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Abstract
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independent dissipative solids at finite strain. More [@&lgj focus is on finite strain plas-
ticity theory based on a multiplicative decomposition @ tteformation gradient. Adopting
the formalism of standard dissipative solids which allowsléscribe constitutive models
by means of only two potentials being the Helmholtz energy e yield function (or
equivalently, a dissipation functional), finite strain gilaity is recast into an equivalent
minimization problem. In contrast to previous models, thespnted framework covers
isotropic and kinematic hardening as well as isotropic aridadropic elasticity and yield
functions. Based on this approach a novel numerical imphtatien representing the main
contribution of the paper is given. Analogously to the tlegical part, the algorithmic for-
mulation is variationally consistent, i.e., all unknowriahles follow naturally from mini-
mizing the energy of the considered system. Extending pusly published works on these
methods, the advocated model does not rely on any matenahsyry and therefore, it can
be applied to a broad range of different plasticity theorfesan example, an anisotropic
Hill-type model is developed. Numerical examples demastthe applicability and the
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1 Introduction

Nowadays, computational plasticity represents an indisalele tool for the design
of complex engineering structures. Considering a ceriaie intervallt,; ¢, 1],
the goal of computational plasticity is the calculation tfséate and history vari-
ablesX at timet, ., i.e., X,, — X, 1. Such methods are usually based on a
time integration transforming the underlying differehgguations such as the evo-
lution laws into a set of non-linear equations. Subsequgthié resulting algebraic
problem is solved iteratively. A typical example is given the return-mapping
algorithm, cf. [1,2]. This well-established first-ordetseme consists of an (im-
plicit) backward-Euler integration combined with a Newditgration. By now, the
return-mapping algorithm can be considered as a statieeséitt method even for
the geometrically exact framework (large strains), cf.9B-Most frequently, the
underlying mechanical models are based on a multiplicalde®mposition of the
deformation gradientl = F*° - F®). Although many fundamental problems in
finite strain elastoplasticity are still unanswered (seg, 5,7]), the kinematical
assumptiorF’ = F* - F* is also made in the present work.

Mathematically, plasticity theory represents a non-sinaotid highly non-linear
problem in general. Clearly, the non-smoothness is a deensequence of the
elastic-plastic transition, while non-linearity resuitsm the evolution equations,
cf. [1,2]. Even worse, many plasticity models lead to nomua solutions. For
instance, crystal plasticity theory in the sense of Schrhmhs this problem (see
[8]). Due to these aforementioned issues, computatioaatigity, although already
established in the 60s (see [9]), is far from being compjetelved and the devel-
opment of an efficient and robust numerical implementatsomat straightforward
at all.

If the evolution equations and the flow rule obey the so-datlermality rule (as-
sociative models), they can be elegantly derived from aatianal principle — the
postulate of maximum dissipation, cf. [10]. Comi and co-kess realized that by
recourse to time discretization, a similar variationalaspt can be derived even for
the discrete setting, see [11,12]. In those works, the astlerived a Hu-Washizu
functional whose minimum corresponds to the solution ofdiseretized algebraic
differential equations defining the material model. In tegpective numerical im-
plementation, the constitutive model was enforced in a wssise. That is, the
resulting finite element formulation is different compatedthe one usually ap-
plied in computational plasticity, cf. [2,1], i.e., a pawvise description (usually at
the integration points).

Probably inspired by the works [11,12], Ortiz and co-woskadvocated a consti-
tutive update based on a minimization principle as well[X3-15]. Nevertheless,
in contrast to the previous works, the proposed algorithfioniciulation coincides
with the structure of standard finite element codes. Moreipedy, the update is



performed pointwise at the integration points. Similar mewical procedure and
further elaborations can be found, for instance, in [16—-E8F models based on
linearized kinematics, the reader is referred to [20].

The advantages resulting from such a variational consttwipdate are manifold.
On the one hand, the existence of solutions can be analyzesifny the same tools
originally designed for hyperelastic material models,[21.,15,16]. On the other
hand, a minimum principle can be taken as a canonical baserifor estimation,
cf. [14,22-24]. In addition, from an implementational pahview, a minimization
principle opens up the possibility to apply state of the attroization algorithms.
Particularly for multisurface plasticity models such asgée-crystal plasticity this
represents an interesting feature.

In the present paper, an enhanced constitutive update-alkd standard dissipa-
tive solids obeying the postulate of maximum dissipatiotine with [13,14,16,20,17—
19], is elaborated. In contrast to the algorithms discussdte cited works, the
advocated novel scheme does not rely on any material symiuedr therefore, it
can be applied to a broad range of different plasticity tlesoMore precisely, ar-
bitrary material symmetries concerning the elastic resp@nd the yield function
can be taken into account. Furthermore, kinematic and edupbtropic/kinematic
hardening are covered by the novel algorithmic formulatida an example, a
fully anisotropic Hill-type model (orthotropic elasticagonse and orthotropic yield
function) is implemented.

The paper is organized as follows: Section 2 is concernddavitoncise review of
finite strain plasticity theory based on a multiplicativedmposition of the defor-
mation gradient ¥ = F*° - F*). While Subsection 2.1 covers the fundamentals,
the variational structure of plasticity associated witkcatied standard dissipative
solids is discussed in Subsection 2.2. Section 2 is conpplatea relatively com-
plex example being a fully anisotropic Hill-type model (Sebtion 2.3). The main
contribution of the present paper dealing with a novel nucaéimplementation
suitable for standard dissipative solids at finite stragddressed in Section 3. The
underlying key idea is to conveniently parameterize theit®ns imposed by the
flow and the hardening rules. Finally, the performance aaddbustness of the re-
sulting algorithmic formulation are demonstrated by meainselected numerical
examples (Section 4).

2 Finite strain plasticity theory

The fundamentals of a variationally consistent finite stgaasticity theory based
on a multiplicative decomposition of the deformation geadiin the sense of [25]
are briefly discussed in this section. For the sake of sintplisothermal static

conditions are assumed. For modeling a dissipative matesaonse, a descrip-



tion with internal state variables is used, cf. [26]. WhilebSection 2.1 is con-
cerned with a concise review of conventional plasticityotlyeat finite strains, stan-
dard dissipative solids are addressed in Subsection 2e&€elimodels allow to de-
scribe plasticity theories by means of only two independenttionals being the
Helmholtz energy and the yield function (or equivalentigissipation functional).
The present section is completed by a variationally coesidtlill-type plasticity
model which includes an anisotropic elastic energy and &oanopic yield func-
tion, together with isotropic and kinematic hardening.

2.1 Fundamentals

Without going too much into detail and following Lee [25], altiplicative decom-
position of the deformation gradied#t := GRAD¢ into an elastic parf™ and a
plastic partF’® of the type

F =F°. F", with det F* > 0, det F* >0 (1)

is adopted. For a comprehensive overview and critical comsnan different plas-
ticity formulations at finite strains, refer to [27,28,7]aged on the split (1), the
Helmholtz energy of the considered solid can be written as

U = U(F°, F®, o) )

see [29,30,1,2]. Herey € R" is a collection of strain-like internal variables asso-
ciated with hardening or softening. Assuming that the elassponse modeled by
e is completely independent of the internal processes rejertibyc, an energy
functionalV of the type

U= U (F°) + 1) (3)

is adopted. Clearly, by the principle of material frame ffatence, ¥¢(F°) =
U°(C°) whereC® := F°' . F*° is the elastic right Cauchy-Green tensor. The second
term in Eq. (3), denoted abP, represents the stored energy due to plastic work. It
is associated with isotropic/kinematic hardening/softgnFor more details about
energy functionals of the type (3), refer to [31]. It shoulel loted that in most
applications, a functional of the type (3) is chosen.

Considering an isothermal process, the second law of thayn@omics yields

D:P:F—\i/:S:%C’—\PZO 4)



and finally, by using Eq. (1) and (3) the dissipatiBrreads

ov
oce

T 1 .¢ T .
D:(FP.S.FP 9 ):50 +8: (F"C F) +Q &> 0.(5)

In Egs. (4) and (5)P andS := F~' . P denote the first and the second Piola-
Kirchhoff stress tensor an@ := —0,V is the stress-like internal variable work
conjugate too. According to Ineq. (5), the dissipation is decomposed taady
into one part associated with the elastic strain rate and@nsiepart corresponding
to plastic deformation. Since both parts are independennefanother, Ineq. (5)
gives rise to

ov oA 7

=2—=2F" .—_.FP
o oC [[On ©

and the reduced dissipation inequality

D=%:L°+Q & >0. (7)

Here and hencefortt. = 2 C° - Jc-V are the Mandel stresses (cf. [32]) and
L* = F’ . F*"' denotes the plastic velocity gradient. It bears emphasistibth
objects belong to the intermediate configuration. This metimes highlighted by
using overlined letters.

Next, the elastic domain has to be defined. For that purpbseadmissible stress
spaceE,, is introduced, cf. [29]. Since according to Ineq. (7), théused dissipa-
tion inequality depends naturally on the Mandel stres8gss formulated in terms
of ¥,i.e.,

E. = {(2.Q) eR"" | 4(2.Q) <0}. ®)

The boundaryE,, represents a level set function measuring the elastic dfitie
considered material. Thatis(iE, Q) € intE,, the solid deforms purely elastically.
Only if (3, Q) € 0E,, a plastic response is possible. Clearly, yiedd functiong

has to be derived from experimental observation. Additigna must be convex
and sufficiently smooth, cf. [33]. The constitutive modetanpleted by evolution
equations fol.”’ anda and by loading/unloading conditions. They can be naturally
derived from the postulate of maximum dissipation. Morecizely,

max [i: LP+ Q- a]} . 9)

This postulate leads to the evolution equations

L’ = \0sp & =Adgo, (10)



together with the Karush-Kuhn-Tucker conditions

A>0 $A>0. (11)

As a result, plastic deformations requi®, Q) € JE,. The plastic multiplier\ is
obtained from the consistency condition

é=0. (12)

Evolution laws of the type (10) are characterized by the eriypthat the rates of
the internal variables (together will?) are proportional to the gradient of the yield
function. Clearly, such laws are referred toassociated flow rulesr normality
rules

2.2 Standard dissipative solids

In this section, the plasticity framework discussed beforecast into an equivalent
minimization problem. More precisely, the goal of this g&tis the derivation of
a potential, from which the unknown deformation mapping bancomputed by
minimization. Evidently, for path-dependent problemgsas plasticity theory, this
potential is defined pointwise (with respect to the (psetidog). As in the previous
sections, isothermal conditions are assumed and dynaeffeaks are neglected.
This section follows to a large extent [13,16].

In line with [13,16], the functional

E(p, F' a,2,Q)=V(p, F' &)+ D(F’, &, 2, Q) + J(Z,Q) (13)

is introduced. Here] is the characteristic function &f,, i.e.,

E0) { 0 Y(2,Q) cE, (1

oo otherwise

As a result, for admissible stress states, i(E.,Q) € E,, £ represents the sum of
the rate of the stored energy and the dissipation. More gebgiif (X, Q) € E,,

E(p,F* . a,2,Q)=P: F=:P. (15)

Thatis,€ equals the stress power denote@®agnadmissible stress states are penal-
ized byJ = oco. The interesting properties of the functional (13) becomesaent,



if the stationarity conditions are computed. A variatiorfofith respect tq3, Q)
leads to

(LP, &) € . (16)

whered/J is the sub-differential of/. The respective equation associated with
reads

ov
= ——. 17
o 17)
Finally, a variation with respect t6" yields
P _ov
X=F ~8Fe—20-8ce. (18)

As a consequence, the stationarity conditiof aksults in the flow rule (16), the
constitutive relation for the internal stress-like vates(17) and the constitutive
relation for the Mandel stress&s The remaining variation of with respect tap
will be discussed later.

According to [13,16], it is possible to derive a reduced tiomal, denoted as,
which only depends on the rate of the deformation and thenstike internal vari-
ablesa and F'*. For that purpose is re-written by applying the Legendre trans-
formation

(L&) =swp {£: L+ Q& | (3,Q) € E,} (19)
of J. SinceJ* is positively homogeneous of degree one, a maximizatighwith
respecttqX, Q), results in

E(p. F' &) = U(p, F" &) + T (L', ). (20)
Hence, the only remaining variables age F” and &.. Even more importantly,

the strain-like internal variableB” and « follow jointly from the minimization
principle

\i’red ((P) = Inf 8((‘0, Fp7a> (21)

e
F o

which, itself, gives rise to the introduction of the reductedctionalxi/red depend-
ing only on the deformation mapping. It is interesting toentstat for hyperelastic



continua,\i/red equals the rate of the strain-energy density, i. e.,

Trea (@) = V(p). (22)

As a result, in this caseired represents the time derivative of a potential. Further
elaborating this analogy, it can be shown that the time natégn of Eq. (21) or
Eq. (22) over the intervdt,,, ¢, 1] defines an incremental potential which acts like
a standard hyperelastic energy functional for the stres$esce, the first Piola-
Kirchhoff type stresses are obtained from

tht1 o
0 ( tf \I/red (50) dt)
P = OF )

(23)

It bears emphasis that\ifred represents the time derivative of a potential, the stan-
dard hyperelastic relation is recovered, i.B.,= 0rV. Applying Eq. (23) it is
relatively straightforward to extend the principle of nmmum potential energy to
standard dissipative solids. More precisely, the unknoefiorenation mappinge
follows from the minimization principle

¢ = arginf finc(). (24)

with the incremental potentid],.(¢) being defined as

tn+1
Iine(p) = inf E(p, F* a)dtdV — [ pyB-dV — | T-pdA| .(25)
a [rmva- |

Here,po, B andT denote the referential density, prescribed body forcespaad
scribed surface forces acting@t).

For a more detailed derivation, the interested readerésned to [13,16]. It should
be pointed out that the minimization path of the internalialales according to
Problem (25) can only be computed analytically for seleateldtively simple ex-

amples, cf. [16]. Hence, an efficient numerical implemeataas proposed in the
following section is required in general.

2.3 Prototype model

For the sake of concreteness, a prototype model fallingthé@ange of the afore-
mentioned standard dissipative solids is given. Since thm rwontribution of the



present paper is the derivation of an efficient implementawhich holds for a
broad range of constitutive models including elastic arak{it anisotropy and
kinematic hardening, a model combining all these physibahemena is consid-
ered. In the case of a fully isotropic von Mises plasticitynfoilation or single slip
systems, refer to [13,16].

The first component of the model is the stored energy funatidim line with
Eqg. (3), the Helmholtz energy

\I/(Fe,()éi,ak) = \Ife(Fe) +\Pp(ai,ak) (26)

is further decomposed into the pdrf associated with isotropic hardening, while
U} corresponds to kinematic hardening, i.e.,

WP (en) = Wi (as) + Wii(oue). (27)

Here, the internal strain-like variables and oy, are scalar-valued and second-
order tensors, respectively. It bears emphasis that nargggn concerning the
elastic or the plasticity-induced isotropy has been madeHlence, for instance,
by introducing structural tensors intie* (F©), elastic anisotropy can be taken into
account. Furthermore, it is noteworthy thatiif () is isotropic, its material time
derivative reads

TP = 9, UL - e = O UD- (28)

with o being an arbitrary corotational (objective) time derivaticf. [34]. This
property can be useful for deriving objective evolution aions. While the choice

of the isotropic respons@f’) depending on experiments is uncomplicated, the part
describing kinematic hardening is far from being triviabrfa detailed discussion
about this issue in the context of a geometrically lineatithesory, refer to [35]. For
the sake of simplicity and even more importantly, for theesakinterpretableness
of the numerical results reported in Section 4, linear hairdgis considered, i.e.,

1 1
V() = 5 H of,  WRlew) = 5 Hx [l |* (29)

However, this assumption is not crucial for the numericgllementation presented
in the following section. Thus, the algorithmic formulaticovers more compli-
cated hardening models as well.

The next component of the prototype model is the yield fuurcépanning the ad-
missible elastic domain. Here, a Hill-type model defined by

P, Qy, @) = E9(E - Q) — Qi — 5 (30)



together with the equivalent stress

YA =vA:H:A (32)

is chosen. With

1
Ppow :=1-31®1 (32)

denoting the 4th-order tensor mapping an arbitrary secvddr tensorA onto its
deviatoric counterpart DéA| = Pp., : A = A — 1/3 tr(A) 1, the 4th-order
tensorH is defined by

H = ]P)Dev D ]P)Dev- (33)

Clearly, by settingD = I, the identityH = Pp,, is obtained yielding=*¢(A) =
\/Dev[A] : DeV{A]. Hence, standard von Mises plasticity theory is includetthiwi
the prototype model. For anisotropic yield functiofisgoes not equal the identity
anymore, but its components have to be related to the yieddsss in different
directions. However, it bears emphasis thatannot be chosen arbitrarily. For in-
stance, it has to be guaranteed that the yield function igecomplying thatH is
(semi-) positive definite.

Based on the yield function (30), the evolution equatiorfsdey the standard dis-
sipative solid are given by

Lo o= Pl
Seq
G =\ 0g,¢ (34)
G — \dg ¢ = —LP

and the Helmholtz energy (26) yields the thermodynamice®rc
Qi =—5—=-H

oy
(35)
Qk = —@ = —Hk Q.

whereQ; andQ, are stress-like internal variables work conjugatetanda, re-
spectively. Furthermore, siné&“ is a positively homogeneous function of degree

10



one, the dissipation simplifies to

D=X:L-V=X:LP—Ur
= A [0z (X —Qy) — Q]
= A [EE - Q) - Q)
= AR = 0.

(36)

Thus, the second law of thermodynamics is indeed fulfilledi @en more impor-
tantly, the dissipation can be computed explicitly.

3 Numerical implementation

This section representing the main contribution of the gmépaper is concerned
with a novel numerical implementation suitable for staddaissipative solids at
finite strains. Analogously to the previous section, theoathmic formulation is

variationally consistent, i.e., all unknown variableddal naturally from minimiz-

ing the energy of the considered system. In contrast to puevivorks on such
methods, the advocated model does not rely on any matenahgyry and there-
fore, it can be applied to a broad range of different platstitieories. This section is
organized as follows: In Subsection 3.1 a time discretiratiiansforming the con-
tinuous minimization problem (21) into its discrete coupsat is briefly presented.
Based on this approximation and as a motivation, the nuaemplementation for

relatively simple prototype models such as von Mises piagtiheory is carefully

analyzed first, see Subsection 3.2. The underlying key sléa conveniently pa-
rameterize the restrictions imposed by the flow rule. Fndiese prototypes are
generalized for more complex, possibly anisotropic, ptagtmodels in Subsec-
tion 3.3. An adapted implementation for fully isotropic nebd discussed as well.

3.1 Time integration

One of the key ideas of the variationally consistent impletagon of standard
dissipative solids leading to so-callgdriational constitutive updatés the trans-

formation of the continuous optimization problem (21) iatdiscrete counterpart.
Conceptually, if a consistent time integration is appligg integrated evolution
equations are obtained from the minimization problem

(Foi1, Qlny; Qilnga) = arg inf Iinc (37)
F$L+17ak|7l+lyai|n+l

11



with
tn+1 tn+1

[mc(FgHaOék\nH,Oéi\nH) = / S(Sban, a) dt =V, 1 — ¥, + / J* dt(38)

tn tn

cf. Eq. (21). Clearly/;,. depends additionally on the (known) previous time step
(F? ayln, i],) as well as on the (given) deformation gradidiit, ;. However,
this is not highlighted explicitly.

In line with numerical implementations for standard (noti&gonally consistent)
finite strain plasticity models such as [2,1], Eq. (37) israppnated by applying
a consistent time discretization to the evolution equatidfor the sake of con-
creteness, a first-order fully implicit scheme is adoptedré/precisely, with the
notation

(2}
AN = / Adt >0 (39)

tn

the following approximations are used:

FP. =exp|AN O, - FR

Oéi|n+1 = Oéi|n + AN 8Q1§Z5 (40)
ak|n+1 = ak|n +A)\ 8Qk¢

n+1 '

As an alternative to Eq (40)the tensor-valued internal variablag could be inte-
grated by applying the exponential map, cf. [36], leading to

el = e, exp [ A 0] ail!| ] (41)
Clearly, with Eq. (40), the elastic part of the deformation gradient reads
Z-ﬁ-l - Fgrial + eXp [_A)\ 82¢] F?rial = Fn+1 . (Fg)_l (42)

It bears emphasis that the time integrations (39)—(41) rdeed consistent and
hence, convergence to the analytical solution is guardntee

Inserting Egs. (39), (40) and (42) into Eq. (38), the timegnation of/;,. yields

Iinc(FEH—la O lng1s Qilng1, AN) =V, — U, + 3,04 log[thLl ) (Fg)fl] (43)
+ [Q : 99, Bllnt1 AN+ [Qi 0, @ns1 AN

12



Since the terml,, shifting the energy depends only on the previous time step, i
does not affect the optimization problem (37) and henceantloe neglected. Ac-
cording to the derivation, the potential (43) depends onctivesidered time inte-
gration and hence, uniqueness is only obtained in the hgnitaseAt — 0.

So far, variational constitutive updates are relativelg@e and hence, the respec-
tive implementation seems to be straightforward. Unfaataly, this is not the case.
The reasons for that are manifold. For instance, a direcinniation of ¥;,,. with
respect taF, . ; is not admissible, sincE® has to comply with physical constraints
resulting from the flow rule (and of coursést F* > 0). Furthermore, if plastic
loading is considered, the additional restrictior= 0 has to be enforced relating
the stresses (and thus the strains) to the internal vasiahlandc;. Fortunately, all
these problems can be solved efficiently by elaboratingtalsiei parameterization
of the unknown variables. This will be shown in the next schse.

Remark 1 No physical assumption regarding the yield functiphas been made
yet. In most applications is chosen to be of the type

¢(3, Qy, @) = Yeg(B — Q1) — Qi — Q0. (44)

As a result@, represents a back-stress and furthermore, the identity
&, = —LP. (45)
is fulfilled. Additionally>°? is often represented by a positively homogeneous func-

tion of degree one. Combining these physically sound caimss; the dissipation
simplifies significantly, i.e.,

D=XQy>0 (46)

cf. Eq. (36) and finally,

[inc<F$z+17 ak‘nJrla Oéi\nﬂ) ~VU, -, + ng AN. (47)

For instance, the Hill-type model presented in Subsecti@cdmplies with the
aforementioned assumption.

3.2 Motivation: Implementation of some prototype models

As mentioned before, the main issue associated with vanaticonstitutive up-
dates is the numerical implementation of the minimizatimbgem (37). It depends
crucially on a suitable parameterization of the evolutiguations. For a better

13



understanding, the algorithmic formulation is briefly meted for four different
prototype models. Each of those fulfills the restrictionsisarized in Remark 1.
Hence, the functional to be minimized is given by Eq. (47) toredconstraing = 0
is already included within the optimization, cf. Eq. (36).

3.2.1 Example: Single crystal plasticity

Since single-crystal plasticity (in the sense of Schmialg)lis based on associative
evolution equations, the model is defined completely by #spective yield func-
tion ¢. Introducing a slip plane by its corresponding normal veet@nd the slip
directionm, ¢ is given by

(2, a5) = X (men)| - Qi) — Q. (48)

Evidently, the vector& andm are objects that belong to the intermediate config-
uration. They are orthogonal to one another and time-inuldget, i. e.,

n-m=0 |nf;=|m[=1 (49)

Based on Eq. (48), the evolution equations
LP =X (m®n), wth A=XsignZ:(mon), &=—\50)
are obtained. Hence, only one single variable beimgunknown. Thus, a suitable
parameterization of the time discretized evolution equetireads
FPoo=1+AAmen) -F°  qln = ailn — AN (51)
and consequently, the minimization problem (36) depentismmnthe scalar-valued
variableAJ, i.e.,

AN = arginf Lio(AN). (52)
It bears emphasis that this property even holds for eldistigaisotropic models.

3.2.2 Example: von Mises plasticity theory

For the next prototype model a fully isotropic elastic resgmis considered. Hence,
the Mandel stresses are symmetric. The investigated voasild function in-
cluding isotropic hardening is given by

¢(3, i) = |[DevZl|| — Qi) — &y’ (53)

14



where DeVyX] is the deviator o2 (compare to Subsection (2.3)). Consequently,
the evolution equations are computed as

. Dev(X]
LP =)\ M, a; = —A\, with M= ————. (54)
||Devix]||
Note that the tensabZ shows the properties
M| =1, w[M]=0. (55)
Furthermore, if the elastic model is isotropic, the elastal strains
3 N2
trial 7= (FCuial) " - Feuial = ) ()‘?mal) N; ®N; (56)

i=1

are coaxial to the (unknown) elastic stra@@$ and thus, to the Mandel stresses. As
a result, since Eq. (53) is an isotropic tensor functioXirthe eigenvectors of the
unknown tensod.” (or M) are known in advance, i.e.,

3 3 3
M= 'N,®N, with Zl(AZM)Q:L ST

i=1 = i=1

M=o, (57)

2

see constraints (55). This, in turn, implies that only twoapaeters are unknown:
the plastic multiplier and one additional parameter de§ink. Two convenient
parameterizations of the restrictions imposed by the flde/ave given below

e Parameterization | depending dm?, AN

3
AN dgp =3 AN N, ® N;, with AN} = —AX — AN}

i=1

- (58)
= Aa; = tiln1 — ailn = —4 | D_(AN)?
i=1
e Parameterization Il depending éranda; ([37])
2 2 T
A= [ ’ —9} ,=1,2,3 cf. Eq. (57
; ﬁsm ; . a a. (57) (59)

AN=a®>>0

15



3.2.3 Example: Associative Drucker-Prager plasticity mlod
This model is defined by the yield function

¢(3, ;) = k tr[X] + || DevE]|| — Qi(e) — Q5" (60)

with x being a material parameter. Eq. (60) yields the associatisiition equa-
tions

LP =)\ (k1+ M), & =-\ (61)

whereM is given by Eq. (57). Clearly, if the elastic response isyfigbtropic, M
and\ can again conveniently be parameterized by Eq. (59).

3.2.4 Example: Rankine plasticity model

The final example is associated with Rankine plasticity thethe respective yield
function is postulated to be

P(B; 1) = Ynax(B) — Qi(an) — @y (62)

Here,X,,.x(X) is the maximum principal Mandel stress. Considering a figtyropic
elastic behavior, Eq. (62) results in the normality evalntequations

LP = X\ Npax @ Ny, G5 = —A. (63)

with IV ... denoting the eigenvector corresponding’iQ... Note that/N ., is
known in advance, if a fully isotropic model is chosen (and Beker-Ericksen
inequalities hold). Hence, the only unknown parametanigiich can conveniently
be parameterized b\ = a>.

3.3 An efficient variational constitutive update

As shown in the previous subsections, the numerical cortipataf the optimiza-
tion problem (43) strongly depends on a convenient paramat®n of the evolu-
tion equations and the flow rule. Such a parameterizatioohvten be applied to a
broad range of different constitutive models will be dis®cin Subsection 3.3.1.
Subsequently, the simplifications holding for fully isqiro models (elastic and
plastic) are addressed in Subsection 3.3.2.
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3.3.1 The general case

As evident from the prototype models, a convenient paramzeten of the flow
rule and the evolution equations depends strongly on theidered plasticity model,
i.e., the yield function. For deriving a parameterizatiohietn holds for a broad
range of different models, the (unknown) argumeRfs |, oul,41, @iln1 ANAAN
entering the incrementally defined potential (43) are glaby a more suitable
representation. More precisely,

[inc = ]inc(MeruHhA)\) (64)

with

M = 8ng, Hk = angb, Hi = 8Qid>. (65)

Accordingly, M, H, and H; are the flow direction, the kinematic hardening di-
rection and the isotropic hardening gradient, respegtiveearly, M, H, and H;
cannot be chosen arbitrarily, but have to comply with thériesns imposed by
the constitutive model. For this reason, the aforementaheections are parame-
terized as follows:

M = M(X) = dsd|5 (66)
Hy, = H\(Q,) := 0g,¢ o (67)
Hi = Hl(@l) = an(b Qi (68)
AN = AX(a) := a® (69)

Here, the unknownx, Qk andQ; denote pseudo stresses, a pseudo backstress and
a pseudo stress-like hardening variable. It has to be enggtahat these pseudo
variables are not identical to their physical counterpartgeneral, i.e.,

2 7£ 27 Qk # Qk7 @i # Qi- (70)

More precisely, the variablex, Q, and Q; only define the flow and hardening
directions. Thus, they are related with their physical ¢egparts by

M(i) = M(E), Hk(@k) - Hk(Qk)v Hi(@i) = Hi(@i)- (71)

As aresult and in contrast to the original parameterizatims. (66)—(69) automat-
ically fulfill the restrictions associated with the congielé constitutive model. For
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instance, in case of von Mises plasticity,

Dev[X]

6 =|IDevs|| - Qi(a) = QF = M(Z) = (72)
|[DeviX]||
and thus the constraints,
tr(M]=0, M:M=1, VX (73)

are naturally enforced. The same holds for the evolutioratgus corresponding
to hardening. Obviously, additional constraints suckas 0 can be easily taken
into account as well. Inserting Egs. (66)—(69) into Eq. (&4Ys to

Line = Ine(X), with X =[2,Q,Qi,a] = dim[X]=20 (74)

Finally, the unknownsX can be computed from the constrained optimization scheme

X = arg Xi%f<o Tine(X). (75)

For that purpose, by now standard algorithms can be appie{B8]. Evidently,
the choice of a suited method depends strongly on the pgssdsi-linear con-
straint¢y = 0 (plastic loading). In the following paragraph, attentisriurned on a
certain class of plasticity models. This class containggelaumber of important
constitutive laws.

In this paragraph, an efficient solution scheme for optitmzaproblem (75) is
developed. It is restricted to yield functions of the type

¢ =Yeg(X — Qy) — Qi(as) — o (76)

with X, denoting a positively homogeneous function of degree osenéntioned
before, many constitutive laws such as von Mises, Druckagér or Rankine type
models fall into the range of Eq. (76). According to Remarknlthis case, the
cumbersome non-linear constraint 0 can be directly included in the dissipation
resulting inD = X\ Q' > 0. Furthermore, since for this class of models the
evolution equations yield

H,=-M, and & = —)\, (77)
the non-linear constrained optimization problem (75) carsignificantly simpli-
fied, i.e.,

X = argif Lne(X), With e = Uiy (X) — W, + Q5 AN (78)
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with the unknowns being

X =[¥,a = dim[X]=10. (79)

As a result, the complexity of the problem is reduced by aofact 2. The uncon-
strained minimization problem (78) can be solved in a stethd@anner, e.g., by
employing gradient-type schemes, cf. [39]. Applying timediintegrations (40) and
subsequently, using the derivatives

ove ove

ove ove

85] - = [( frial)T ’ W‘| + Dexp [_ AN 8E¢|51] : 6%¢‘2 AX (81)

owr  IUP Joy . OVP  Joy

IAN Doy OAN doy, ~ OAN (82)
= o + Qy : 095,

owPr owP 8ak 2
= T —— = A\ : 5 83
5~ da. o5 Q. : 939 (83)

the gradient ofl;,. can be computed in a straightforward manner. In line with
Eq. (66), the elastic part of the deformation gradient is potad by means of

o = Fip - exp [—a® 9s0ls)] (84)

Clearly, in case of an exponential approximation of the @tvoh equations foty,,
the gradient has to be modified accordingly. In Egs. (80) &adl, the derivative of
the exponential mapping

_ Oexp[A]

Dexp[A] = A (85)

can be computed in a standard fashion, e.g. [40,41]. The geanpresented in
the next section have been computed by applying a globallyexgent Newton-

type iteration, cf. [39]. For that purpose, the second @ines of/;,,. are required.

Although they result in relatively lengthy equations, tten be calculated in a
straightforward manner. Therefore, the Hessian,fis omitted.

Remark 2 According to Egs. (80) and (83), stability &f,. with respect to the
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plastic multiplier A\ reads

ol
—_— = —|X: : : S,
BN, [2: 050+ Qi + Q) : 950 + Q5] |uial @6)

= _d)trial >0

which coincides with the classical (discrete) unloadingaition ¢, < 0. It is
noteworthy that this property is fulfilled for any considtéme integration. Fur-
thermore, even if the equivalent strésg is not a positively homogeneous function
of degree one, the inequality

- [(E - Qk) : 82¢] ‘trial < _Eeq (87)

holds ¢ is convex) and thus,

ol

—_ < _thio
8A)\ = d)trlal (88)

AX=0

According to Ineqg. (88), the variational constitutive upeléends to overestimate
the elastic limiting loading, i.e., plastic loading occuaser (compared to standard
plasticity theory) and thusy.;.; > 0 represents a necessary loading criterion for
the variational update. However, it has to be stressed omeerethat for:,, be-
ing a positively homogeneous function of degree one, bdtbnses (conventional
computational plasticity and the variationally consistamethod as developed in
the present paper) lead to identical loading conditions.

Remark 3 Using a parameterization of the tyge\ = a? > 0, the functionall;,..
shows an extremum at= 0 (if Q;(¢,) = 0 and @, (¢,) = 0). Hence, if classical
gradient-type optimization schemes are employed, a narskieng initial value
a = TOL > 0 should be used for a plastic loading step.

3.3.2 Fully isotropic models

In this subsection, a tuned version of the optimization sehéiscussed before is
given. It is based on the same assumptions as made befor¢7@y. Addition-
ally, the stored energy potentigl as well as the yield function are postulated to
be isotropic tensor functions (without structural tensoFor such models, it is
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straightforward to show that all tensors are coaxial. Maeezely,
3 s 2
Cfrlal - Z ()\?trlal) Nz & Nz

=1
3

Ce :Z(AZ)Q Ni®Ni
i§1 (89)

i=1
3

s =Y 0s,0 N;® N,

i=1

Consequently, the optimization scheme (78) reduces to

X =arginf Lno(X), with Lo = W, 4(X) = ¥, + Q7' @ 2 (90)

with the unknowns being

X =[¥,%,%5,a] = dim[X]=4. (91)

Again, it is strictly distinguished between principal M&hdtressed; and their
pseudo counterparts; which define the flow direction. Using the spectral decom-
position of the total differential of the exponential mapg(for fixed eigenvectors
N3)

7

3
d{exp [-A\ Os¢]} {Z@g ¢ exp[—AN Js, 6] N; ®NZ} dA X

3 r 3 (92)
Z{ZA/\azzﬁbeXp[ AN Os,¢] N; ®N} dx;,

7j=1
together with

3
= Z Pt Aftrial N; ® N, (93)

i=1

o OUF
[(Ftriad)T ’ ﬁ‘|

the gradients (80) — (83) simplify greatly, i.e.,

ov* : i
DV 5 R ol expl-AA Ol ©9
=1
owve e \etrial 2
00 SR AN B, expl-AN a ) ©9)
i =1
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owP 3

8A/\:Q1+Qki (z‘zla&gﬂii Ni®Ni> (96)
@—MQ : ia ¢’|. Ni®N, (97)
ai] — k - Pt ZZZJ 21 K3 (2

Here, Pf represents the eigenvaluesief := 0p V. If a Newton-type iteration is to
be applied for solving the nonlinear optimization scherhe , gecond derivatives of
I;,. are needed. As in the more general case discussed in theyseubsection,
they can be computed in a straightforward manner. Conségutrey are omitted
here. Clearly, analogously to the standard return-mapglggyithm formulated in
principal axes, the now non-vanishing derivatives of tlgeevectorsV; have to
be considered, i.e.(N; ® N;) # 0, cf. [1].

4 Numerical examples

The versatility and the performance of the proposed caristit update are demon-
strated by means of selected numerical examples. For the afakoncreteness,
the prototype model as summarized in Subsection 2.3 is derexd. Accordingly,
isotropic as well as (linear) kinematic hardening are takémaccount.

For the elastic response, a quadratic, orthotropic modebciterized by the elastic
stored energy potential

1 1 1
Pe — 5)\J12+MJ2+§O(1JZ+§@2J3+2@3J5+2O(4J7 (98)

+0z5 J4J1+(16 J@ J1+Oé7 J4J6

is adopted, cf. [42]. HereJ; are the invariants

Jy = tr[E], Jo = tr[EQ],

(99)
Jy =MV E], J=tu[MY.-E?*, J;:=tu[M®? E], J .=tr[M?.E?

depending on the Green-Lagrange strain teifs@nd so-called structural tensors
MY = m,; ® m; wherem; span an orthonormal basis. In this section, the bases
m,; are assumed to be of the type, = [cos 3;sin 3; 0], my = [— sin (3; cos 3; 0]
andmg = [0;0; 1]. The angle3 is set tog = 10°. The material parameters defining
the elastic response are summarized in Tab. 1.

Following Subsection 2.3, the elastic space is defined bylaybe yield function,
cf. (30). Thus, different material symmetries can be inooaped by choosing the

22



A 7 o1 9 a3 g as ag a7
ortho. 67.25 81.00 67.46 -3.10 -15.00 0.00 2.00 -7.55 0.98

iso. 67.25 81.00 0 0 0 0 0 0 0
Table 1

Material parameters (GPa) defining the orthotropic and sb&apic elastic response ac-
cording to Eq. (98), cf. [42]

4th-order weighting tensdd accordingly. In the numerical examples presented in
this section, a fully isotropic and an orthotropic yield ¢tion are considered. The
corresponding non-vanishing components of the weighémgdrD are given in
Tab. 2. It can be easily checked, that the coefficiéntg, define indeed a convex

D111 Doto1 3131 Diore D999 D3232 D313 Dozaz  Daszss
ortho. 0.918887 4.18388 6.25 4.18388 -0.516313 5.0625 6.839625 5.84076
iSo. 1 1 1 1 1 1 1 1 1

Table 2
Non-vanishing components of the weighting tenBoior an orthotropic as well as for an
isotropic equivalent stress®® according to Eq. (33)

space of admissible elastic stresses. Different hardenodgls are analyzed. Each
of them falls into the class defined by Egs. (27) and (29). Hspective material
parameters are listed below.

H; Hy

No hardening 0 0
Isotropic 1.0 0
Kinematic 00 1.0
Combined 05 05

Table 3
Material parameters (GPa) for different hardening modet®aling to Egs. (27) and (29)

4.1 Shear test

At first, a simple shear test is investigated. More precjstilg following stress
states are analyzed:

P=Pjye ®e, P=Pse ®e3, P=DPFP3e ®es. (100)

Here and hencefortle, denote the standard cartesian basis. It bears emphasis that
the vectorse; are not identical to those defining the material symmetey, é; #
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StressP;;

0.2 -
fully isotropic ——
anisotropic: 12-direction—s<—
anisotropic: 13-direction—s«—
0 anisotropic: 23-direction—e—
[ 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Strain F;

Fig. 1. Monotonic shear test: stress-strain diagram aatgmtiwith isotropic hardening
(H; = 1.0, H; = 0.0); results predicted by the fully anisotropic model (elastnd plastic)
depending on the loading direction. For the sake of compayrithe response computed
from the isotropic model (elastic and plastic) is shown al.we

m;. In contrast to purely displacement-driven problems, Kfj60) represent a
Neumann problem. For the computation of the solution, a Neviype iteration has
been implemented. By doing so, the linearizations of therélgm can be checked.

For a careful analysis of the fully orthotropic model (ottfopic elastic and plastic
response), the three different simple shear tests acaptdii&qgs. (100) are com-
pared to the fully isotropic model. The computed resultssai@vn in Fig. 1. Here,
isotropic hardening has been assumed, cf. Tab. 3. It is evidem Fig. 1 that
the model is indeed highly anisotropic. More precisely,aetebng on the loading
direction, elastic yielding starts at different stressestaFurthermore, since the in-
vestigated problem is highly coupled, hardening is afi@biethe loading direction
as well. However, this dependency is less pronounced.

For kinematic hardening (see Tab. 3), the stress-straigrdins corresponding to
the simple shear test are shown in Fig. 2. Again, the ortpatnmaterial behavior
is obvious. However, in contrast to isotropic hardeningeknatical hardening in-
duces an additional degree of coupling. For this reasoriffezences in thé® — I
diagrams are more pronounced compared to Fig. 1.

Next, the influence of different hardening models is inggtied. For that purpose,
cycling loading is considered. The computed responseblédully isotropic model
(elastically isotropic and isotropic yield function) atgnsmarized in Fig. 3. As ex-
pected, during the first stage (loading) all hardening agghies lead to the same
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08 T T T T
0.6 -
o
0.2 -
fully isotropic ——
anisotropic: 12-direction—s<—
anisotropic: 13-direction—s«—
0 anisotropic: 23-direction—e—
[ 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Strain F;

Fig. 2. Monotonic shear test: stress-strain diagram astsatiwith kinematic hardening
(H; = 0.0, H; = 1.0); results predicted by the fully anisotropic model (elastnd plastic)
depending on the loading direction. For the sake of compayrithe response computed
from the isotropic model (elastic and plastic) is shown all.we

StressP;;

no hardening—— -
isotropic —<—

kinematic —«—
combined —=—

-05 -03 -01 0.1 0.3 0.5 0.7 0.9 1.1
Strain F;

Fig. 3. Cyclic shear test: stress-strain diagram assaciaiid a fully isotropic formulation
(elastic and plastic) depending on the hardening model
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StressP;;

MJ no hardening——

isotropic —<—

kinematic —«—

combined —=—
_05 1 1 1 1 1 1 1
-0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9 1.1
Strain F;;

Fig. 4. Cyclic shear test: stress-strain diagram assatiait a fully anisotropic formula-
tion (elastic and plastic) depending on the hardening model

results, since the harding moduli are identical, cf. Tabd-@®&thermore, after un-
loading and an additional re-loading step, the classicsidrgsis can be observed.
Although the applied strains are relatively large, Fig. Beag reasonably with the
linearized theory. In summary, it can be verified that thepps®d variational con-
stitutive update works correctly and efficiently.

Next, the cyclic simple shear test is re-analyzed by adgptie fully anisotropic

constitutive model (elastically orthotropic and orthgii@yield function). The com-
puted stress-strain responses are given in Fig. 4. AcaptdiRig. 4 and in contrast
to the fully isotropic model (see Fig. 3), the — F' diagrams are now even dif-
ferent during the first loading stage. Clearly, this is a @i@nsequence, of the
anisotropy of the material. Although the simple shear teptesents one of the
simplest mechanical problems, it is relatively difficultastimate the influence of
the material anisotropy. Therefore, the need for efficiemberical algorithms such
as that discussed in the present paper is of utmost impertanc

4.2 Uniaxial tension test

The second investigated example is the uniaxial tensidrctesacterized by the
stress tensors

P=P,e®e, P=Pye®e, P=DP3e;Qes. (101)

26



% W
o
=5 05 -
n
fully isotropic ——
anisotropic: 11-direction—s<—
anisotropic: 22-direction—s«—
0 anisotropic: 33-direction—e—
[ 1 1
1 1.2 14
StrainFj;

Fig. 5. Monotonic uniaxial tension test: stress-straighan associated with isotropic hard-
ening (H; = 1.0, H, = 0.0); results predicted by the fully anisotropic model (elastnd
plastic) depending on the loading direction. For the sakeoiparison, the response com-
puted from the isotropic model (elastic and plastic) is shaw well.

Again, the non-linear Neumann problem is solved by a Neviype-iteration.

In line with the previous subsection, monotonic tests amdyaed first. The com-
puted results are summarized in Figs. 5 and 6. As for the sbstathe anisotropy
of the elastic domain, together with the loading directi@pending hardening, is
evident.

The numerically computed response corresponding to cladiding is shown in
Figs. 7 and 8. In analogy to the simple shear test, all handemodels lead to
identical results during the first loading stage, if a fubgptropic model is consid-
ered. By contrast, according to Fig. 8, orthotropy induaces@ditional coupling
through which the influence of hardening becomes highlyinear and complex.

It is noteworthy that the proposed constitutive update oups significantly the
robustness as well as the performance compared to conmahtipdate schemes.
For instance, the computation of initial values for a Newitenation is far from
being straightforward. Such problems do not occur withm aldvocated method.
Furthermore, even if the considered mechanical model tgyigon-linear or non-
smooth reliable and powerful optimization methods arelakés.

27



15+ .

StresspP;;

0.5 .
fully isotropic ——
anisotropic: 11-direction—s<—
anisotropic: 22-direction—s«—
anisotropic: 33-direction—e—

0 L
1.2 1.4
StrainFj;

-

Fig. 6. Monotonic uniaxial tension test: stress-straingchan associated with kinematic
hardening @; = 1.0, H, = 0.0); results predicted by the fully anisotropic model (elasti
and plastic) depending on the loading direction. For the sdlkcomparison, the response
computed from the isotropic model (elastic and plastichsm as well.

StresspP;;

no hardening——
isotropic —<—
kinematic —x—
combined —e—

0.8 1 1.2 1.4
StrainFj;

Fig. 7. Cyclic uniaxial tension test: stress-strain diagm@ssociated with a fully isotropic
formulation (elastic and plastic) depending on the hamtgmodel
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no hardening——
isotropic —<—
kinematic —x—
combined —e—

0.8 1 1.2 1.4
StrainFj;

2 .

Fig. 8. Cyclic uniaxial tension test: stress-strain diagessociated with a fully anisotropic
formulation (elastic and plastic) depending on the hamtgmodel

5 Conclusions

An enhanced constitutive update for so-called standasipgdisve solids has been
proposed. In contrast to conventional update schemes sutie &y now classical
return-mapping algorithm, the new method is fully variagab More precisely, and
in line with the previous works [13,16], the unknown histaariables, together
with the deformation mapping, follow jointly from minimizg an incrementally
defined (energy) potential. Besides the associated matluaiand physical ele-
gance, this method has some practical advantages. Fonéesta allows to em-
ploy classical optimization methods for computing the soluof the aforemen-
tioned minimization problem. Unlike the prototype modeltv@cated in [13,16],
the proposed method covers a broad range of different ¢otisti models includ-
ing anisotropic elasticity, anisotropic yield functionsdaisotropic as well as kine-
matic hardening. As a relatively complex example, an ortgpt Hill-type model
including combined isotropic-kinematic hardening hasnbaealyzed. It has been
shown that although the investigated prototype represenighly non-linear, cou-
pled and anisotropic problem, the advocated variationasttutive update works
very robustly and efficiently.
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