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Abstract

In this paper, an enhancedriational constitutive updatesuitable for a class of non-
associative plasticity theories at finite strain is progoda line with classical humerical
formulations for plasticity models, such as the by now dithéd return-mapping algo-
rithm, variational constitutive updatesepresent a numerical method for computing the
unknown state variables. However, in contrast to convaatialgorithmsyariational con-
stitutive updatesre fully variational, i.e., all unknown variables followifntly from min-
imizing a certain potential. In addition to the physical andthematical elegance of these
variational schemes, they show several practical advestag well. For instance, numer-
ically efficient and robust optimization schemes can bectliyeemployed for solving the
resulting minimization problem. Since mathematicallyagticity is a non-smooth problem
and often, it leads to highly singular systems of equatian&reown from single crystal
plasticity, a robust implementation is of utmost impor&ngo faryariational constitutive
updateshave been developed for different classes of standarcpdisg solids, i.e., solids
characterized by associative evolution equations and flbesr In the present paper, this
framework is extended to a certain class of non-associptasticity models at finite strain.
All models falling into this class show a volumetric-dewiat split of the Helmholtz energy
and the yield function. Typical prototypes are Druckergereor or Mohr-Coulomb models
playing an important role in soil mechanics. The efficienng eobustness of the resulting
algorithmic formulation is demonstrated by means of selbctumerical examples.
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1 Introduction

Variational principles such as the minimum of the potergia¢rgy or Hamilton’s

principle have been playing an important role in classicathanics for several
centuries. These methods continue to be widely used in mo@der, computa-

tional) mechanics. More precisely, since almost every nmigakscheme is based on
variational principles, the importance of such approaghesntinuously increas-
ing. The probably best known development is given by theefialement method
(of Bubnov-Galerkin-type).

In the present paper, focus is on a certain subset of vanedtroethods, also known
asvariational constitutive update€onceptually in line with the pioneering work
by von Mises to whom the postulate of maximum dissipationsigally credited
(see [1]), variational constitutive updates allow to reqgalasticity theories into
equivalent minimization problems, cf. [2—7]. More sped@fig, every constitutive
model falling into the range of so-callestiandard dissipative solida the sense of
Halphen & Nguyen [8] (see also [9]) can be implemented by ypglthe afore-
mentioned concept. The advantages resulting from suchiatieaal constitutive
update are manifold. On the one hand, the existence of snkitan be analyzed
by using the same tools originally designed for hyperetastaterial models, cf.
[10,11,6]. On the other hand, a minimum principle can beras®a canonical ba-
sis for error estimation and thus, for adaptive finite elenmeethods, cf. [5,12-14].

Variational constitutive updates date back, at least,@gtbneering works by Comi
and co-workers, cf. [2,3]. By recourse to time discretmatithese authors, derived
a Hu-Washizu functional whose minimum corresponds to thetiso of the dis-
cretized algebraic differential equations defining thestivntive model. In contrast
to by now classical computational plasticity [15,16], thedarlying constitutive
model was enforced in a weak sense. The ideas proposed byabdnbd-workers
were further elaborated by Ortiz and co-workers, cf. [4b]ine with the standard
one-field description (the deformation mapping) usuallgli&gl in computational
plasticity, Ortiz considered the constitutive model in anpeise manner (at the
integration points). By doing so, the minimization problessociated with varia-
tional constitutive updates can be decomposed into tworsbbgms. The first of
those is purely local and its solution gives the update@ st@tables together with a
reduced incremental potential. The second minimizatioblem depending on the
aforementioned potential is global in nature and yieldsuhlkenown deformation
mapping. Clearly, this structure coincides with standarchgutational plasticity,
see [15,16] and allows to separate the constitutive modei fthe governing equa-
tions. Evidently, this is very convenient from an implensitnal point of view.

Since the works by Comi and co-workers [2,3] and the contioimg by Ortiz and
co-workers [4,5], variational constitutive updates reprg an active and ongoing
research area, cf. [17,6,7,18-21,14], and they are canisiy further elaborated.



For instance, the extensions necessary to include tenuperaffects were dis-
cussed in [22,23]. A novel numerical implementation cawvglisotropic and kine-
matic hardening as well as isotropic and anisotropic @igtand yield functions
was advocated in [24].

Although the algorithmic framework proposed in [24] can Ipplaed to a broad
range of different constitutive models, it still relies dretassumptions associated
with standard dissipative solids the sense of Halphen & Nguyen [8]. More pre-
cisely, all material models belonging to the class of stashdizsssipative solids are
defined by means of only two potentials being the Helmholezgyand the yield
function. Consequently, the plastic flow and hardening rap@ms are assumed
to be governed by associative laws (normality rule). In ptherds and focusing
on plasticity theory for now, the plastic potential and ttegdening potential are
identical to the yield function.

The present paper represents a first step towards genegahariational constitu-
tive updates to non-associative plasticity models at fisiitain. For that purpose,
three potentials are utilized: the Helmholtz energy, tleddyfunction and a plastic
potential. Roughly speaking, the idea is to minimize thegnated stress power
subjected to the constraints imposed by the yield functam.a prototype model
based on a volumetric-deviatoric split of all potentialss ishown to that this con-
strained model can be recast into an equivalent unconsttamnimization prob-
lem. For that purpose, additional assumptions are negesbaryield function and
the plastic potential are represented by positively homegas functions of degree
one and the plastic flow is either purely volumetric or pumddyiatoric. While the
first assumption is not very restrictive, the latter is indle®re drastic. However, it
is noteworthy that both assumptions are fulfilled for mangstutive models fre-
qguently applied in soil mechanics. For instance, non-aatee Drucker-Prager- or
Mohr-Coulomb-type models with a deviatoric flow rule compligh the aforemen-
tioned restrictions.

The paper is organized as follows: In Section 2, a concide-sfathe-art review
on variational constitutive updates is given. First, thedamentals associated with
finite strain plasticity theory based on a multiplicativedmposition of the defor-
mation gradient are briefly presented for the sake of natatib Subsection 2.1.
Subsequently, standard dissipative solids, together thigir defining variational
framework, are discussed in Subsection 2.2. Section 2 iplsiad by an efficient
numerical implementation for the aforementioned modelshé8ction 2.3). The
main contribution of the present paper dealing with a noweherical implemen-
tation suitable for a class of non-associative plastitigoties is addressed in Sec-
tion 3. Starting with the assumptions concerning the hypstie response (Sub-
section 3.1) and the plastic behavior (Subsection 3.2)assabf non-associative
elastoplastic models is defined. Finally, the numericall@m@ntation of this class
is presented in Subsection 3.3. The efficiency and perfocmar the resulting
constitutive update is demonstrated by means of selecteémcal examples (Sec-



tion 4).

2 Standard dissipative solids — Variational constitutive pdates

This section is concerned with a concise review and somkeduglaborations as-
sociated with variational constitutive updates for stadd#issipative solids, i.e.,
solids governed by normality rules.

2.1 Finite strain plasticity theory — Fundamentals

For the sake of concreteness, focus is on finite strain pigstheory based on a
multiplicative decomposition of the deformation gradidnt= GRADy into an
elastic partF*® and a plastic parF™ of the type

F =F°. - FP, with det F° > 0, det F* > 0, Q)

cf. [25]. Applying the split (1), the Helmholtz energy of tkensidered solid can
be written as

U =U(F° a) )

see [26,27,15,16]. Here and henceforthe R™ denotes a collection of some suit-
able strain-like internal variables corresponding to kardg or softening. In line
with plasticity theory, the elastic response charactdrizg the elastic free energy
U depends only on the elastic part of the deformation gradi€nand thus, the
resulting Helmholtz energy decomposes additively, i.e.,

U = U°(F°) + 1P (a) 3
with WP representing the stored energy due to plastic work. Finbajlyenforcing
the principle of material frame indifference, Eq. (3) carréavritten as

U =0°(C%) + WP(a), C°:=F°".F° (4)

Further details are omitted. They may be found, e.g., in.[28]

Adopting the framework of rational thermodynamics in thesseof Coleman &
Noll [29-31], the evolution equations completing the cdostze model are derived



by means of the restrictions imposed by the second law ofrtbdynamics. For
isothermal conditions, the dissipation inequafity> 0 reads

ov
oce

D:(FP~S~FPT—2 ):%C’eJrS:(FPT-CE-FP)+Q-QZO(5)

with P andS := F~! . P being the first and the second Piola-Kirchhoff stress
tensor and® := —9J,¥ denoting the stress-like internal variable work conjugate
to a. Ineq. (5), together with the by now standard procedure bgi@an & Noll,
gives rise to

ov oA 7
S=2_——=2F" . - F? 6
oC oCc* ©

and the reduced dissipation inequality

D=%:L°+Q & >0. (7)

1

Here,X = 2 C° - 9o U are the Mandel stresses (cf. [32]) abl = F* - F>
is the plastic velocity gradient. Evidently, both objectddmg to the intermediate
configuration induced by the multiplicative split (1). It abvious that Ineq. (7)
alone is not sufficient for deriving evolution equations 18t and «x, respectively.

More precisely, loading conditions are needed.

For deciding whether purely elastic unloading or plastadiog occurs, a switch is
required. For that purpose and following classical plastiheory, an admissible
stress spack,, is introduced, cf. [26]. Consistently with Ineq. (B, is formulated
in terms of Mandel stresses, i. e.,

E, = {(2.Q) eR"" | 4(2.Q) <0}. ®)

Here and hencefortl,is the yield function. It has to be convex, sufficiently sntoot
and to comply with restrictions imposed by experimentaleotations. As well
known, if (3, Q) € intE,, the solid deforms purely elastically. Only(E, Q) €
JE,, a plastic response is possible.

Combining Eg. (8) and Ineq. (7), the evolution equations i8rand a can be
derived. They can be naturally obtained from the postuletgaximum dissipation,
i.e.,

max [5] IP+ Q- a]} (9)



resulting in

L’ = \0sp & =Adgo, (10)

together with the Karush-Kuhn-Tucker conditions

A>0  $A>0. (11)

As a result, plastic deformationd.{ # 0) require(X,Q) € JE,. The plastic
multiplier A is obtained from the consistency condition

b =0. (12)

Evolution laws of the type (10) are characterized by the erypthat the rates of
the internal variables (together with") are normal to the yieldsurface (= 0).
Clearly, such laws are referred to@associated flow rulesr normality rules In the
present section, only such evolution laws will be considere

2.2 Standard dissipative solids

The fundamentals of standard dissipative solids are asiedda this subsection. It
follows to a large extent [4,6]. The ultimate goal of this settion is to recast the
constitutive framework summarized before into an equiviateinimization prob-
lem.

Roughly speaking, the potential to be minimized is the stpesver

P F'a,%,Q) =P: F=V(p, F' &)+ D(F', &, %, Q). (13)
Note that Eq. (13) makes only sense from a physical pointeyif the stressex
and the internal variablég defining the plastic flowL.” and the strain-like variables

a, respectively, are admissible. Following [4,6], this doamit can be enforced by
introducing the characteristic function B, i.e.,

0 V(%,Q)€E,
J(X,Q) = { _ . (14)
oo  otherwise
With J, the constrained problem associated with Eq. (13) reads now
E(p, F"',&,%2,Q) =P(¢, F', &, 2,Q) + J(£,Q). (15)



The interesting properties of the functional (15) beconpmaagnt, if the stationarity
conditions are computed. A straightforward calculaticelgs

dz@f=0 = (L’ &)cdl

- ov
5(@)5 =0 = Q = —£ (16)
AR}
5(FPS—0 :> Z—F ﬁ QC aCe

Here,d.J is the subdifferential of/, cf. [33]. According to Egs. (16), the stationarity
condition of€ results in the flow rule, the constitutive relation for thesimal stress-
like variables and the constitutive relation for the ManstetsseX..

So far, a stationarity principle equivalent to associaplasticity theory at finite
strain has been discussed. It can be shown that mathematibad prlnC|pIe is
represented by a saddle point problem (minimization wisipeet to &, F), max-
imization with respect toX, Q)). However, as advocated in [4,6], it is possible
to derive a reduced functional whose minimum yields thewimh equations. For
that purpose the dual of (the dissipation), i.e.,

JH(LP, &) = sup {3 EP+Q-54‘ (2, Q) € Eo, (17)

defined by a Legendre transformation is required. Insettiegeduced dissipation
Ineq. (7) into the stress power (13) and subsequently, iqt £5), together with
the Legendre transformation (17), yields finally the redbosunterpart of Eq. (15)

E(@. F" o) =V(p, F' &) + (L, &). (18)
Hence, the only unknown variables aber anda. They follow jointly from the
minimization principle

Urea () = inl £(p, F', ) (19)

which, itself, gives rise to the introduction of the reduﬁembtional\ifred depending

only on the deformation mapping. Furthermore, by recaltimat \i]red represents
indeed the stress power and making use of Eq. (13), the fotd Rirchhoff stress
tensor results conveniently from

P =0 o) Urea (). (20)

As evident, this equation is identical to that of standarnddrglasticity with the sole
exception that the potential,.q is incrementally defined, i.e., it varies in time. For a



more detailed derivation of the variational framework a&dded in this subsection,
the interested reader is referred to [4,6].

2.3 Numerical implementation

The numerical implementation of the variational methoddssed before, depends
heavily on the Legendre transformation (17). Clearly, trasisformation, in turn,
is affected by the yield function. For the sake of concretsngis assumed to be
of the type

¢ =XUE - Qy) — Qi(a) — QF (21)

with ¥%9, Q,, @; and Q! denoting an equivalent stress, a backstress tensor, a
stress-like internal variable associated with isotropicening and the initial yield
strength, respectively. Furthermow, and «; represent the strain-like variables
conjugate taQ, and@;. If Q, andQ; are stress-like}2*? should be a linear map-
ping. More precisely}:*? is chosen to be a positively homogeneous function of
degree one. This restriction is fulfilled for many yield ftioos such as Rankine,
von Mises, Hill, Drucker-Prager, Tresca, Mohr-Coulomb wystal plasticity. Pos-
itive homogeneity implies

Y = 5% : B (22)

and consequently,

dE = 05 : dX = 05 [0x¢® : ] : dE = 056 : X + [X: 055 0] : dX

(23)
= Y0550 =0 |

This conditions will be used for proving consistency of thgoaithm. By postulat-
ing associative evolution equations, they are obtained f&g. (21) as

L’ = \0s¢,  cu=A0od=—\dsd,  n=—\ (24)

Inserting Egs. (24) into the dissipation (7), the second tdwhermodynamics
yields

D=\ Q% > 0. (25)

and thus, the (reduced) stress power reads

E=U+ QM (26)



Clearly, Eq. (26) is only physically meaningful for admlssi evolution equations,
cf. Eq. (10). Furthermore, note that the necessary yieldition ¢ = 0 is already
naturally included (see Eq. (25)).

Conceptionally, variational constitutive updates aremjnan approximation of the
minimization problem (19). A first step towards this approation is obtained by
applying a time integration to Eq. (19), i.e.,

(FP, o, ;) = arginf [0, (27)
with
tn+1
[ — / Edt =W,y — U, + Q% AN (28)

ln

tn41
Here, the notationa\ := f A dt and(e),, := (e)(t,) have been introduced. The

t"
superscripte)*** is used to highlight thaf?’* results from an analytical integra-

tion. Note that the unknown&™, a, «;) are functions (in time). In line with [4,6],
a discrete approximation of Eq. (28) is derived by using atifiscretization of the

type

FP ., =exp [A)\ az<z>|n+1} . FP

= q], — AN (29)
= ak\n — A)\ 82(Z)|

ai|n+1

ak\

n+1 n+1*

Clearly, other consistent time integration can be emplagaell, cf. [24]. With
Egs. (29), the discrete (approximated) counterpart of mization problem (27)
can be written as

(Foi1s g, Qilny1) = arginf I, (30)

with

]inc - \Ijn-l—l(Fngla ak|n+17 ai|n+1) - \Ijn + ng AA ~ Iana' (31)

inc

So far, variational constitutive updates are relativelg@e and hence, the respec-
tive implementation seems to be straightforward. Unfaataly, this is not the case.
The reasons for that are manifold. For instance, a direcinniation of ¥;,,. with
respect taF, . ; is not admissible, sincE® has to comply with physical constraints
resulting from the flow rule (and of coursét F* > 0).



Recently, a convenient parameterization of the evolutmpraéons (29) was given
in [24]. By introducing pseudo stressEswhich are not identical to their physical
counterparts, i.e3 # X, Egs. (29) are re-formulated as

FflJrl(i,a) = exp [az 82<Z>|2} - FP
ail, g (@) = o, —a? (32)

ak|n+1 (5]7 a’) = ak|n - a2 62¢|5: :

Consequently} can be interpreted as an unknown variable defining the flow di-
rection, i.e.0s¢|s = ds¢|s, anda? := X > 0. Making use of Eq. (32) allows to
re-write Eq. (30) as

X = arg lgl(f -[inc(X)7 with Iinc = \Iln—i—l(X) — \Iln + ng AN (33)

with the unknowns being

X=[24d = dim[X]=10. (34)

It is noteworthy that the unconstrained optimization penb|33) includes naturally
the necessary yielding condition = 0, and admissible evolution equations are
canonically included as well. Further details are omitfBdey may be found in
[24].

The unconstrained minimization problem (33) can be solmexistandard manner,
e.g., by employing gradient-type schemes, cf. [34]. The¢ diesivatives ofl,,. are
summarized below,

Ol  OWC WP

9AN ~ 0nx T amn T (35)

= TE (36)
with

oA =" l“’ ) %}  Dexp [~ A\ Oél] : Il (37)

Z\g o l( e’ S}H  Dexp [~ A\ dsdlg] : 93], AN, (38)

gi/p\ = Qi+ Qy: 0295, (39)

10



6\1’1)_8\1113'60{1(_ )
5~ 9 95 =ANQ,: ang‘i. (40)

with F{.., being the trial elastic deformation gradient, i.e.,

trial

F?rial = Fn+1 ’ (Flrjb)il (41)

In Egs. (37) and (38), the derivative of the exponential niagp

_ Oexp[A]

Dexp[A] = A (42)

can be computed in a standard fashion, e.g. [35,36]. Fordke sf brevity, the
second derivatives necessary for a Newton-type iteratienoanitted. However,
they can be computed in a straightforward manner.

By analyzing the stationarity condition @f,., consistency of the algorithm can be
checked. For instance, taking the variation,gf with respect taA\ and enforcing
stationarity results in

6]inc
0AN

=-—3:050+Qi+Q: 050+ Q" =—0=0, (43)

At—0

i.e., the necessary condition for yielding. Furthermorgh\& = ¥ — Q, , the
stationarity condition associated with the pseudo steesseads

6]inc

5 =0 A0 (2-Q) i =E2:0% =0. (44)

Hence, Eqg. (23) is fulfilled and consequently, the plastiw ffirection is compati-
ble with the stresses and hence, it is admissible.

It bears emphasis that in line with conventional plasti¢itgory, the optimiza-

tion probleminf [;,. is non-smooth (with respect tA)\). To sidestep this prob-
lem, predictor-corrector methods are usually appliedEcf. (41). Following the

return-mapping algorithm, a trial step characterized byrely elastic response is
assumed firstA\ = 0, F, ., = FP, Qylni1 = Qxln @andQil,n+1 = Qil,). Clearly,

if this state is physically admissible, the functiorig|. has to show a minimum at
AN = 0. With Egs. (35)—(40) (cf. EqQ. (43)), the respective cormdityields

a]’inc
O0AN

= _¢trial >0 — gbtrial S 0. (45)
AXN=0

11



With ¢iriar := @(Frni1, FL, Qiln, Qiln). Remarkably, this inequality agrees with
that of the classical return-mapping algorithm. It is natetwy, that the remaining
components of the gradient &f.. vanish trivially, i.e.,

a]’inc
6923 AX=0

— 0. (46)

Further details about the numerical implementation ardtechiThey can be found
in [24]. In the cited paper, a tuned algorithm for fully ismpic models is given as
well.

3 Aclass of non-associative elastoplastic models based ovodumetric-deviatoric
split: Plasticity theory at finite strains

Based on the variational constitutive update for standasiphtive solids as dis-
cussed in the previous section, the extensions necessaryrieassociative plastic-
ity theory are elaborated here. In contrast to the constg@itamework considered
before, some more restrictive assumptions have to be mtextl More precisely,
focus is on a class of non-associative plasticity modelsveig a volumetric-
deviatoric uncoupled response.

3.1 Elasticity

Focusing on the elastic response for now, the first crucgalmagtion is the decom-
position of the elastic free energy into a deviatoric and lametric part, cf. [37].
More specifically,

Ue = U

dev

= P°

dev

+ W, with WS (C]

dev

)’ ye . — pe

vol = *wvol

(V%) (47)

Here, the following notations have been introduced:

J¢ :=det F°, F¥

dev

= (J)PFC, CY,, = (F,)" - Fi,, = (J9) 2% C°.(48)

dev dev

Eq. (47) yields the second Piola-Kirchhoff stresses (bgiluyto the intermediate
configuration)

vol

S¢:=2 ace\I’e =J° aje[\lle ] Ceil +2 6(3’36\,[\1[?163\/] : Paey (49)

12



where

1
Py, := acece _ (Je>72/3 [sym g C°® Cefl (50)

dev

is a projection tensor. Finally, the Mandel stress can bepeded by using Eq. (47).
They result in

$i=C°- 8= J°O.[U%]1

e\—2/3 e e 1 e e (51)
+2(J) [ C 00y [Wsa) - 5 (95, [¥5a) : ©°) 1}.

In this section, only yield functions and plastic potergibhsed on a similar split
as that in Eq. (47) will be considered. For this reason, themaetric as well as the
deviatoric part of the stresses are required. With Eq. (#é) are obtained as

tr[X] =3 J® 0y [VS,] (52)
and
1 e\ — e e 1 e e
devs = X — S %] 1=2 (J) ™ |C° - doy, [Vie] — 5 (5, [¥5e] - C°) 1] (53)
3.2 Plasticity

Analogously to the elastic response, the considered cfagsld functions is also
characterized by a volumetric-deviatoric split, i.e.,

6= +3 —Q; — Q! (54)

vol dev

with

Vi = LarE]),  Egoo = Yaeu(deVE]),  and E:=3 - Q. (55)

Following Section 24 and consequently.:}, andX;! are assumed to be posi-
tively homogeneous functions of degree one, see Eqg. (28)ntiteworthy that the
yield function (54) covers a broad range of different plastimodels. For instance,
by setting

Yol =k tr[E], Y

vol dev

= [|devi=]]], (56)

13



the Drucker-Prager model is obtained. Mohr-Coulomb’sd/fahction is given by

2 = g trE], B

vol T dev

1
= Q[max ¥, — min 3] (57)

Here,max ¥; andmin ; are the largest and smallest eigenvalu&oft bears em-
phasis thakj! according to Eq. (57) is indeed a positively homogeneoustion

of degree one. Finally, an anisotropic Drucker-Pragerqtypk is defined by using
a Hill-type equivalent stress for the deviatoric part,i.e.

s = g tr[E], sed = \/dev[E] . D : deVE], (58)

with D representing a fourth-order weighting tensor, cf. [24].

In contrast to the yield function (54), the plastic potentiaefining the flow rule
and the evolution equations is assumed to be purely deigaia@r.,

g = Eg(év - QZ - gq' (59)
Consequently,
LP =)\ 82233\,, oy = —Aaggzgv, o) = -\ (60)

Clearly, this represents a limiting case being importamt,ifistance, in soil me-
chanics. Bearing in mind that;! is positively homogeneous of degree one, the
dissipation is calculated as

D= (dsg: B —sg: Qu— Q) A= (S5, — Q) A= (Q5 — X)) M(61)
3.3 Numerical implementation

In this subsection, the algorithmic formulation assodatéh the constitutive model
based on the volumetric-deviatoric split as introducedieefis presented. That is,
focus is on plasticity theories fulfilling the restrictio(#7), (54) and (59). It has
already been mentioned, that this class covers a broad cdmiiferent important
prototypes such as non-associative Drucker-Prager or{@olfomb plasticity.

3.3.1 Fundamentals of the algorithm

Analogously to Section 2, the evolution laws are approxéddity a time integration
and they are parameterized by the pseudo str@Ssesl the parameter= /A,

14



FP., =expla® Ongls|- FP,
o = qi|, —a® (62)

n+1

ak‘nJrl = o, — a? Ondls .

Clearly, since the plastic flow is tracelessdirg] = 0),
det Fp, 1 =1 =detF; ,=:J°=J=detF. (63)

Furthermore, the strain-like internal varialalg is also purely deviatoric (i, (t =
0) = 0) and thus, it is physically reasonable to postulate

tr[Q,] = 0. (64)

As a result, by using [E] according to Eq. (52), together with Eq. (63),

Yoa(tr[E — Q) = X35, (r[X]) = X55,(J°) = X35 (J). (65)

Hence, a backward-Euler integration of the dissipationyi@lds

tn-_kl
[ Dot (QF = T ,) AN (66)

t"

and consequently, the integrated stress power is apprtethas

Line(X) = U1 (X) = Uy + (Q5 = T54,4,) AN, X =[Z,a),  (67)

cf. Eq. (31). In line with the previous subsection, the ptitgn;,.(X ) can be min-
imized in case of plastic loading by gradient-type optirimaschemes. The first
derivatives are summarized below:

Oline [ ( ove

[§]

Ftrial)T ' aFe] : DeXp [_ AN 8Eg|i]] : 6Eg|§~]

OAN (68)
+ Qi+ Qy : Osgly + Q' — 2321|n+1

8Iinc e T 6\116 . . 2

- | G| Dew - Monglal gl a0

+ ANQ, 8%9‘2.

15



The second derivatives &f,.(X ) can be computed in a similar fashion. According
to Eq. (67), only the Helmholtz energy depends on the psetrdeses and thus,
8an/82 8\1//82 Consequently, the gradient f,. with respect ta is iden-
tical to that of the associative model (compare Eg. (69) to(Bf)) with the sole
exception that the yield functiopis replaced by the plastic potential

3.3.2 Consistency of the algorithm

Although the algorithm has been completely defined, it is clear yet, if the
method is consistent. Thus, a consistency analysis is givéims paragraph. In
line with Section 2.3, the stationarity condition 6f. with respect to the plastic
multiplier A\ is considered first. Employing Eg. (68) and focusing on threting
caseA\ — 0, stability of ;. requires

6]inc
O0AN

— (2 —-Qy) : 09 +Qi+Qy' — X0 =—0>0 (70)
s

dev

At—0

As a result, the yield condition is naturally included withthe proposed varia-
tional method. Clearly, the evolution equations are expfienforced by using the
parameterizations (62) of the flow rule and the hardeninglaw

A careful analysis of Eq. (68) reveals the requirements sy for consistency
of the algorithm: The integrated dissipation does not ddmemthe pseudo stresses
and furthermore, it depends linearly on the plastic mu#ip\. This is a direct
consequence of Eq. (65). More precisely,

¢ — g = # S (2, AN). (71)

Hence, the difference between the yield function and thstiglgotential is not
affected by variables associated with dissipation. Thatitle(71), in turn, results
from the orthogonality of the spacts, , = {¥ | ¥ =a 1, a € R} andity,,

{3 | tr[¥] = 0}. Therefore, the additive decompositions of the Helmhatizrgy,
the yield function and the plastic potential are requiredi¢oive a variationally
consistent method.

The proof of consistency is completed by analyzing the ramgicomponents of
the gradient of/;,.. Again, they yield

a]’inc Ago

S =0 (X —-Q,) :05g=E:0%g=0. (72)

(=

Hence, Eq. (23) is again fulfilled and consequently, thetgdbow direction is
compatible with the (physical) stresses and hence, it isssiote.
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Remark 1 According to Section 2 (see Eq. (20)), for models fulfillimgnormality
rule, the stresses follow jointly from the minimizationnmiple inf I;,. as well.
More precisely, in this cas® results from the hyperelastic relation

_ 8\:[jinc(-F‘n—i—l) o a\lje(Fn—i—l)

P =
6-F‘n—i—l aFTH—l ’

(73)

with ;. (F') := infg, an(il, a, F,,1). However, for the class of non-associative
models presented in this section, the dissipation (61) niépenX and thus, it is
affected by the deformation gradient. Hence,

- 6\I[inc(lrnJrl) _ 8\Ife(Fn+1) azigl
P= TN AN =2 (74)
£0
with
eq eq
82vol o 82vol a<tr[2]) JFfT. (75)

oF  o(ulx]) oJ

As a result, the size of the loading steps has to be checkefudgrsuch thatA A

(and accordinglyAX 0% /OF) are sufficiently small. Alternatively? can be
computed in the standard manner, i.e., by utiliziAg= 0V*¢/0F . However, it bears
emphasis that the algorithm is nevertheless consisteat.i$hfor the limiting case

At — 0

P _ 8\I]inc(-F‘n—i—l) _ a\Ije(Fn—i—l)
aIrnJrl 8Fn+1

(76)

is obtained.

4 Numerical example

The efficiency and performance of the constitutive updatdlaecated in the previ-
ous section is demonstrated by means of a numerical analy@gisompression test
(see Fig. 1). Clearly, this example guarantees that dewtads well as volumetric
stresses are non-vanishing and therefore, it representsahls benchmark.

For the elastic response, a functional of the type

= (G = 8) K (1) (77)
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Material parameters:

von Mises Drucker-Prager non-associative
é K [kN/m?] || 33333.3 33333.3 33333.3
1 [kN/m?] 7143.0 7143.0 7143.0
k-] 0.0 0.233 0.233
QLU [KN/m?] | 24.24 24.24 24.24
H/ H; [kKN/m?] 50.0 50.0 50.0
H; [kKN/m?] 50.0 50.0 50.0

Fig. 1. Uniaxial compression test: boundary conditions @uadierial parameters according
to Eqgs. (77)—(79).

is adopted, while the plastic part of the Helmholtz ener@ssumed to be quadratic,
i.e

1 1
\pr=§Hia?+§Hkak:ak. (78)

Consequently, coupled linear isotropic/kinematic hanaigis considered. The model
is completed by a yield function of the type

O(Z, Qy, @) = [|devE — Q][] + r tr[X] — Qi — QF". (79)

Based on Egs. (77)—(79) three different constitutive laaxgelbeen implemented:

e Drucker-Prager model with associative evolution; EQs)<{7)

e von Mises model (Drucker-Prager model with= 0)

e non-associative Drucker-Prager model (Eqgs. (77)—(79)aapdrely deviatoric
flow rule).

The material parameters used in the computations are suranan Fig. 1. Except
for the hardening parameters, they are identical to thogdagred in [38], if the
deformations are infinitesimal small. For a physical intetation of the variables,
the interested reader is referred to [38]. For instarce, 0.233 corresponds to a
friction angle of30°. Obviously, since the hardening parameters are identical f
all models, the mechanical response predicted by the nowstitutive update for
the non-associative Drucker-Prager type model is expeotednge between the
limiting associative models. As a result, the correctnéseeimplementation can
be checked easily.

The three aforementioned constitutive models are apptieitié analysis of one
compression loading cycle. More precisely, loading is guibed until a stretch
of 0.9 is reached (1@ shortening). Subsequently, loading is reversed. Thetsesul
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StressP;

von Mises ——
Drucker-Prager—x<—
Non-associative—=—

0.9 0.92 0.94 0.96 0.98 1
Stretch)\;

Fig. 2. Uniaxial compression test: stress-strain diagrabtained by computing one load-
ing/unloading cycle for the three different constitutiveadels according to Fig. 1.

obtained from finite element analyses are summarized inZ-i§s expected, the
von Mises-type model predicts plastic yielding first. Fertihhore, the slope of the
stress-strain diagram is almost identical for the tensi@hthe compression regime
(stresses). By contrast, the Drucker-Prager model esttig well-known tension-
compression asymmetry, i.e., the hardening effects are daminant for compres-
sion. The non-associative version of the Drucker-Pragetehas presented in the
previous section features the same asymmetry — howevempteaounced. In this
respect and as anticipated, the response of the non-asgacianstitutive law lies
in the middle between both associative models.

The robustness of the discussed implementation is anaheeddby re-computing
the same problem as before. However, the size of the loatepg $s now varied.
As evident from Fig. 3, the results of the constitutive upddd not depend on
the size of the load step. Furthermore, even if relativelgddoading increments
are applied, the robustness of the algorithm is verified. 8hical problems do not
occur.

5 Conclusion

In this paper, an enhancegriational constitutive updateuitable for a class of
non-associative plasticity theories at finite strain hasnbproposed. Following
previously published works on variational constitutivedages, this method al-
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StressP;

20 steps—+—
[ 200 steps—x—
80 F 2000 steps—5— ]
0.9 0.92 0.94 0.96 0.98 1
Stretch),

Fig. 3. Uniaxial compression test: stress-strain diagrabtained by computing one load-
ing/unloading cycle for the non-associative constitutivedel according to Fig. 1; the size
of the loading steps varies betwean; = 0.01 (20 steps) anc\ \; = 0.0001 (2000 steps).

lows to compute the current internal variables describilagtic deformations by
means of a minimization problem. Physically, one seeks tommze the integrated
stress power subjected to a constraint which is associatbdhe yield function.
Besides this physically sound interpretation of interriatess as energy minimiz-
ers, this strategy shows mathematical advantages (egesiginsolution) as well
as numerical advantages (standard minimization problemyadl. In contrast to
existing models, the advocated approach can be appliedteveioroad class of
non-associative evolution equations. Clearly, this regnés a first important step
towards a general framework for more universally valid aoinal constitutive up-
date. The considered class of material models is based olume&wic-deviatoric
uncoupled response for the elastic stored energy, the fgialtion and the plastic
potential, respectively. Prominent and frequently agpp&asticity models falling
into the aforementioned class are Rankine, von Mises, Biillcker-Prager, Tresca,
Mohr-Coulomb or crystal plasticity. The fundamental ideeguired for deriving
such a variationally consistent method were a conveniersnpeterization of the
evolution equations and the hardening laws, together withréinogonality between
the spaces of purely deviatoric and purely volumetric temsbhe resulting min-
imization problem is formally identical to that of assoaiatmodels and can be
solved by employing standard gradient-type optimizaticmesnes. The presented
numerical examples demonstrated the applicability, riviass as well as the per-
formance of the proposed implementation.
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