≥ 0. (25)

and thus, the (reduced) stress power reads

E = Ψ̇ + λ Qeq
0 . (26)
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Clearly, Eq. (26) is only physically meaningful for admissible evolution equations,
cf. Eq. (10). Furthermore, note that the necessary yield condition φ = 0 is already
naturally included (see Eq. (25)).

Conceptionally, variational constitutive updates are simply an approximation of the
minimization problem (19). A first step towards this approximation is obtained by
applying a time integration to Eq. (19), i.e.,

(F p, αk, αi) = arg inf Iana
inc , (27)

with

Iana
inc =

tn+1∫

tn

E dt = Ψn+1 − Ψn + Qeq
0 ∆λ (28)

Here, the notations∆λ :=
tn+1∫

tn

λ dt and(•)n := (•)(tn) have been introduced. The

superscript(•)ana is used to highlight thatIana
inc results from an analytical integra-

tion. Note that the unknowns(F p, αk, αi) are functions (in time). In line with [4,6],
a discrete approximation of Eq. (28) is derived by using a time discretization of the
type

F
p
n+1 = exp

[

∆λ ∂Σφ|n+1

]

· F p
n

αi|n+1 = αi|n − ∆λ

αk|n+1 = αk|n − ∆λ ∂Σφ|n+1 .

(29)

Clearly, other consistent time integration can be employedas well, cf. [24]. With
Eqs. (29), the discrete (approximated) counterpart of minimization problem (27)
can be written as

(F p
n+1, αk|n+1, αi|n+1) = arg inf Iinc, (30)

with

Iinc = Ψn+1(F
p
n+1, αk|n+1, αi|n+1) − Ψn + Qeq

0 ∆λ ≈ Iana
inc . (31)

So far, variational constitutive updates are relatively simple and hence, the respec-
tive implementation seems to be straightforward. Unfortunately, this is not the case.
The reasons for that are manifold. For instance, a direct minimization ofΨinc with
respect toF p

n+1 is not admissible, sinceF p has to comply with physical constraints
resulting from the flow rule (and of course,det F p > 0).
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Recently, a convenient parameterization of the evolution equations (29) was given
in [24]. By introducing pseudo stressesΣ̃ which are not identical to their physical
counterparts, i.e.,̃Σ 6= Σ, Eqs. (29) are re-formulated as

F
p
n+1(Σ̃, a) = exp

[

a2 ∂Σφ|
Σ̃

]

· F p
n

αi|n+1 (a) = αi|n − a2

αk|n+1 (Σ̃, a) = αk|n − a2 ∂Σφ|
Σ̃

.

(32)

Consequently,̃Σ can be interpreted as an unknown variable defining the flow di-
rection, i.e.,∂Σφ|Σ = ∂Σφ|

Σ̃
, anda2 := λ ≥ 0. Making use of Eq. (32) allows to

re-write Eq. (30) as

X = arg inf
X

Iinc(X), with Iinc = Ψn+1(X) − Ψn + Qeq
0 ∆λ (33)

with the unknowns being

X = [Σ̃, a] ⇒ dim[X ] = 10. (34)

It is noteworthy that the unconstrained optimization problem (33) includes naturally
the necessary yielding conditionφ = 0, and admissible evolution equations are
canonically included as well. Further details are omitted.They may be found in
[24].

The unconstrained minimization problem (33) can be solved in a standard manner,
e.g., by employing gradient-type schemes, cf. [34]. The first derivatives ofIinc are
summarized below,

∂Iinc

∂∆λ
=

∂Ψe

∂∆λ
+

Ψp

∂∆λ
+ Qeq

0 (35)

∂Iinc

∂Σ̃
=

∂Ψe

∂Σ̃
+

Ψp

∂Σ̃
, (36)

with

∂Ψe

∂∆λ
= −

[

(F e
trial)

T · ∂Ψe

∂F e

]

: D exp [− ∆λ ∂Σφ|
Σ̃
] : ∂Σφ|

Σ̃
, (37)

∂Ψe

∂Σ̃
= −

[

(F e
trial)

T · ∂Ψe

∂F e

]

: D exp [− ∆λ ∂Σφ|
Σ̃
] : ∂2

Σ
φ
∣
∣
∣
Σ̃

∆λ, (38)

∂Ψp

∂∆λ
= Qi + Qk : ∂Σφ|

Σ̃
, (39)

10



∂Ψp

∂Σ̃
=

∂Ψp

∂αk
:
∂αk

∂Σ̃
= ∆λ Qk : ∂2

Σ
φ
∣
∣
∣
Σ̃

. (40)

with F e
trial being the trial elastic deformation gradient, i.e.,

F e
trial := F n+1 · (F p

n)−1. (41)

In Eqs. (37) and (38), the derivative of the exponential mapping

D exp [A] :=
∂ exp [A]

∂A
(42)

can be computed in a standard fashion, e.g. [35,36]. For the sake of brevity, the
second derivatives necessary for a Newton-type iteration are omitted. However,
they can be computed in a straightforward manner.

By analyzing the stationarity condition ofIinc, consistency of the algorithm can be
checked. For instance, taking the variation ofIinc with respect to∆λ and enforcing
stationarity results in

∂Iinc

∂∆λ

∣
∣
∣
∣
∣
∆t→0

= −Σ : ∂Σφ + Qi + Qk : ∂Σφ + Qeq
i = −φ = 0, (43)

i.e., the necessary condition for yielding. Furthermore, with Ξ := Σ − Qk , the
stationarity condition associated with the pseudo stresses Σ̃ reads

∂Iinc

∂Σ̃
= 0

∆λ6=0⇒ (Σ − Qk) : ∂2
Σ
φ = Ξ : ∂2

Ξ
φ = 0. (44)

Hence, Eq. (23) is fulfilled and consequently, the plastic flow direction is compati-
ble with the stresses and hence, it is admissible.

It bears emphasis that in line with conventional plasticitytheory, the optimiza-
tion probleminf Iinc is non-smooth (with respect to∆λ). To sidestep this prob-
lem, predictor-corrector methods are usually applied, cf.Eq. (41). Following the
return-mapping algorithm, a trial step characterized by a purely elastic response is
assumed first (∆λ = 0, F

p
n+1 = F p

n, Qk|n+1 = Qk|n andQi|n+1 = Qi|n). Clearly,
if this state is physically admissible, the functionalIinc has to show a minimum at
∆λ = 0. With Eqs. (35)–(40) (cf. Eq. (43)), the respective condition yields

∂Iinc

∂∆λ

∣
∣
∣
∣
∣
∆λ=0

= −φtrial > 0 ⇐⇒ φtrial ≤ 0. (45)
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with φtrial := φ(F n+1, F
p
n, Qi|n, Qk|n). Remarkably, this inequality agrees with

that of the classical return-mapping algorithm. It is noteworthy, that the remaining
components of the gradient ofIinc vanish trivially, i.e.,

∂Iinc

∂Σ̃

∣
∣
∣
∣
∣
∆λ=0

= 0. (46)

Further details about the numerical implementation are omitted. They can be found
in [24]. In the cited paper, a tuned algorithm for fully isotropic models is given as
well.

3 A class of non-associative elastoplastic models based on avolumetric-deviatoric
split: Plasticity theory at finite strains

Based on the variational constitutive update for standard dissipative solids as dis-
cussed in the previous section, the extensions necessary for non-associative plastic-
ity theory are elaborated here. In contrast to the constitutive framework considered
before, some more restrictive assumptions have to be introduced. More precisely,
focus is on a class of non-associative plasticity models showing a volumetric-
deviatoric uncoupled response.

3.1 Elasticity

Focusing on the elastic response for now, the first crucial assumption is the decom-
position of the elastic free energy into a deviatoric and a volumetric part, cf. [37].
More specifically,

Ψe = Ψe
dev + Ψe

vol, with Ψe
dev = Ψe

dev(C
e
dev), Ψe

vol = Ψe
vol(J

e). (47)

Here, the following notations have been introduced:

Je := det F e, F e
dev := (Je)−1/3 F e, Ce

dev := (F e
dev)

T · F e
dev = (Je)−2/3 Ce.(48)

Eq. (47) yields the second Piola-Kirchhoff stresses (belonging to the intermediate
configuration)

Se := 2 ∂CeΨe = Je ∂Je [Ψe
vol] Ce−1 + 2 ∂Ce

dev
[Ψe

dev] : Pdev (49)
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where

Pdev := ∂CeCe
dev = (Je)−2/3

[

I
sym − 1

3
Ce ⊗ Ce−1

]

(50)

is a projection tensor. Finally, the Mandel stress can be computed by using Eq. (47).
They result in

Σ := Ce · Se = Je ∂Je [Ψe
vol] 1

+ 2 (Je)−2/3
[

Ce · ∂Ce
dev

[Ψe
dev] −

1

3

(

∂Ce
dev

[Ψe
dev] : Ce

)

1

]

.
(51)

In this section, only yield functions and plastic potentials based on a similar split
as that in Eq. (47) will be considered. For this reason, the volumetric as well as the
deviatoric part of the stresses are required. With Eq. (47),they are obtained as

tr[Σ] = 3 Je ∂Je [Ψe
vol] (52)

and

devΣ := Σ − 1

3
tr[Σ] 1 = 2 (Je)−2/3

[

Ce · ∂Ce
dev

[Ψe
dev] −

1

3

(

∂Ce
dev

[Ψe
dev] : Ce

)

1

]

.(53)

3.2 Plasticity

Analogously to the elastic response, the considered class of yield functions is also
characterized by a volumetric-deviatoric split, i.e.,

φ = Σeq
vol + Σeq

dev − Qi − Qeq
0 (54)

with

Σeq
vol = Σeq

vol(tr[Ξ]), Σeq
dev = Σeq

dev(dev[Ξ]), and Ξ := Σ − Qk. (55)

Following Section 2,φ and consequently,Σeq
vol andΣeq

dev are assumed to be posi-
tively homogeneous functions of degree one, see Eq. (22). Itis noteworthy that the
yield function (54) covers a broad range of different plasticity models. For instance,
by setting

Σeq
vol = κ tr[Ξ], Σeq

dev = ||dev[Ξ]||, (56)
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the Drucker-Prager model is obtained. Mohr-Coulomb’s yield function is given by

Σeq
vol = κ tr[Ξ], Σeq

dev =
1

2
[max Σi − min Σi]. (57)

Here,max Σi andmin Σi are the largest and smallest eigenvalue ofΣ. It bears em-
phasis thatΣeq

dev according to Eq. (57) is indeed a positively homogeneous function
of degree one. Finally, an anisotropic Drucker-Prager prototype is defined by using
a Hill-type equivalent stress for the deviatoric part, i.e.,

Σeq
vol = κ tr[Ξ], Σeq

dev =
√

dev[Ξ] : D : dev[Ξ], (58)

with D representing a fourth-order weighting tensor, cf. [24].

In contrast to the yield function (54), the plastic potential g defining the flow rule
and the evolution equations is assumed to be purely deviatoric, i.e.,

g = Σeq
dev − Qi − Qeq

0 . (59)

Consequently,

Lp = λ ∂ΣΣeq
dev, αk = −λ∂ΣΣeq

dev, αi = −λ. (60)

Clearly, this represents a limiting case being important, for instance, in soil me-
chanics. Bearing in mind thatΣeq

dev is positively homogeneous of degree one, the
dissipation is calculated as

D = (∂Σg : Σ − ∂Σg : Qk − Qi) λ = (Σeq
dev − Qi) λ

φ=0
= (Qeq

0 − Σeq
vol) λ.(61)

3.3 Numerical implementation

In this subsection, the algorithmic formulation associated with the constitutive model
based on the volumetric-deviatoric split as introduced before, is presented. That is,
focus is on plasticity theories fulfilling the restrictions(47), (54) and (59). It has
already been mentioned, that this class covers a broad rangeof different important
prototypes such as non-associative Drucker-Prager or Mohr-Coulomb plasticity.

3.3.1 Fundamentals of the algorithm

Analogously to Section 2, the evolution laws are approximated by a time integration
and they are parameterized by the pseudo stressesΣ̃ and the parametera =

√
∆λ,

14



i.e.,

F
p
n+1 = exp

[

a2 ∂Σg|
Σ̃

]

· F p
n

αi|n+1 = αi|n − a2

αk|n+1 = αk|n − a2 ∂Σφ|
Σ̃

.

(62)

Clearly, since the plastic flow is traceless (tr[∂Σg] = 0),

det F
p
n+1 = 1 ⇒ det F e

n+1 =: Je = J = det F . (63)

Furthermore, the strain-like internal variableαk is also purely deviatoric (ifαk(t =
0) = 0) and thus, it is physically reasonable to postulate

tr[Qk] = 0. (64)

As a result, by using tr[Σ] according to Eq. (52), together with Eq. (63),

Σeq
vol(tr[Σ − Qk]) = Σeq

vol(tr[Σ]) = Σeq
vol(J

e) = Σeq
vol(J). (65)

Hence, a backward-Euler integration of the dissipation (61)yields

tn+1∫

tn

D dt ≈
(

Qeq
0 − Σeq

vol|n+1

)

∆λ (66)

and consequently, the integrated stress power is approximated as

Iinc(X) = Ψn+1(X) − Ψn +
(

Qeq
0 − Σeq

vol|n+1

)

∆λ, X = [Σ̃, a], (67)

cf. Eq. (31). In line with the previous subsection, the potential Iinc(X) can be min-
imized in case of plastic loading by gradient-type optimization schemes. The first
derivatives are summarized below:

∂Iinc

∂∆λ
= −

[

(F e
trial)

T · ∂Ψe

∂F e

]

: D exp [− ∆λ ∂Σg|
Σ̃
] : ∂Σg|

Σ̃

+ Qi + Qk : ∂Σg|
Σ̃

+ Qeq
0 − Σeq

vol|n+1

(68)

∂Iinc

∂Σ̃
= −

[

(F e
trial)

T · ∂Ψe

∂F e

]

: D exp [− ∆λ ∂Σg|
Σ̃
] : ∂2

Σ
g
∣
∣
∣
Σ̃

∆λ

+ ∆λ Qk : ∂2
Σ
g
∣
∣
∣
Σ̃

.

(69)
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The second derivatives ofIinc(X) can be computed in a similar fashion. According
to Eq. (67), only the Helmholtz energy depends on the pseudo stresses and thus,
∂Iinc/∂Σ̃ = ∂Ψ/∂Σ̃. Consequently, the gradient ofIinc with respect toΣ̃ is iden-
tical to that of the associative model (compare Eq. (69) to Eq. (36)) with the sole
exception that the yield functionφ is replaced by the plastic potentialg.

3.3.2 Consistency of the algorithm

Although the algorithm has been completely defined, it is notclear yet, if the
method is consistent. Thus, a consistency analysis is givenin this paragraph. In
line with Section 2.3, the stationarity condition ofIinc with respect to the plastic
multiplier ∆λ is considered first. Employing Eq. (68) and focusing on the limiting
case∆λ → 0, stability ofIinc requires

∂Iinc

∂∆λ

∣
∣
∣
∣
∣
∆t→0

= − (Σ − Qk) : ∂Σg
︸ ︷︷ ︸

= Σeq
dev

+Qi + Qeq
0 − Σeq

vol = −φ ≥ 0 (70)

As a result, the yield condition is naturally included within the proposed varia-
tional method. Clearly, the evolution equations are explicitly enforced by using the
parameterizations (62) of the flow rule and the hardening laws.

A careful analysis of Eq. (68) reveals the requirements necessary for consistency
of the algorithm: The integrated dissipation does not depend on the pseudo stresses
and furthermore, it depends linearly on the plastic multiplier ∆λ. This is a direct
consequence of Eq. (65). More precisely,

φ − g = Σeq
vol 6= Σeq

vol(Σ̃, ∆λ). (71)

Hence, the difference between the yield function and the plastic potential is not
affected by variables associated with dissipation. The identity (71), in turn, results
from the orthogonality of the spacesUΣvol

= {Σ | Σ = a 1, a ∈ R} andUΣdev
=

{Σ | tr[Σ] = 0}. Therefore, the additive decompositions of the Helmholtz energy,
the yield function and the plastic potential are required toderive a variationally
consistent method.

The proof of consistency is completed by analyzing the remaining components of
the gradient ofIinc. Again, they yield

∂Iinc

∂Σ̃
= 0

∆λ6=0⇒ (Σ − Qk) : ∂2
Σ
g = Ξ : ∂2

Ξ
g = 0. (72)

Hence, Eq. (23) is again fulfilled and consequently, the plastic flow direction is
compatible with the (physical) stresses and hence, it is admissible.
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Remark 1 According to Section 2 (see Eq. (20)), for models fulfilling the normality
rule, the stresses follow jointly from the minimization principle inf Iinc as well.
More precisely, in this caseP results from the hyperelastic relation

P =
∂Ψinc(F n+1)

∂F n+1

=
∂Ψe(F n+1)

∂F n+1

, (73)

with Ψinc(F ) := inf
Σ̃,a Iinc(Σ̃, a, F n+1). However, for the class of non-associative

models presented in this section, the dissipation (61) depends onΣ and thus, it is
affected by the deformation gradient. Hence,

P =
∂Ψinc(F n+1)

∂F n+1
=

∂Ψe(F n+1)

∂F n+1
− ∆λ

∂Σeq
vol

∂F
︸ ︷︷ ︸

6= 0

(74)

with

∂Σeq
vol

∂F
=

∂Σeq
vol

∂(tr[Σ])

∂(tr[Σ])

∂J
J F−T . (75)

As a result, the size of the loading steps has to be checked carefully such that∆λ
(and accordingly∆λ ∂Σeq

vol/∂F ) are sufficiently small. Alternatively,P can be
computed in the standard manner, i.e., by utilizingP = ∂Ψe/∂F . However, it bears
emphasis that the algorithm is nevertheless consistent. That is, for the limiting case
∆t → 0

P =
∂Ψinc(F n+1)

∂F n+1
=

∂Ψe(F n+1)

∂F n+1
(76)

is obtained.

4 Numerical example

The efficiency and performance of the constitutive update asadvocated in the previ-
ous section is demonstrated by means of a numerical analysisof a compression test
(see Fig. 1). Clearly, this example guarantees that deviatoric as well as volumetric
stresses are non-vanishing and therefore, it represents a suitable benchmark.

For the elastic response, a functional of the type

Ψe =
1

2
µ (tr [Ce

dev] − 3) +
1

4
K (Je − 1)2 (77)
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Material parameters:

von Mises Drucker-Prager non-associative

K [kN/m2] 33333.3 33333.3 33333.3

µ [kN/m2] 7143.0 7143.0 7143.0

κ [-] 0.0 0.233 0.233

Qeq
0 [kN/m2] 24.24 24.24 24.24

Hi [kN/m2] 50.0 50.0 50.0

Hi [kN/m2] 50.0 50.0 50.0

Fig. 1. Uniaxial compression test: boundary conditions andmaterial parameters according
to Eqs. (77)–(79).

is adopted, while the plastic part of the Helmholtz energy isassumed to be quadratic,
i.e

Ψp =
1

2
Hi α2

i +
1

2
Hk αk : αk. (78)

Consequently, coupled linear isotropic/kinematic hardening is considered. The model
is completed by a yield function of the type

φ(Σ, Qk, Qi) = ||dev[Σ − Qk]|| + κ tr[Σ] − Qi − Qeq
0 . (79)

Based on Eqs. (77)–(79) three different constitutive laws have been implemented:

• Drucker-Prager model with associative evolution; Eqs. (77)–(79)
• von Mises model (Drucker-Prager model withκ = 0)
• non-associative Drucker-Prager model (Eqs. (77)–(79) anda purely deviatoric

flow rule).

The material parameters used in the computations are summarized in Fig. 1. Except
for the hardening parameters, they are identical to those employed in [38], if the
deformations are infinitesimal small. For a physical interpretation of the variables,
the interested reader is referred to [38]. For instance,κ = 0.233 corresponds to a
friction angle of30◦. Obviously, since the hardening parameters are identical for
all models, the mechanical response predicted by the novel constitutive update for
the non-associative Drucker-Prager type model is expectedto range between the
limiting associative models. As a result, the correctness of the implementation can
be checked easily.

The three aforementioned constitutive models are applied to the analysis of one
compression loading cycle. More precisely, loading is prescribed until a stretch
of 0.9 is reached (10% shortening). Subsequently, loading is reversed. The results
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Non-associative

Drucker-Prager

von Mises

Stretchλ1

S
tr

es
sP

1
1

10.980.960.940.920.9

40

0

-40

-80

Fig. 2. Uniaxial compression test: stress-strain diagramsobtained by computing one load-
ing/unloading cycle for the three different constitutive models according to Fig. 1.

obtained from finite element analyses are summarized in Fig.2. As expected, the
von Mises-type model predicts plastic yielding first. Furthermore, the slope of the
stress-strain diagram is almost identical for the tension and the compression regime
(stresses). By contrast, the Drucker-Prager model exhibits the well-known tension-
compression asymmetry, i.e., the hardening effects are more dominant for compres-
sion. The non-associative version of the Drucker-Prager model as presented in the
previous section features the same asymmetry – however, less pronounced. In this
respect and as anticipated, the response of the non-associative constitutive law lies
in the middle between both associative models.

The robustness of the discussed implementation is analyzednext, by re-computing
the same problem as before. However, the size of the loading steps is now varied.
As evident from Fig. 3, the results of the constitutive update do not depend on
the size of the load step. Furthermore, even if relatively large loading increments
are applied, the robustness of the algorithm is verified. Numerical problems do not
occur.

5 Conclusion

In this paper, an enhancedvariational constitutive updatesuitable for a class of
non-associative plasticity theories at finite strain has been proposed. Following
previously published works on variational constitutive updates, this method al-
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2000 steps

200 steps

20 steps

Stretchλ1
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tr
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sP

1
1
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40

0

-40

-80

Fig. 3. Uniaxial compression test: stress-strain diagramsobtained by computing one load-
ing/unloading cycle for the non-associative constitutivemodel according to Fig. 1; the size
of the loading steps varies between∆λ1 = 0.01 (20 steps) and∆λ1 = 0.0001 (2000 steps).

lows to compute the current internal variables describing plastic deformations by
means of a minimization problem. Physically, one seeks to minimize the integrated
stress power subjected to a constraint which is associated with the yield function.
Besides this physically sound interpretation of internal states as energy minimiz-
ers, this strategy shows mathematical advantages (existence of solution) as well
as numerical advantages (standard minimization problem) as well. In contrast to
existing models, the advocated approach can be applied evento a broad class of
non-associative evolution equations. Clearly, this represents a first important step
towards a general framework for more universally valid variational constitutive up-
date. The considered class of material models is based on a volumetric-deviatoric
uncoupled response for the elastic stored energy, the yieldfunction and the plastic
potential, respectively. Prominent and frequently applied plasticity models falling
into the aforementioned class are Rankine, von Mises, Hill,Drucker-Prager, Tresca,
Mohr-Coulomb or crystal plasticity. The fundamental ideasrequired for deriving
such a variationally consistent method were a convenient parameterization of the
evolution equations and the hardening laws, together with an orthogonality between
the spaces of purely deviatoric and purely volumetric tensors. The resulting min-
imization problem is formally identical to that of associative models and can be
solved by employing standard gradient-type optimization schemes. The presented
numerical examples demonstrated the applicability, robustness as well as the per-
formance of the proposed implementation.
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