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Abstract

This paper is concerned with an efficient, variationally consistent, implementation for rate-
independent dissipative solids at finite strain. More precisely, focus is on finite strain plas-
ticity theory based on a multiplicative decomposition of the deformation gradient. Adopting
the formalism of standard dissipative solids which allows to describe constitutive models
by means of only two potentials being the Helmholtz energy and the yield function (or
equivalently, a dissipation functional), finite strain plasticity is recast into an equivalent
minimization problem. In contrast to previous models, the presented framework covers
isotropic and kinematic hardening as well as isotropic and anisotropic elasticity and yield
functions. Based on this approach a novel numerical implementation representing the main
contribution of the paper is given. Analogously to the theoretical part, the algorithmic for-
mulation is variationally consistent, i.e., all unknown variables follow naturally from mini-
mizing the energy of the considered system. Extending previously published works on these
methods, the advocated model does not rely on any material symmetry and therefore, it can
be applied to a broad range of different plasticity theories. As an example, an anisotropic
Hill-type model is developed. Numerical examples demonstrate the applicability and the
performance of the proposed implementation.
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1 Introduction

Nowadays, computational plasticity represents an indispensable tool for the design
of complex engineering structures. Considering a certain time interval[tn; tn+1],
the goal of computational plasticity is the calculation of all state and history vari-
ablesX at time tn+1, i.e., Xn → Xn+1. Such methods are usually based on a
time integration transforming the underlying differential equations such as the evo-
lution laws into a set of non-linear equations. Subsequently, the resulting algebraic
problem is solved iteratively. A typical example is given bythe return-mapping
algorithm, cf. [1,2]. This well-established first-order scheme consists of an (im-
plicit) backward-Euler integration combined with a Newton-iteration. By now, the
return-mapping algorithm can be considered as a state-of-the-art method even for
the geometrically exact framework (large strains), cf. [3–5]. Most frequently, the
underlying mechanical models are based on a multiplicativedecomposition of the
deformation gradient (F = F e · F p). Although many fundamental problems in
finite strain elastoplasticity are still unanswered (see, e.g. [6,7]), the kinematical
assumptionF = F e · F p is also made in the present work.

Mathematically, plasticity theory represents a non-smooth and highly non-linear
problem in general. Clearly, the non-smoothness is a directconsequence of the
elastic-plastic transition, while non-linearity resultsfrom the evolution equations,
cf. [1,2]. Even worse, many plasticity models lead to non-unique solutions. For
instance, crystal plasticity theory in the sense of Schmid shows this problem (see
[8]). Due to these aforementioned issues, computational plasticity, although already
established in the 60s (see [9]), is far from being completely solved and the devel-
opment of an efficient and robust numerical implementation is not straightforward
at all.

If the evolution equations and the flow rule obey the so-called normality rule (as-
sociative models), they can be elegantly derived from a variational principle – the
postulate of maximum dissipation, cf. [10]. Comi and co-workers realized that by
recourse to time discretization, a similar variational concept can be derived even for
the discrete setting, see [11,12]. In those works, the authors, derived a Hu-Washizu
functional whose minimum corresponds to the solution of thediscretized algebraic
differential equations defining the material model. In the respective numerical im-
plementation, the constitutive model was enforced in a weaksense. That is, the
resulting finite element formulation is different comparedto the one usually ap-
plied in computational plasticity, cf. [2,1], i.e., a pointwise description (usually at
the integration points).

Probably inspired by the works [11,12], Ortiz and co-workers advocated a consti-
tutive update based on a minimization principle as well, cf.[13–15]. Nevertheless,
in contrast to the previous works, the proposed algorithmicformulation coincides
with the structure of standard finite element codes. More precisely, the update is
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performed pointwise at the integration points. Similar numerical procedure and
further elaborations can be found, for instance, in [16–19]. For models based on
linearized kinematics, the reader is referred to [20].

The advantages resulting from such a variational constitutive update are manifold.
On the one hand, the existence of solutions can be analyzed byusing the same tools
originally designed for hyperelastic material models, cf.[21,15,16]. On the other
hand, a minimum principle can be taken as a canonical basis for error estimation,
cf. [14,22–24]. In addition, from an implementational point of view, a minimization
principle opens up the possibility to apply state of the art optimization algorithms.
Particularly for multisurface plasticity models such as single-crystal plasticity this
represents an interesting feature.

In the present paper, an enhanced constitutive update for so-called standard dissipa-
tive solids obeying the postulate of maximum dissipation, in line with [13,14,16,20,17–
19], is elaborated. In contrast to the algorithms discussedin the cited works, the
advocated novel scheme does not rely on any material symmetry and therefore, it
can be applied to a broad range of different plasticity theories. More precisely, ar-
bitrary material symmetries concerning the elastic response and the yield function
can be taken into account. Furthermore, kinematic and coupled isotropic/kinematic
hardening are covered by the novel algorithmic formulation. As an example, a
fully anisotropic Hill-type model (orthotropic elastic response and orthotropic yield
function) is implemented.

The paper is organized as follows: Section 2 is concerned with a concise review of
finite strain plasticity theory based on a multiplicative decomposition of the defor-
mation gradient (F = F e · F p). While Subsection 2.1 covers the fundamentals,
the variational structure of plasticity associated with so-called standard dissipative
solids is discussed in Subsection 2.2. Section 2 is completed by a relatively com-
plex example being a fully anisotropic Hill-type model (Subsection 2.3). The main
contribution of the present paper dealing with a novel numerical implementation
suitable for standard dissipative solids at finite strain isaddressed in Section 3. The
underlying key idea is to conveniently parameterize the restrictions imposed by the
flow and the hardening rules. Finally, the performance and the robustness of the re-
sulting algorithmic formulation are demonstrated by meansof selected numerical
examples (Section 4).

2 Finite strain plasticity theory

The fundamentals of a variationally consistent finite strain plasticity theory based
on a multiplicative decomposition of the deformation gradient in the sense of [25]
are briefly discussed in this section. For the sake of simplicity, isothermal static
conditions are assumed. For modeling a dissipative material response, a descrip-
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tion with internal state variables is used, cf. [26]. While Subsection 2.1 is con-
cerned with a concise review of conventional plasticity theory at finite strains, stan-
dard dissipative solids are addressed in Subsection 2.2. These models allow to de-
scribe plasticity theories by means of only two independentfunctionals being the
Helmholtz energy and the yield function (or equivalently, adissipation functional).
The present section is completed by a variationally consistent Hill-type plasticity
model which includes an anisotropic elastic energy and an anisotropic yield func-
tion, together with isotropic and kinematic hardening.

2.1 Fundamentals

Without going too much into detail and following Lee [25], a multiplicative decom-
position of the deformation gradientF := GRADϕ into an elastic partF e and a
plastic partF p of the type

F = F e · F p, with det F e > 0, det F p > 0 (1)

is adopted. For a comprehensive overview and critical comments on different plas-
ticity formulations at finite strains, refer to [27,28,7]. Based on the split (1), the
Helmholtz energy of the considered solid can be written as

Ψ = Ψ(F e, F p, α) (2)

see [29,30,1,2]. Here,α ∈ R
n is a collection of strain-like internal variables asso-

ciated with hardening or softening. Assuming that the elastic response modeled by
Ψ̄e is completely independent of the internal processes reproduced byα, an energy
functionalΨ of the type

Ψ = Ψ̄e(F e) + Ψp(α) (3)

is adopted. Clearly, by the principle of material frame indifference,Ψ̄e(F e) =

Ψe(Ce) whereCe := F eT ·F e is the elastic right Cauchy-Green tensor. The second
term in Eq. (3), denoted asΨp, represents the stored energy due to plastic work. It
is associated with isotropic/kinematic hardening/softening. For more details about
energy functionals of the type (3), refer to [31]. It should be noted that in most
applications, a functional of the type (3) is chosen.

Considering an isothermal process, the second law of thermodynamics yields

D = P : Ḟ − Ψ̇ = S :
1

2
Ċ − Ψ̇ ≥ 0 (4)
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and finally, by using Eq. (1) and (3) the dissipationD reads

D =

(

F p · S · F pT − 2
∂Ψ

∂Ce

)

:
1

2
Ċ

e
+ S :

(

F pT · Ce · Ḟ p)

+ Q · α̇ ≥ 0.(5)

In Eqs. (4) and (5),P andS := F−1 · P denote the first and the second Piola-
Kirchhoff stress tensor andQ := −∂αΨ is the stress-like internal variable work
conjugate toα. According to Ineq. (5), the dissipation is decomposed additively
into one part associated with the elastic strain rate and a second part corresponding
to plastic deformation. Since both parts are independent ofone another, Ineq. (5)
gives rise to

S = 2
∂Ψ

∂C
= 2 F p−1 · ∂Ψ

∂Ce · F p−T

(6)

and the reduced dissipation inequality

D = Σ : Lp + Q · α̇ ≥ 0. (7)

Here and henceforth,Σ = 2 Ce · ∂CeΨ are the Mandel stresses (cf. [32]) and
Lp = Ḟ

p · F p−1

denotes the plastic velocity gradient. It bears emphasis that both
objects belong to the intermediate configuration. This is sometimes highlighted by
using overlined letters.

Next, the elastic domain has to be defined. For that purpose, the admissible stress
spaceEσ is introduced, cf. [29]. Since according to Ineq. (7), the reduced dissipa-
tion inequality depends naturally on the Mandel stresses,Eσ is formulated in terms
of Σ, i. e.,

Eσ =
{

(Σ, Q) ∈ R
9+n

∣

∣

∣ φ(Σ, Q) ≤ 0
}

. (8)

The boundary∂Eσ represents a level set function measuring the elastic limitof the
considered material. That is, if(Σ, Q) ∈ intEσ, the solid deforms purely elastically.
Only if (Σ, Q) ∈ ∂Eσ, a plastic response is possible. Clearly, theyield functionφ
has to be derived from experimental observation. Additionally, φ must be convex
and sufficiently smooth, cf. [33]. The constitutive model iscompleted by evolution
equations forLp andα and by loading/unloading conditions. They can be naturally
derived from the postulate of maximum dissipation. More precisely,

max
(Σ̃,Q̃)∈Eσ

[

Σ̃ : Lp + Q̃ · α̇]
]

. (9)

This postulate leads to the evolution equations

Lp = λ ∂Σφ α̇ = λ ∂Qφ, (10)
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together with the Karush-Kuhn-Tucker conditions

λ ≥ 0 φ λ ≥ 0. (11)

As a result, plastic deformations require(Σ, Q) ∈ ∂Eσ. The plastic multiplierλ is
obtained from the consistency condition

φ̇ = 0. (12)

Evolution laws of the type (10) are characterized by the property that the rates of
the internal variables (together withLp) are proportional to the gradient of the yield
function. Clearly, such laws are referred to asassociated flow rulesor normality
rules.

2.2 Standard dissipative solids

In this section, the plasticity framework discussed beforeis recast into an equivalent
minimization problem. More precisely, the goal of this section is the derivation of
a potential, from which the unknown deformation mapping canbe computed by
minimization. Evidently, for path-dependent problems such as plasticity theory, this
potential is defined pointwise (with respect to the (pseudo)time). As in the previous
sections, isothermal conditions are assumed and dynamicaleffects are neglected.
This section follows to a large extent [13,16].

In line with [13,16], the functional

Ẽ(ϕ̇, Ḟ
p
, α̇,Σ, Q) = Ψ̇(ϕ̇, Ḟ

p
, α̇) + D(Ḟ

p
, α̇,Σ, Q) + J(Σ, Q) (13)

is introduced. Here,J is the characteristic function ofEσ, i.e.,

J(Σ, Q) :=











0 ∀(Σ, Q) ∈ Eσ

∞ otherwise.
(14)

As a result, for admissible stress states, i. e.,(Σ, Q) ∈ Eσ, Ẽ represents the sum of
the rate of the stored energy and the dissipation. More precisely, if (Σ, Q) ∈ Eσ,

Ẽ(ϕ̇, Ḟ
p
, α̇,Σ, Q) = P : Ḟ =: P. (15)

That is,Ẽ equals the stress power denoted asP. Inadmissible stress states are penal-
ized byJ = ∞. The interesting properties of the functional (13) become apparent,
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if the stationarity conditions are computed. A variation ofẼ with respect to(Σ, Q)
leads to

(Lp, α̇) ∈ ∂J. (16)

where∂J is the sub-differential ofJ . The respective equation associated withα̇

reads

Q = −∂Ψ

∂α
. (17)

Finally, a variation with respect tȯF
p

yields

Σ = F eT · ∂Ψ

∂F e = 2 Ce · ∂Ψ

∂Ce . (18)

As a consequence, the stationarity condition ofẼ results in the flow rule (16), the
constitutive relation for the internal stress-like variables (17) and the constitutive
relation for the Mandel stressesΣ. The remaining variation of̃E with respect toϕ̇
will be discussed later.

According to [13,16], it is possible to derive a reduced functional, denoted asE ,
which only depends on the rate of the deformation and the strain-like internal vari-
ablesα andF p. For that purpose,E is re-written by applying the Legendre trans-
formation

J∗(L̄
p
, ˙̄α) = sup

{

Σ : L̄
p

+ Q · ˙̄α
∣

∣

∣ (Σ, Q) ∈ Eσ

}

(19)

of J . SinceJ∗ is positively homogeneous of degree one, a maximization ofẼ with
respect to(Σ, Q), results in

E(ϕ̇, Ḟ
p
, α̇) = Ψ̇(ϕ̇, Ḟ

p
, α̇) + J∗(L̇

p
, α̇). (20)

Hence, the only remaining variables areϕ̇, Ḟ
p

and α̇. Even more importantly,
the strain-like internal variablesF p andα follow jointly from the minimization
principle

◦

Ψred (ϕ̇) := inf
Ḟ

p
,α̇
E(ϕ̇, Ḟ

p
, α̇) (21)

which, itself, gives rise to the introduction of the reducedfunctional
◦

Ψred depend-
ing only on the deformation mapping. It is interesting to note that for hyperelastic
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continua,
◦

Ψred equals the rate of the strain-energy density, i. e.,

◦

Ψred (ϕ̇) = Ψ̇(ϕ). (22)

As a result, in this case,
◦

Ψred represents the time derivative of a potential. Further
elaborating this analogy, it can be shown that the time integration of Eq. (21) or
Eq. (22) over the interval[tn, tn+1] defines an incremental potential which acts like
a standard hyperelastic energy functional for the stresses. Hence, the first Piola-
Kirchhoff type stresses are obtained from

P =

∂

(

tn+1
∫

tn

◦

Ψred (ϕ̇) dt

)

∂F
. (23)

It bears emphasis that if
◦

Ψred represents the time derivative of a potential, the stan-
dard hyperelastic relation is recovered, i.e.,P = ∂FΨ. Applying Eq. (23) it is
relatively straightforward to extend the principle of minimum potential energy to
standard dissipative solids. More precisely, the unknown deformation mappingϕ
follows from the minimization principle

ϕ = arg inf
ϕ

Iinc(ϕ). (24)

with the incremental potentialIinc(ϕ) being defined as

Iinc(ϕ) = inf
Fp,α







∫

Ω

tn+1
∫

tn

E(ϕ̇, Ḟ
p
, α̇) dt dV −

∫

Ω

ρ0 B · ϕ dV −
∫

∂2Ω

T̄ · ϕ dA





 .(25)

Here,ρ0, B andT̄ denote the referential density, prescribed body forces andpre-
scribed surface forces acting at∂2Ω.

For a more detailed derivation, the interested reader is referred to [13,16]. It should
be pointed out that the minimization path of the internal variables according to
Problem (25) can only be computed analytically for selected, relatively simple ex-
amples, cf. [16]. Hence, an efficient numerical implementation as proposed in the
following section is required in general.

2.3 Prototype model

For the sake of concreteness, a prototype model falling intothe range of the afore-
mentioned standard dissipative solids is given. Since the main contribution of the
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present paper is the derivation of an efficient implementation which holds for a
broad range of constitutive models including elastic and plastic anisotropy and
kinematic hardening, a model combining all these physical phenomena is consid-
ered. In the case of a fully isotropic von Mises plasticity formulation or single slip
systems, refer to [13,16].

The first component of the model is the stored energy functional. In line with
Eq. (3), the Helmholtz energy

Ψ(F e, αi, αk) := Ψe(F e) + Ψp(αi, αk) (26)

is further decomposed into the partΨp
i associated with isotropic hardening, while

Ψp
k corresponds to kinematic hardening, i.e.,

Ψp(αk) = Ψp
i (αi) + Ψp

k(αk). (27)

Here, the internal strain-like variablesαi and αk are scalar-valued and second-
order tensors, respectively. It bears emphasis that no assumption concerning the
elastic or the plasticity-induced isotropy has been made yet. Hence, for instance,
by introducing structural tensors intoΨe(F e), elastic anisotropy can be taken into
account. Furthermore, it is noteworthy that ifΨp

k(αk) is isotropic, its material time
derivative reads

Ψ̇p
k = ∂αk

Ψp
k · α̇k = ∂αk

Ψp
k·

◦
αk (28)

with
◦
αk being an arbitrary corotational (objective) time derivative, cf. [34]. This

property can be useful for deriving objective evolution equations. While the choice
of the isotropic response (Ψp

i ) depending on experiments is uncomplicated, the part
describing kinematic hardening is far from being trivial. For a detailed discussion
about this issue in the context of a geometrically linearized theory, refer to [35]. For
the sake of simplicity and even more importantly, for the sake of interpretableness
of the numerical results reported in Section 4, linear hardening is considered, i.e.,

Ψp
i (αi) =

1

2
Hi α2

i , Ψp
k(αk) =

1

2
Hk ||αk||2 (29)

However, this assumption is not crucial for the numerical implementation presented
in the following section. Thus, the algorithmic formulation covers more compli-
cated hardening models as well.

The next component of the prototype model is the yield function spanning the ad-
missible elastic domain. Here, a Hill-type model defined by

φ(Σ, Qk, Qi) := Σeq(Σ − Qk) − Qi − Qeq
o (30)
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together with the equivalent stress

Σeq(A) :=
√

A : H : A (31)

is chosen. With

PDev := I − 1

3
1 ⊗ 1 (32)

denoting the 4th-order tensor mapping an arbitrary second-order tensorA onto its
deviatoric counterpart Dev[A] = PDev : A = A − 1/3 tr(A) 1, the 4th-order
tensorH is defined by

H = PDev : D : PDev. (33)

Clearly, by settingD = I, the identityH = PDev is obtained yieldingΣeq(A) =
√

Dev[A] : Dev[A]. Hence, standard von Mises plasticity theory is included within
the prototype model. For anisotropic yield functions,D does not equal the identity
anymore, but its components have to be related to the yield stresses in different
directions. However, it bears emphasis thatD cannot be chosen arbitrarily. For in-
stance, it has to be guaranteed that the yield function is convex implying thatH is
(semi-) positive definite.

Based on the yield function (30), the evolution equations defining the standard dis-
sipative solid are given by

Lp := Ḟ
p · F p−1 = λ

H : Σ

Σeq

α̇i = λ ∂Qi
φ

α̇k = λ ∂Qk
φ = −Lp

(34)

and the Helmholtz energy (26) yields the thermodynamic forces

Qi := −∂Ψ

∂αi

= −Hi αi

Qk := − ∂Ψ

∂αk
= −Hk αk.

(35)

whereQi andQk are stress-like internal variables work conjugate toαi andαk, re-
spectively. Furthermore, sinceΣeq is a positively homogeneous function of degree
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one, the dissipation simplifies to

D = Σ : L − Ψ̇ = Σ : Lp − Ψ̇p

= λ [∂Σφ : (Σ − Qk) − Qi]

= λ [Σeq(Σ − Qk) − Qi]

= λ Qeq
o ≥ 0.

(36)

Thus, the second law of thermodynamics is indeed fulfilled and even more impor-
tantly, the dissipation can be computed explicitly.

3 Numerical implementation

This section representing the main contribution of the present paper is concerned
with a novel numerical implementation suitable for standard dissipative solids at
finite strains. Analogously to the previous section, the algorithmic formulation is
variationally consistent, i.e., all unknown variables follow naturally from minimiz-
ing the energy of the considered system. In contrast to previous works on such
methods, the advocated model does not rely on any material symmetry and there-
fore, it can be applied to a broad range of different plasticity theories. This section is
organized as follows: In Subsection 3.1 a time discretization transforming the con-
tinuous minimization problem (21) into its discrete counterpart is briefly presented.
Based on this approximation and as a motivation, the numerical implementation for
relatively simple prototype models such as von Mises plasticity theory is carefully
analyzed first, see Subsection 3.2. The underlying key idea is to conveniently pa-
rameterize the restrictions imposed by the flow rule. Finally, these prototypes are
generalized for more complex, possibly anisotropic, plasticity models in Subsec-
tion 3.3. An adapted implementation for fully isotropic model is discussed as well.

3.1 Time integration

One of the key ideas of the variationally consistent implementation of standard
dissipative solids leading to so-calledvariational constitutive updatesis the trans-
formation of the continuous optimization problem (21) intoa discrete counterpart.
Conceptually, if a consistent time integration is applied,the integrated evolution
equations are obtained from the minimization problem

(F p
n+1, αk|n+1, αi|n+1) = arg inf

F
p
n+1

,αk|n+1,αi|n+1

Iinc (37)

11



with

Iinc(F
p
n+1, αk|n+1, αi|n+1) :=

tn+1
∫

tn

E(ϕ̇, Ḟ
p
, α̇) dt = Ψn+1 − Ψn +

tn+1
∫

tn

J∗ dt(38)

cf. Eq. (21). Clearly,Iinc depends additionally on the (known) previous time step
(F p

n, αk|n, αi|n) as well as on the (given) deformation gradientF n+1. However,
this is not highlighted explicitly.

In line with numerical implementations for standard (not variationally consistent)
finite strain plasticity models such as [2,1], Eq. (37) is approximated by applying
a consistent time discretization to the evolution equations. For the sake of con-
creteness, a first-order fully implicit scheme is adopted. More precisely, with the
notation

∆λ :=

tn+1
∫

tn

λ dt ≥ 0 (39)

the following approximations are used:

F
p
n+1 = exp

[

∆λ ∂Σφ|n+1

]

· F p
n

αi|n+1 = αi|n + ∆λ ∂Qi
φ

αk|n+1 = αk|n + ∆λ ∂Qk
φ
∣

∣

∣

n+1
.

(40)

As an alternative to Eq (40)c, the tensor-valued internal variablesαk could be inte-
grated by applying the exponential map, cf. [36], leading to

αk|n+1 = αk|n · exp
[

∆λ ∂Qk
φ
∣

∣

∣

n+1
· α−1

k

∣

∣

∣

n+1

]

. (41)

Clearly, with Eq. (40)a, the elastic part of the deformation gradient reads

F e
n+1 = F e

trial · exp [−∆λ ∂Σφ] F e
trial := F n+1 · (F p

n)−1. (42)

It bears emphasis that the time integrations (39)–(41) are indeed consistent and
hence, convergence to the analytical solution is guaranteed.

Inserting Eqs. (39), (40) and (42) into Eq. (38), the time integration ofIinc yields

Iinc(F
p
n+1, αk|n+1, αi|n+1, ∆λ) ≈ Ψn+1 − Ψn + Σn+1 : log[F p

n+1 · (F p
n)−1]

+ [Qk : ∂Qk
φ]|n+1 ∆λ + [Qi ∂Qi

φ]|n+1 ∆λ
(43)
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Since the termΨn shifting the energy depends only on the previous time step, it
does not affect the optimization problem (37) and hence, it can be neglected. Ac-
cording to the derivation, the potential (43) depends on theconsidered time inte-
gration and hence, uniqueness is only obtained in the limiting case∆t → 0.

So far, variational constitutive updates are relatively simple and hence, the respec-
tive implementation seems to be straightforward. Unfortunately, this is not the case.
The reasons for that are manifold. For instance, a direct minimization ofΨinc with
respect toF p

n+1 is not admissible, sinceF p has to comply with physical constraints
resulting from the flow rule (and of course,det F p > 0). Furthermore, if plastic
loading is considered, the additional restrictionφ = 0 has to be enforced relating
the stresses (and thus the strains) to the internal variablesαk andαi. Fortunately, all
these problems can be solved efficiently by elaborating a suitable parameterization
of the unknown variables. This will be shown in the next subsection.

Remark 1 No physical assumption regarding the yield functionφ has been made
yet. In most applicationsφ is chosen to be of the type

φ(Σ, Qk, Qi) = Σeq(Σ − Qk) − Qi − Qeq
0 . (44)

As a result,Qk represents a back-stress and furthermore, the identity

α̇k = −Lp. (45)

is fulfilled. Additionally,Σeq is often represented by a positively homogeneous func-
tion of degree one. Combining these physically sound constraints, the dissipation
simplifies significantly, i.e.,

D = λ Qeq
0 ≥ 0 (46)

cf. Eq. (36) and finally,

Iinc(F
p
n+1, αk|n+1, αi|n+1) ≈ Ψn+1 − Ψn + Qeq

0 ∆λ. (47)

For instance, the Hill-type model presented in Subsection 2.3 complies with the
aforementioned assumption.

3.2 Motivation: Implementation of some prototype models

As mentioned before, the main issue associated with variational constitutive up-
dates is the numerical implementation of the minimization problem (37). It depends
crucially on a suitable parameterization of the evolution equations. For a better
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understanding, the algorithmic formulation is briefly presented for four different
prototype models. Each of those fulfills the restrictions summarized in Remark 1.
Hence, the functional to be minimized is given by Eq. (47) andthe constraintφ = 0
is already included within the optimization, cf. Eq. (36).

3.2.1 Example: Single crystal plasticity

Since single-crystal plasticity (in the sense of Schmid’s law) is based on associative
evolution equations, the model is defined completely by the respective yield func-
tion φ. Introducing a slip plane by its corresponding normal vector n̄ and the slip
directionm̄, φ is given by

φ(Σ, αi) = |Σ : (m̄ ⊗ n̄) | − Qi(αi) − Qeq
0 . (48)

Evidently, the vectors̄n andm̄ are objects that belong to the intermediate config-
uration. They are orthogonal to one another and time-independent, i. e.,

n̄ · m̄ = 0 ||n̄||2 = ||m̄||2 = 1. (49)

Based on Eq. (48), the evolution equations

Lp = λ̃ (m̄ ⊗ n̄) , with λ̃ = λ sign[Σ : (m̄ ⊗ n̄)] , α̇i = −λ(50)

are obtained. Hence, only one single variable beingλ is unknown. Thus, a suitable
parameterization of the time discretized evolution equations reads

F
p
n+1 = (1 + ∆λ̃ m̄ ⊗ n̄) · F p

n, αi|n+1 = αi|n − |∆λ̃| (51)

and consequently, the minimization problem (36) depends only on the scalar-valued
variable∆λ̃, i.e.,

∆λ̃ := arg inf Iinc(∆λ̃). (52)

It bears emphasis that this property even holds for elastically anisotropic models.

3.2.2 Example: von Mises plasticity theory

For the next prototype model a fully isotropic elastic response is considered. Hence,
the Mandel stresses are symmetric. The investigated von Mises yield function in-
cluding isotropic hardening is given by

φ(Σ, αi) = ||Dev[Σ]|| − Qi(αi) − Qeq
0 (53)
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where Dev[Σ] is the deviator ofΣ (compare to Subsection (2.3)). Consequently,
the evolution equations are computed as

Lp = λ M , α̇i = −λ, with M :=
Dev[Σ]

||Dev[Σ]|| . (54)

Note that the tensorM shows the properties

||M || = 1, tr[M ] = 0. (55)

Furthermore, if the elastic model is isotropic, the elastictrial strains

Ce
trial := (F e

trial)
T · F e

trial =
3
∑

i=1

(

λetrial
i

)2
N i ⊗ N i (56)

are coaxial to the (unknown) elastic strainsCe and thus, to the Mandel stresses. As
a result, since Eq. (53) is an isotropic tensor function inΣ, the eigenvectors of the
unknown tensorLp (or M ) are known in advance, i.e.,

M =
3
∑

i=1

λM
i N i ⊗ N i, with

3
∑

i=1

(

λM
i

)2
= 1,

3
∑

i=1

λM
i = 0, (57)

see constraints (55). This, in turn, implies that only two parameters are unknown:
the plastic multiplier and one additional parameter defining M . Two convenient
parameterizations of the restrictions imposed by the flow rule are given below

• Parameterization I depending on∆λp
1, ∆λp

2

∆λ ∂Σφ =:
3
∑

i=1

∆λp
i N i ⊗ N i, with ∆λp

3 = −∆λp
1 − ∆λp

2

⇒ ∆αi = αi|n+1 − αi|n = −
√

√

√

√

3
∑

i=1

(∆λp
i )

2

(58)

• Parameterization II depending onθ anda; ([37])

λM
i =

√

2

3
sin

[

2 αi π

3
− θ

]

, αi = 1, 2, 3 cf. Eq. (57)

∆λ = a2 ≥ 0

(59)

15



3.2.3 Example: Associative Drucker-Prager plasticity model

This model is defined by the yield function

φ(Σ, αi) = κ tr[Σ] + ||Dev[Σ]|| − Qi(αi) − Qeq
0 . (60)

with κ being a material parameter. Eq. (60) yields the associativeevolution equa-
tions

Lp = λ (κ 1 + M) , α̇i = −λ (61)

whereM is given by Eq. (57). Clearly, if the elastic response is fully isotropic,M
andλ can again conveniently be parameterized by Eq. (59).

3.2.4 Example: Rankine plasticity model

The final example is associated with Rankine plasticity theory. The respective yield
function is postulated to be

φ(Σ, αi) = Σmax(Σ) − Qi(αi) − Qeq
0 . (62)

Here,Σmax(Σ) is the maximum principal Mandel stress. Considering a fullyisotropic
elastic behavior, Eq. (62) results in the normality evolution equations

Lp = λ Nmax ⊗ Nmax, α̇i = −λ. (63)

with Nmax denoting the eigenvector corresponding toΣmax. Note thatNmax is
known in advance, if a fully isotropic model is chosen (and the Baker-Ericksen
inequalities hold). Hence, the only unknown parameter isλ which can conveniently
be parameterized by∆λ = a2.

3.3 An efficient variational constitutive update

As shown in the previous subsections, the numerical computation of the optimiza-
tion problem (43) strongly depends on a convenient parameterization of the evolu-
tion equations and the flow rule. Such a parameterization which can be applied to a
broad range of different constitutive models will be discussed in Subsection 3.3.1.
Subsequently, the simplifications holding for fully isotropic models (elastic and
plastic) are addressed in Subsection 3.3.2.
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3.3.1 The general case

As evident from the prototype models, a convenient parameterization of the flow
rule and the evolution equations depends strongly on the considered plasticity model,
i.e., the yield function. For deriving a parameterization which holds for a broad
range of different models, the (unknown) argumentsF

p
n+1, αk|n+1, αi|n+1 and∆λ

entering the incrementally defined potential (43) are replaced by a more suitable
representation. More precisely,

Iinc = Iinc(M , Hk, Hi, ∆λ) (64)

with

M := ∂Σφ, Hk := ∂Qk
φ, Hi := ∂Qi

φ. (65)

Accordingly,M , Hk andHi are the flow direction, the kinematic hardening di-
rection and the isotropic hardening gradient, respectively. Clearly,M , Hk andHi

cannot be chosen arbitrarily, but have to comply with the restrictions imposed by
the constitutive model. For this reason, the aforementioned directions are parame-
terized as follows:

M = M(Σ̃) := ∂Σφ|
Σ̃

(66)

Hk = Hk(Q̃k) := ∂Qk
φ
∣

∣

∣

Q̃k

(67)

Hi = Hi(Q̃i) := ∂Qi
φ|

Q̃i
(68)

∆λ = ∆λ(a) := a2 (69)

Here, the unknowns̃Σ, Q̃k andQ̃i denote pseudo stresses, a pseudo backstress and
a pseudo stress-like hardening variable. It has to be emphasized that these pseudo
variables are not identical to their physical counterpartsin general, i.e.,

Σ̃ 6= Σ, Q̃k 6= Qk, Q̃i 6= Qi. (70)

More precisely, the variables̃Σ, Q̃k and Q̃i only define the flow and hardening
directions. Thus, they are related with their physical counterparts by

M(Σ̃) = M(Σ), Hk(Q̃k) = Hk(Qk), Hi(Q̃i) = Hi(Qi). (71)

As a result and in contrast to the original parameterization, Eqs. (66)–(69) automat-
ically fulfill the restrictions associated with the considered constitutive model. For

17



instance, in case of von Mises plasticity,

φ = ||DevΣ|| − Qi(αi) − Qeq
0 ⇒ M(Σ̃) =

Dev[Σ̃]

||Dev[Σ̃]||
(72)

and thus the constraints,

tr[M ] = 0, M : M = 1, ∀Σ̃ (73)

are naturally enforced. The same holds for the evolution equations corresponding
to hardening. Obviously, additional constraints such asQi ≥ 0 can be easily taken
into account as well. Inserting Eqs. (66)–(69) into Eq. (64)leads to

Iinc = Iinc(X), with X = [Σ̃, Q̃k, Qi, a] ⇒ dim[X] = 20 (74)

Finally, the unknownsX can be computed from the constrained optimization scheme

X = arg inf
X,φ≤0

Iinc(X). (75)

For that purpose, by now standard algorithms can be applied,cf. [38]. Evidently,
the choice of a suited method depends strongly on the possibly non-linear con-
straintφ = 0 (plastic loading). In the following paragraph, attention is turned on a
certain class of plasticity models. This class contains a large number of important
constitutive laws.

In this paragraph, an efficient solution scheme for optimization problem (75) is
developed. It is restricted to yield functions of the type

φ = Σeq(Σ − Qk) − Qi(αi) − Qeq
0 (76)

with Σeq denoting a positively homogeneous function of degree one. As mentioned
before, many constitutive laws such as von Mises, Drucker-Prager or Rankine type
models fall into the range of Eq. (76). According to Remark 1,in this case, the
cumbersome non-linear constraintφ = 0 can be directly included in the dissipation
resulting inD = λ Qeq

0 ≥ 0. Furthermore, since for this class of models the
evolution equations yield

Hk = −M , and α̇i = −λ, (77)

the non-linear constrained optimization problem (75) can be significantly simpli-
fied, i.e.,

X = arg inf
X

Iinc(X), with Iinc = Ψn+1(X) − Ψn + Qeq
0 ∆λ (78)
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with the unknowns being

X = [Σ̃, a] ⇒ dim[X ] = 10. (79)

As a result, the complexity of the problem is reduced by a factor of 2. The uncon-
strained minimization problem (78) can be solved in a standard manner, e.g., by
employing gradient-type schemes, cf. [39]. Applying the time integrations (40) and
subsequently, using the derivatives

∂Ψe

∂∆λ
= −

[

(F e
trial)

T · ∂Ψe

∂F e

]

: D exp [− ∆λ ∂Σφ|
Σ̃
] : ∂Σφ|

Σ̃
(80)

∂Ψe

∂Σ̃
= −

[

(F e
trial)

T · ∂Ψe

∂F e

]

: D exp [− ∆λ ∂Σφ|
Σ̃
] : ∂2

Σ
φ
∣

∣

∣

Σ̃
∆λ (81)

∂Ψp

∂∆λ
=

∂Ψp

∂αi

∂αi

∂∆λ
+

∂Ψp

∂αk
:

∂αk

∂∆λ

= Qi + Qk : ∂Σφ|
Σ̃

,
(82)

∂Ψp

∂Σ̃
=

∂Ψp

∂αk

:
∂αk

∂Σ̃
= ∆λ Qk : ∂2

Σ
φ
∣

∣

∣

Σ̃
(83)

the gradient ofIinc can be computed in a straightforward manner. In line with
Eq. (66), the elastic part of the deformation gradient is computed by means of

F e
n+1 = F e

trial · exp
[

−a2 ∂Σφ|
Σ̃

]

(84)

Clearly, in case of an exponential approximation of the evolution equations forαk,
the gradient has to be modified accordingly. In Eqs. (80) and (81), the derivative of
the exponential mapping

D exp [A] :=
∂ exp [A]

∂A
(85)

can be computed in a standard fashion, e.g. [40,41]. The examples presented in
the next section have been computed by applying a globally convergent Newton-
type iteration, cf. [39]. For that purpose, the second derivatives ofIinc are required.
Although they result in relatively lengthy equations, theycan be calculated in a
straightforward manner. Therefore, the Hessian ofIinc is omitted.

Remark 2 According to Eqs. (80) and (83), stability ofIinc with respect to the
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plastic multiplier∆λ reads

∂I

∂∆λ

∣

∣

∣

∣

∣

∆λ=0

= − [Σ : ∂Σφ + Qi + Qk : ∂Σφ + Qeq
0 ] |trial

= −φtrial > 0

(86)

which coincides with the classical (discrete) unloading condition φtrial ≤ 0. It is
noteworthy that this property is fulfilled for any consistent time integration. Fur-
thermore, even if the equivalent stressΣeq is not a positively homogeneous function
of degree one, the inequality

− [(Σ − Qk) : ∂Σφ] |trial ≤ −Σeq (87)

holds (φ is convex) and thus,

∂I

∂∆λ

∣

∣

∣

∣

∣

∆λ=0

≤ −φtrial (88)

According to Ineq. (88), the variational constitutive update tends to overestimate
the elastic limiting loading, i.e., plastic loading occurslater (compared to standard
plasticity theory) and thus,φtrial > 0 represents a necessary loading criterion for
the variational update. However, it has to be stressed once again that forΣeq be-
ing a positively homogeneous function of degree one, both schemes (conventional
computational plasticity and the variationally consistent method as developed in
the present paper) lead to identical loading conditions.

Remark 3 Using a parameterization of the type∆λ = a2 ≥ 0, the functionalIinc

shows an extremum ata = 0 (if Qi(tn) = 0 andQk(tn) = 0). Hence, if classical
gradient-type optimization schemes are employed, a non-vanishing initial value
a = TOL > 0 should be used for a plastic loading step.

3.3.2 Fully isotropic models

In this subsection, a tuned version of the optimization scheme discussed before is
given. It is based on the same assumptions as made before (Eq.(76)). Addition-
ally, the stored energy potentialΨ as well as the yield function are postulated to
be isotropic tensor functions (without structural tensors). For such models, it is
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straightforward to show that all tensors are coaxial. More precisely,

Ce
trial =

3
∑

i=1

(

λetrial
i

)2
N i ⊗ N i

Ce =
3
∑

i=1

(λi)
2

N i ⊗ N i

Σ =
3
∑

i=1

Σi N i ⊗ N i

∂Σφ =
3
∑

i=1

∂Σi
φ N i ⊗ N i

(89)

Consequently, the optimization scheme (78) reduces to

X = arg inf
X

Iinc(X), with Iinc = Ψn+1(X) − Ψn + Qeq
0 a2 (90)

with the unknowns being

X = [Σ̃1, Σ̃2, Σ̃3, a] ⇒ dim[X ] = 4. (91)

Again, it is strictly distinguished between principal Mandel stressesΣi and their
pseudo counterparts̃Σi which define the flow direction. Using the spectral decom-
position of the total differential of the exponential mapping (for fixed eigenvectors
N i)

d{exp [−∆λ ∂Σφ]} = −
{

3
∑

i=1

∂Σi
φ exp[−∆λ ∂Σi

φ] N i ⊗ N i

}

d∆λ

−
3
∑

j=1

{

3
∑

i=1

∆λ ∂2
ΣiΣj

φ exp[−∆λ ∂Σi
φ] N i ⊗ N i

}

dΣj ,

(92)

together with

[

(F e
trial)

T · ∂Ψe

∂F e

]

=
3
∑

i=1

P e
i λetrial

i N i ⊗ N i, (93)

the gradients (80) – (83) simplify greatly, i.e.,

∂Ψe

∂∆λ
= −

3
∑

i=1

P e
i λetrial

i ∂Σi
φ|Σ̃i

exp(−∆λ ∂Σi
φ|Σ̃i

) (94)

∂Ψe

∂Σ̃j

= −
3
∑

i=1

P e
i λetrial

i ∆λ ∂2
ΣiΣj

φ
∣

∣

∣

Σ̃i

exp[−∆λ ∂Σi
φ|Σ̃i

] (95)
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∂Ψp

∂∆λ
= Qi + Qk :

(

3
∑

i=1

∂Σi
φ|Σ̃i

N i ⊗ N i

)

(96)

∂Ψp

∂Σ̃j

= ∆λ Qk :

(

3
∑

i=1

∂ΣiΣj
φ2
∣

∣

∣

Σ̃i

N i ⊗ N i

)

(97)

Here,P e
i represents the eigenvalues ofP e := ∂F eΨ. If a Newton-type iteration is to

be applied for solving the nonlinear optimization scheme, the second derivatives of
Iinc are needed. As in the more general case discussed in the previous subsection,
they can be computed in a straightforward manner. Consequently, they are omitted
here. Clearly, analogously to the standard return-mappingalgorithm formulated in
principal axes, the now non-vanishing derivatives of the eigenvectorsN i have to
be considered, i.e., d(N i ⊗ N i) 6= 0, cf. [1].

4 Numerical examples

The versatility and the performance of the proposed constitutive update are demon-
strated by means of selected numerical examples. For the sake of concreteness,
the prototype model as summarized in Subsection 2.3 is considered. Accordingly,
isotropic as well as (linear) kinematic hardening are takeninto account.

For the elastic response, a quadratic, orthotropic model characterized by the elastic
stored energy potential

Ψe =
1

2
λ J2

1 + µ J2 +
1

2
α1 J2

4 +
1

2
α2 J2

6 + 2 α3 J5 + 2 α4 J7

+ α5 J4 J1 + α6 J6 J1 + α7 J4 J6

(98)

is adopted, cf. [42]. Here,Ji are the invariants

J1 := tr[E], J2 := tr[E2],

J4 := tr[M (1) · E], J5 := tr[M (1) · E2], J6 := tr[M (2) · E], J7 := tr[M (2) · E2]
(99)

depending on the Green-Lagrange strain tensorE and so-called structural tensors
M (i) = mi ⊗ mi wheremi span an orthonormal basis. In this section, the bases
mi are assumed to be of the typem1 = [cos β; sin β; 0], m2 = [− sin β; cos β; 0]
andm3 = [0; 0; 1]. The angleβ is set toβ = 10◦. The material parameters defining
the elastic response are summarized in Tab. 1.

Following Subsection 2.3, the elastic space is defined by a Hill-type yield function,
cf. (30). Thus, different material symmetries can be incorporated by choosing the
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λ µ α1 α2 α3 α4 α5 α6 α7

ortho. 67.25 81.00 67.46 -3.10 -15.00 0.00 2.00 -7.55 0.98

iso. 67.25 81.00 0 0 0 0 0 0 0

Table 1
Material parameters (GPa) defining the orthotropic and the isotropic elastic response ac-
cording to Eq. (98), cf. [42]

4th-order weighting tensorD accordingly. In the numerical examples presented in
this section, a fully isotropic and an orthotropic yield function are considered. The
corresponding non-vanishing components of the weighting tensorD are given in
Tab. 2. It can be easily checked, that the coefficientsDijkl define indeed a convex

D1111 D2121 D3131 D1212 D2222 D3232 D1313 D2323 D3333

ortho. 0.918887 4.18388 6.25 4.18388 -0.516313 5.0625 6.255.0625 5.84076

iso. 1 1 1 1 1 1 1 1 1

Table 2
Non-vanishing components of the weighting tensorD for an orthotropic as well as for an
isotropic equivalent stressΣeq according to Eq. (33)

space of admissible elastic stresses. Different hardeningmodels are analyzed. Each
of them falls into the class defined by Eqs. (27) and (29). The respective material
parameters are listed below.

Hi Hk

No hardening 0 0

Isotropic 1.0 0

Kinematic 0.0 1.0

Combined 0.5 0.5

Table 3
Material parameters (GPa) for different hardening models according to Eqs. (27) and (29)

4.1 Shear test

At first, a simple shear test is investigated. More precisely, the following stress
states are analyzed:

P = P12 e1 ⊗ e2, P = P13 e1 ⊗ e3, P = P23 e2 ⊗ e3. (100)

Here and henceforth,ei denote the standard cartesian basis. It bears emphasis that
the vectorsei are not identical to those defining the material symmetry, i.e.,ei 6=
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Fig. 1. Monotonic shear test: stress-strain diagram associated with isotropic hardening
(Hi = 1.0, Hk = 0.0); results predicted by the fully anisotropic model (elastic and plastic)
depending on the loading direction. For the sake of comparison, the response computed
from the isotropic model (elastic and plastic) is shown as well.

mi. In contrast to purely displacement-driven problems, Eqs.(100) represent a
Neumann problem. For the computation of the solution, a Newton-type iteration has
been implemented. By doing so, the linearizations of the algorithm can be checked.

For a careful analysis of the fully orthotropic model (orthotropic elastic and plastic
response), the three different simple shear tests according to Eqs. (100) are com-
pared to the fully isotropic model. The computed results areshown in Fig. 1. Here,
isotropic hardening has been assumed, cf. Tab. 3. It is evident from Fig. 1 that
the model is indeed highly anisotropic. More precisely, depending on the loading
direction, elastic yielding starts at different stress states. Furthermore, since the in-
vestigated problem is highly coupled, hardening is affected by the loading direction
as well. However, this dependency is less pronounced.

For kinematic hardening (see Tab. 3), the stress-strain-diagrams corresponding to
the simple shear test are shown in Fig. 2. Again, the orthotropic material behavior
is obvious. However, in contrast to isotropic hardening, kinematical hardening in-
duces an additional degree of coupling. For this reason, thedifferences in theP −F
diagrams are more pronounced compared to Fig. 1.

Next, the influence of different hardening models is investigated. For that purpose,
cycling loading is considered. The computed responses for the fully isotropic model
(elastically isotropic and isotropic yield function) are summarized in Fig. 3. As ex-
pected, during the first stage (loading) all hardening approaches lead to the same
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Fig. 2. Monotonic shear test: stress-strain diagram associated with kinematic hardening
(Hi = 0.0, Hk = 1.0); results predicted by the fully anisotropic model (elastic and plastic)
depending on the loading direction. For the sake of comparison, the response computed
from the isotropic model (elastic and plastic) is shown as well.
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Fig. 3. Cyclic shear test: stress-strain diagram associated with a fully isotropic formulation
(elastic and plastic) depending on the hardening model
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Fig. 4. Cyclic shear test: stress-strain diagram associated with a fully anisotropic formula-
tion (elastic and plastic) depending on the hardening model

results, since the harding moduli are identical, cf. Tab. 3.Furthermore, after un-
loading and an additional re-loading step, the classical hysteresis can be observed.
Although the applied strains are relatively large, Fig. 3 agrees reasonably with the
linearized theory. In summary, it can be verified that the proposed variational con-
stitutive update works correctly and efficiently.

Next, the cyclic simple shear test is re-analyzed by adopting the fully anisotropic
constitutive model (elastically orthotropic and orthotropic yield function). The com-
puted stress-strain responses are given in Fig. 4. According to Fig. 4 and in contrast
to the fully isotropic model (see Fig. 3), theP − F diagrams are now even dif-
ferent during the first loading stage. Clearly, this is a direct consequence, of the
anisotropy of the material. Although the simple shear test represents one of the
simplest mechanical problems, it is relatively difficult toestimate the influence of
the material anisotropy. Therefore, the need for efficient numerical algorithms such
as that discussed in the present paper is of utmost importance.

4.2 Uniaxial tension test

The second investigated example is the uniaxial tension test characterized by the
stress tensors

P = P11 e1 ⊗ e1, P = P22 e2 ⊗ e2, P = P33 e3 ⊗ e3. (101)
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Fig. 5. Monotonic uniaxial tension test: stress-strain diagram associated with isotropic hard-
ening (Hi = 1.0, Hk = 0.0); results predicted by the fully anisotropic model (elastic and
plastic) depending on the loading direction. For the sake ofcomparison, the response com-
puted from the isotropic model (elastic and plastic) is shown as well.

Again, the non-linear Neumann problem is solved by a Newton-type iteration.

In line with the previous subsection, monotonic tests are analyzed first. The com-
puted results are summarized in Figs. 5 and 6. As for the sheartest, the anisotropy
of the elastic domain, together with the loading direction depending hardening, is
evident.

The numerically computed response corresponding to cyclicloading is shown in
Figs. 7 and 8. In analogy to the simple shear test, all hardening models lead to
identical results during the first loading stage, if a fully isotropic model is consid-
ered. By contrast, according to Fig. 8, orthotropy induces an additional coupling
through which the influence of hardening becomes highly-nonlinear and complex.

It is noteworthy that the proposed constitutive update improves significantly the
robustness as well as the performance compared to conventional update schemes.
For instance, the computation of initial values for a Newton-iteration is far from
being straightforward. Such problems do not occur within the advocated method.
Furthermore, even if the considered mechanical model is highly non-linear or non-
smooth reliable and powerful optimization methods are available.
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Fig. 6. Monotonic uniaxial tension test: stress-strain diagram associated with kinematic
hardening (Hi = 1.0, Hk = 0.0); results predicted by the fully anisotropic model (elastic
and plastic) depending on the loading direction. For the sake of comparison, the response
computed from the isotropic model (elastic and plastic) is shown as well.
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Fig. 7. Cyclic uniaxial tension test: stress-strain diagram associated with a fully isotropic
formulation (elastic and plastic) depending on the hardening model
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Fig. 8. Cyclic uniaxial tension test: stress-strain diagram associated with a fully anisotropic
formulation (elastic and plastic) depending on the hardening model

5 Conclusions

An enhanced constitutive update for so-called standard dissipative solids has been
proposed. In contrast to conventional update schemes such as the by now classical
return-mapping algorithm, the new method is fully variational. More precisely, and
in line with the previous works [13,16], the unknown historyvariables, together
with the deformation mapping, follow jointly from minimizing an incrementally
defined (energy) potential. Besides the associated mathematical and physical ele-
gance, this method has some practical advantages. For instance, it allows to em-
ploy classical optimization methods for computing the solution of the aforemen-
tioned minimization problem. Unlike the prototype models advocated in [13,16],
the proposed method covers a broad range of different constitutive models includ-
ing anisotropic elasticity, anisotropic yield functions and isotropic as well as kine-
matic hardening. As a relatively complex example, an orthotropic Hill-type model
including combined isotropic-kinematic hardening has been analyzed. It has been
shown that although the investigated prototype representsa highly non-linear, cou-
pled and anisotropic problem, the advocated variational constitutive update works
very robustly and efficiently.
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