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[1] We study the appearance of long-term persistence in temperature records, obtained
from the global coupled general circulation model ECHO-G for two runs, using detrended
fluctuation analysis. The first run is a historical simulation for the years 1000–1990
(with greenhouse gas, solar, and volcanic forcing), while the second run is a 1000-year
‘‘control run’’ with constant external forcings. We consider daily data of all grid points as
well as their biannual averages in order to suppress 2-year oscillations appearing in the
model records for some sites near the equator. Our results substantially confirm earlier
studies of (considerably shorter) instrumental data and extend their results from decades to
centuries. In the case of the historical simulation we find that most continental sites have
correlation exponents g between 0.8 and 0.6. For the ocean sites the long-term correlations
seem to vanish at the equator and become nonstationary at the Arctic and Antarctic circles.
In the control run the long-term correlations are less pronounced. Compared with the
historical run, the correlation exponents are increased, and show a more pronounced
latitude dependence, visible also at continental sites. When analyzing biannual averages,
we find stronger long-term correlations in the historical run at continental sites and a less
pronounced latitude dependence. In all cases, the exponent g does not depend on the
continentality of the sites.
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1. Introduction

[2] In the past decade it has been recognized that multi-
decadal temperature records are long-term correlated
[Koscielny-Bunde et al., 1996; Pelletier and Turcotte,
1997; Koscielny-Bunde et al., 1998; Talkner and Weber,
2000; Weber and Talkner, 2001; Eichner et al., 2003;
Monetti et al., 2003; Király et al., 2006], with a correlation
exponent g ’ 0.7 for continental and coastline regions, and
g in a broad range around 0.4 for marine regions.
[3] The expressions ‘‘long-term correlated,’’ ‘‘long-term

persistent’’ or ‘‘long-term memory’’ refer to time series,
whose autocorrelation functions do not decay exponentially,
as is the case with autoregressive processes, but decay much
slower following a power law. It has been suggested that the
narrow spatial distribution of the exponent g at continental
and coastline stations may be used as an efficient test for the
quality of climate models [Govindan et al., 2002]. Newer
analysis [Vyushin et al., 2004] has revealed that climate
simulations taking into proper account the natural forcings
and in particular the volcanic forcings, reflect quite well this
quite ‘‘universal’’ feature of the observable data.

[4] In this study, we extend these previous studies, which
were restricted to simulated or observational data with a
time span of not more than 200 years. We consider two
1000-year simulations, which have been carried out with the
ECHO-G model, and hope that by this we can learn more
about the persistence at larger timescales. In the first
simulation, one considers historical conditions by applying
variations in the greenhouse gas concentrations and in the
solar activity, whereby the influence of volcanic activity is
included in an effective solar constant [Zorita et al., 2005].
In contrast, in the second simulation called ‘‘control run,’’
no variations of external forcings are taken into account
[Zorita et al., 2003; see also Fraedrich and Blender, 2003].
[5] This article is organized as follows. In section 2, we

give information of the climate model and the performed
runs. In section 3, we describe the detrending analysis used
in this paper, the DFA. In section 4, we present the results
of this analysis. Section 5 concludes the paper with a
discussion.

2. Description of Climate Model Simulations

[6] The climate model we consider is the global coupled
general circulation model ECHO-G [Legutke and Voss,
1999]. The model consists of the atmosphere model
ECHAM4 [Roeckner et al., 1996] with a T30 resolution
and 19 vertical levels (grid resolution approx. 3.75� �
3.75�) and the ocean model HOPE-G [Wolff et al., 1997]
with a grid resolution of 2.81� � 2.81� and 20 vertical
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levels. An increased tropical resolution, reaching a mesh
size of 0.5 at the equator, was implemented to allow for a
better representation of equatorial dynamics. Constant, zero-
average flux correction of heat and freshwater is applied in
order to avoid climate drift in such a long simulation.
[7] One run operates with constant driving factors, i.e.,

solar insolation (with an annual cycle), as well as aerosol
and greenhouse gas load [Zorita et al., 2003]. The other one
is a historical simulation [Zorita et al., 2005] for the period
1000–1990 A.D. (991 years), which was forced with
reconstructions of solar [Lean et al., 1995], volcanic
activity [Crowley, 2000], and greenhouse gas concentrations
[Etheridge et al., 1996] during the last millennium (Figure 1).
The solar constant was scaled to a difference between the
Late Maunder Minimum and present day of 0.3%. This
historical simulation does neither consider changes in
anthropogenic atmospheric aerosol concentrations nor
changes in the vegetation cover or land use. Here we analyze
the near-surface temperature records (measured 2 m above
the surface) of all 4608 grid points for both runs.

3. Long-Term Memory and Detrended
Fluctuation Analysis

[8] Consider a record Ti, where the index i counts the
days in the record, i = 1, 2,. . .,N. The Ti represent the daily
temperature, measured at a certain meteorological station or
grid point. For eliminating the periodic seasonal trends, we
concentrate on the departures of Ti,

ti ¼ Ti � Ti : ð1Þ

from their mean daily value Ti for each calendar date i, say,
2 March, which has been obtained by averaging over all
years in the record.
[9] To quantify long-term persistence (long-term correla-

tions) we consider the (auto-) correlation function between
two ti values separated by s days,

C sð Þ � htitiþsi
ht2i i

¼ 1

N � sð Þht2i i
XN�s

i¼1

titiþs : ð2Þ

If the ti are uncorrelated, C(s) is zero for s positive. If
correlations exist up to a certain number of days s�, the

correlation function will be positive up to s� and vanish
above s�. For the relevant case of long-term correlations,
the correlation function decays with a power law,

C sð Þ � s�g ; 0 < g < 1 : ð3Þ

A correct evaluation of C(s) is difficult for large s where
C(s) reaches small values and fluctuates around zero.
Furthermore nonstationarities in the data will lead to
incorrect estimations of correlations.
[10] Therefore, to identify long-term correlations on large

scales s we do not calculate C(s) directly, but instead study
the ‘‘profile’’

Ym ¼
Xm

i¼1

ti : ð4Þ

The fluctuations of the profile, in a window of size s, are
related to the correlation function C(s). In the case of long-
term power law correlations, equation (3), the mean
fluctuations F(s), obtained by averaging over many time
windows of size s (see below) scale as [see, e.g., Bunde et
al., 2002]

F sð Þ � sa ; a ¼ 1� g=2 : ð5Þ

For uncorrelated data (as well as for correlations decaying
faster than 1/s), we have a = 1/2.
[11] For the determination of the fluctuation function

F(s), we have employed several orders of the detrended
fluctuation analysis (DFA). For a detailed description of the
methods we refer to Kantelhardt et al. [2001].
[12] 1. In the zero-order detrended fluctuation analysis

(DFA0) (where trends are not going to be eliminated), we
determine in each window the mean value of the profile.
The variance of the profile from this constant value repre-
sents the square of the fluctuations in each window.
[13] 2. In the first-order detrended fluctuation analysis

(DFA1), sometimes also called DFA [Peng et al., 1994], we
determine in each window the best linear fit of the profile.
The variance of the profile from this straight line represents
the square of the fluctuations in each window.
[14] 3. In general, in the nth-order DFA (DFAn) we

determine in each window the best nth-order polynomial

Figure 1. Forcings applied to the historical simulation with the global coupled general circulation
model ECHAM4/HOPE-G. (a) Variations in the solar constant (red line) and the effective solar constant
(black), which takes into account a reduction caused by volcanic aerosols. Note the small absolute
variations of this quantity. (b) Variations of the considered greenhouse gas concentrations, namely CO2,
CH4 and N2O.
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fit of the profile [Bunde et al., 2000]. The variance of the
profile from these best nth-order polynomials represents the
square of the fluctuations in each window.
[15] By definition, DFA0 does not eliminate trends, while

DFAn eliminates trends of order n in the profile and n � 1
in the original time series. Thus, from the comparison of
fluctuation functions F(s) obtained from different methods,
one can learn about both long-term correlations and the
influence of trends [Kantelhardt et al., 2001] (see also
D. Rybski and A. Bunde, Trends in long-term correlated
records: Detection using DFA, preprint, 2008).
[16] We would like to note that DFA0 is equivalent to the

simplest fluctuation analysis (FA) [Koscielny-Bunde et al.,
1998] which is identical to the aggregated standard devia-
tion method (ASD) [see, e.g., Koutsoyiannis, 2006].
[17] The accuracy of F(s) decreases with increasing

window size. It is usually assumed that s should not be
larger than one quarter of the record length in order to
guarantee a reasonable statistics.

4. Analysis of Temperature Records

[18] To check for long-term correlations, we first applied
DFA0-DFA3 to the daily data of both, historical simulation
and control run, and calculated, for each of 96 � 48 = 4608
records obtained from each run of the model, the
corresponding fluctuation functions. To obtain the exponent
a, we fitted a power law to the fluctuation function in the
time regime between approximately 2 and 200 years. Owing
to the large amount of data, we could not check the quality
of the fit for all records. In some cases, as we will show
below, semistable oscillations occur in the fluctuation func-
tions. Consequently, there is no scaling and a power law fit
is not meaningful. If it is nevertheless done, it leads to
incorrect results for the scaling exponents a and g. Even an
automated evaluation of the squared deviations between
F(s) and its power law fit does not work, since oscillations
in F(s) lead to spurious straight lines in a double-logarith-
mic presentation on large scales, as is shown below.
[19] In some areas, in particular in the equatorial Pacific,

biannual cycles occur, a feature at variance with observa-
tional evidence. Unfortunately, these cycles cannot be
eliminated simply by a seasonal detrending analog to
equation (1), since the period of 2 years is too unstable.
For the same reason, we were not able to remove the
oscillations (automatically) in the Fourier spectrum. There-
fore, in order to get rid of these oscillations, we additionally
consider time series of biannual temperatures (i.e., temper-
ature averaged over 2 years of daily data). With this
renormalization (aggregation) we also verify that scaling
in the daily data is not due to a short-term process with a
correlation length below 2 years. The disadvantage of
considering biannual data is that the number of data points
is reduced by a factor 720 compared with the daily data.
[20] Figure 2 shows the results for the fluctuation expo-

nents obtained by DFA2 for the historical simulation
(Figures 2a and 2b) and the control run (Figures 2c and
2d), for daily data and for the biannual data. Note that in the
Cartesian projection, the areas of the grid points are over-
estimated at the poles and underestimated at the equator.
Values of a below 0.475 (white) and above 1.025 (black)
are not discriminated, since we are only interested in

stationary long-term correlated data (0.5 < a < 1.0). Values
of a between 0.475 and 0.525 indicate white noise behavior
and are in violet, while a values between 0.975 and 1.025,
which indicate 1/f noise, are in red.
[21] When analyzing the daily data of the historical

simulation (Figure 2a) we find large violet and white areas
where a � 0.5 close to the equator, and red and black areas
where a  1.0 close to the Antarctica and Greenland. These
findings will be discussed separately below.
[22] In general, over land mainly exponents between 0.6

and 0.7 occur for daily data. For Europe, where the longest
instrumental records are available, the a values of about
0.65 derived from observed temperature series [Koscielny-
Bunde et al., 1998] are well reproduced. Over the oceans,
the long-term correlations are more pronounced. For the
northern part of the Pacific and the Atlantic Ocean mainly
exponents between 0.7 and 0.85 are found. There is a weak
latitude dependence of a, which on the average close to the
equator is lower than close to the Arctic and Antarctic
circles. This dependence is more pronounced for the control
run (see Figure 2c). When a is obtained from the biannual
data sets, on the other hand, the latitude dependence of a is
much less pronounced (Figure 2d). In Figure 2a also some
ocean currents can be identified, like the Kuroshio current
close to Japan with increased values of a (orange) or the
South Equatorial current, best visible in the Indian Ocean,
with lower values of a (blue-violet). In the biannual data,
Figures 2b and 2d, the differences between ocean and
continental sites are less pronounced and the fluctuation
exponents at continental sites are larger.
[23] We would like to note that the solar activity (Figure 1)

itself exhibits nonstationary random-walk-like behavior,
while the effective solar constant shows long-term correla-
tions with an asymptotic fluctuation exponent of approxi-
mately 0.9. For the control run, the fluctuation exponents
are considerably smaller than for the historical simulation:
The areas with a � 0.5 (white) or a  1.0 (black) are larger.
Also, at grid points far from the oceans the correlations are
weaker than for the historical simulation. This indicates that
the forcings of the historical simulation represent important
contributions to the strength of the long-term correlations of
the near-surface temperature [see also Vyushin et al., 2004].
[24] Figures 3–6 show, on the right-hand side, examples

of fluctuation functions of the historical simulation (circles),
of the control run (squares) and, if available of instrumental
(asterisk) or reconstructed (plus) records. We also show, for
comparison, the fluctuation functions of the biannual tem-
perature data of the historical simulation (filled circles). In
the case of the historical simulation, the fluctuation func-
tions of DFA0 and DFA1 are affected by trends, whereas
DFA of higher order (n  2) exhibit similar fluctuation
functions. Thus, to compare the results of both simulations,
we show only the DFA2 fluctuation functions. For illustra-
tion, on the left-hand side of Figures 3–6, 10 years of the
deseasoned temperature records from the historical simula-
tion are also shown, and, if available, parts of the
corresponding deseasoned instrumental record. The time
series derived from instrumental observations show some-
what larger variability than the historical simulation, since
the former represent point observations whereas the model
data represent grid box averages, across about 300 km by
300 km.
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[25] Figures 3 and 4 present examples for the vast
majority of fluctuation functions that show, apart from a
crossover at short timescales, excellent scaling behavior. In
Figure 3, continental grid points close to the meteorological
stations of Chita, Prague, and Albany are treated. In the
double-logarithmic presentation, the fluctuation functions
for instrumental (upper curves) and simulated records are
straight lines for large scales [Eichner et al., 2003], with
slopes a close to 0.65 for the instrumental and the simulated
historical records. Accordingly, the historical simulation
reproduces remarkably well the long-term persistence of
near-surface temperatures at most sites, while the control
run underestimates the long-term persistence. The left-hand
side of Figure 3 shows that after deseasoning, the data still
show a seasonal trend in the standard deviation of the
temperature. This seasonal trend is slightly exaggerated in
the model simulation. However, since the DFA is not
sensitive to these nonstationarities [Chen et al., 2002], the
exponents remain unchanged.
[26] Since the temperature anomalies of both, model and

real data, are roughly normal distributed and their proba-
bility distributions do not show a fat tail, we conclude that
the fluctuation exponents a > 0.5 are due to long-term
correlations and not due to a broad probability distribution
of the temperature anomalies (Joseph phenomenon versus

Noah phenomenon [see Mandelbrot and Wallis, 1968]).
This is further verified by a separate analysis, where we
eliminated the correlations by randomly shuffling the ti.
This shuffling has no effect on the probability distribution
function of ti. We find that the exponent a characterizing
the fluctuations in the shuffled records is 1/2, indicating that
the Joseph phenomenon is the main effect.
[27] In Figure 4 a typical site in the Northern Atlantic is

considered. For this site the exponent a of the fluctuation
function is around 0.74 for the daily data and around 0.79
for the biannual data. Both results are in substantial agree-
ment with the analysis of the data obtained by Kaplan et al.
[1998], which yields a ’ 0.84 [see also Monetti et al.,
2003]. While the vast majority of data exhibits excellent
scaling, there are several regions where scaling is not so
good, in particular close to the sea ice margin near Green-
land and the Antarctica, and in areas affected by El Niño
Southern Oscillation (ENSO).
[28] Figure 5 shows both daily temperature fluctuations

around the seasonal mean and the fluctuation functions, for
sites located close to Greenland (Figures 5a and 5b) and
Antarctica (Figures 5c and 5d). In the double-logarithmic
presentation, the fluctuation functions do not follow straight
lines and therefore the automatic fitting procedure for the
determination of a is meaningless. In both model runs,

Figure 2. Global distribution of DFA2 fluctuation exponents calculated for the 2-m-temperature records
(a, b) of the historical simulation integrated from 1000 to 1990 and (c, d) of the 1000-year control run.
Figures 2a and 2c are daily records, and the fluctuation exponents a were determined on scales between
850 and 70000 days. Figures 2b and 2d are biannual records, and the fluctuation exponents a were
determined on scales between 6480 and 80000 days.
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humps occur in the curves, which are caused by strong
oscillations in the records. These oscillations are visible in
Figures 5a and 5c and are leftovers of the seasonal trend
after the deseasoning, probably due to very large interannual
fluctuations. It is well known that DFA is sensitive to
oscillations in the mean of the records [Kantelhardt et al.,
2001]: On scales below the period (360 days in the model),
the oscillations yield strong correlations, leading to large
exponents in the fluctuation functions, while on scales
above the period, the oscillations induce anticorrelations,
with smaller fluctuation exponents. Thus oscillations hide
the true scaling and lead to an overestimation of a on short
timescales and an underestimation on larger timescales. By
definition, to exclude biannual oscillations, one needs a
sample rate of at most 2 years. Figure 5 shows, that also the
biannual data on large scales are characterized by an
exponent a above 1, i.e., show nonstationary behavior.
Unfortunately there are no long instrumental records for
these regions that can be compared with the model results.
We cannot exclude that this nonstationarity is an artifact of
the model.

[29] Next we discuss the areas under the influence of
ENSO, which are the west coast of Southern America and
the complete equatorial Pacific regime. Exceptionally warm
(El Niño) and cold (La Niña) sea surface temperatures occur
irregularly on a timescale of 3–8 years [Glantz, 2000],
while the model generates an almost periodic behavior with a
periodicity of 2 years. The grid points we inspect are located
in central Africa (Figures 6a and 6b), in the Pacific on the

Figure 4. Daily temperature fluctuations around the
seasonal cycle and DFA2 fluctuation functions for a grid
point in the North Atlantic (�150.00E, 42.68N). (a) Ten
years of the deseasoned daily data of the historical
simulation. (b) Fluctuation functions F(s) versus timescale
s for the historical simulation (open circles, upper curve),
for the control run (open squares), for the sea surface
temperature (pluses) [Kaplan et al., 1998], and for the
biannual values of the historical simulation (solid circles,
lower curve). Since the sea surface temperature estimated by
Kaplan et al. [1998] has monthly resolution, the s values
start at 4 � 30 days. In Figure 4b we find the slopes (from

Figure 5. Daily temperature fluctuations around the
seasonal trend (historical simulation) and DFA2 fluctuation
functions for two grid points close to the sea ice margin. (a,
b) Close to Greenland (�41.25E, 57.52N) and (c, d) close to
Antarctica (�142.50E, �72.36N). Figures 5b and 5d show
the fluctuation functions F(s) versus timescale s for the
historical simulation (open circles, upper curve), for
the control run (open squares, central curve), and for the
biannual values of the historical simulation (solid circles,
lower curve). The dashed line in Figure 5d has the slope

Figure 3. Daily temperature fluctuations around the
seasonal cycle and DFA2 fluctuation functions for three
continental grid points on the globe. (a–c) Chita (112.50E,
53.81N), (d–f) Prague (15.00E, 50.10N), and (g–i) Albany
(�75.00E, 42.68N). Figures 3a, 3d, and 3g are instrumental
records, and Figures 3b, 3e, and 3h are historical
simulations. Figures 3c, 3f, and 3i show the fluctuation
functions F(s) versus timescale s for the instrumental record
(asterisk, upper curve), for the historical simulation (open
circles), for the control run (open squares), and for the
biannual values of the historical simulation (solid circles,
lower curve). The grid points of the model data were chosen
nearest to the meteorological stations. The straight lines in
Figures 3c, 3f, and 3i have the slopes (from top to bottom):
0.64, 0.66, 0.60, and 0.69 (Figure 3c); 0.65, 0.66, 0.65, and
0.71 (Figure 3f); and 0.64, 0.65, 0.61, and 0.73 (Figure 3i).
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latitude of the equator (Figures 6c and 6d), and in central
Australia (Figures 6e–6g).
[30] For the African temperature records (Figure 6a), the

fluctuation functions (Figure 6b) exhibit a hump, which
here is not located at a period of 1 year like in Figure 5, but
at a period of about 2 years. Again, the remaining oscil-
lations in the deseasoned data lead to a larger slope in F(s)
below 2 years and to a smaller slope above 2 years. A linear
fit between 2 and 200 years will thus lead to exponents
around 0.5 and to the misleading conclusion that the data
are asymptotically like white noise.
[31] This effect is even stronger in the equatorial Pacific,

where the simulations exhibit exponents a considerably
smaller than 0.5, seeming to suggest the presence of long-
term anticorrelations in ENSO areas. However, this is

certainly an artifact as the real underlying temporal corre-
lation structure is masked by the (irregularly occurring)
ENSO. Since there are no long instrumental data in Central
Africa and the equatorial Pacific, we cannot decide,
how much the model exaggerates the influence of ENSO.
However, the fluctuation functions for the biannual data,
Figures 6b, 6d and 6g) (bottom curves), show exponents a
slightly above 0.5.
[32] Instrumental data exists for centralAustralia. Figure 6e

shows part of the temperature record of Charleville in
continental Australia and Figure 6f shows the corresponding
historical simulation temperatures. Again we find small
humps in the fluctuation functions of the model runs
(Figure 6g). In the simulation, possibly the influence of
the insufficiently modeled ENSO leads to smaller slopes
also here, since in the temperature record of the historical
simulation a pattern of 2 years can be found (Figure 6f). As
Figure 6e shows, these strong oscillations do not exist in the
instrumental record. The fluctuation function yields an
exponent a ’ 0.74 (on scales 40 < s < 2000 days),
characteristic of strong long-term correlations, while the
simulation records, for both daily and biannual data, are
described by a ’ 0.5 (on scales 850 < s < 70000).
[33] Our results are summarized in Figure 7 and Table 1.

In order to better assess the fluctuation exponents presented
in Figure 2, we averaged them along the circles of latitude
separately for land and ocean grid points. In Figure 7 the
average values and standard deviations are plotted against
the latitude. Figures 7a–7d show the values for daily data,
while Figures 7e–7h give the values for biannual data. This
representation has to be regarded with care, since on one
hand the values come with large uncertainty (partial sys-
tematically) and on the other hand geographical regions are
not being distinguished. For the historical simulation and
daily data, the average fluctuation exponents for latitudes
over land (Figure 7a) are rather inside to expected range 0.6
< a < 0.7, although near-equator latitudes exhibit weakly
reduced average a. For oceans (Figure 7c) a pronounced
latitude dependence is found, as described above. This
dependence (v shape) is more distinct in the case of the
control run (Figures 7b and 7d), where in general smaller
average a are found. For biannual data (Figures 7e–7h) our
analysis leads to a less pronounced systematic latitude
dependence and especially for the historical simulation to
overall larger average a. The larger standard deviations for
biannual data are possibly due to the smaller fitting range of
F(s).
[34] In Table 1 we give areal averages of the obtained

fluctuation exponents (both model runs, daily and biannual
resolution) for the continents Eurasia, Africa, North Amer-
ica, and Australia. Again, the tendency of reduced expo-
nents for the control run is supported. On the other hand, the
areal averages for the biannual resolution are larger com-
pared to those for daily resolution. The average values for
Eurasia (0.67 ± 0.06) and America (0.66 ± 0.06) are in good
agreement with results for instrumental data of other
authors, although the standard deviations are rather large.

5. Discussion

[35] In this article we have considered near-surface air
temperature records obtained from the global coupled

Figure 6. Daily temperature fluctuations around the
seasonal cycle and DFA2 fluctuation functions for three
grid points under the influence of ENSO. (a, b) Central
Africa (26.25E, 5.57N), (c, d) equatorial Pacific (�93.75E,
�1.86N), and (e–g) continental Australia (146.25E,
�27.83N). Figure 6e shows part of the deseasoned
instrumental temperature record of Charleville (AUS),
while Figure 6f shows the corresponding data from the
historical simulation for the nearest grid point. Figures 6b,
6d, and 6g show the fluctuation functions F(s) versus
timescale s for the historical simulation (open circles, upper
curve), for the control run (open squares, central curve), and
for the biannual values of the historical simulation (solid
circles, lower curve). In addition, the upper most curve in
Figure 6g gives the fluctuation function for Charleville
(1942–1999) in Australia (146.27E, �26.42N). The straight
lines in Figures 6b, 6d, and 6g have the slopes (from top to
bottom): 0.57, 0.53, and 0.66 (Figure 6b); 0.56 (Figure 6d);
and 0.74, 0.52, 0.53, and 0.52 (Figure 6g). The dotted
vertical lines indicate the timescale s = 1000. Crossovers
appear in DFA on larger scales the larger the detrending
order n is (1000 > 2 � 360) [Kantelhardt et al., 2001].
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general circulation model ECHO-G in two runs, a historical
simulation for the years 1000–1990 (with greenhouse gas,
solar, and volcanic forcing) and a 1000-year control run. In
order to quantify the long-term correlations, we have
applied detrended fluctuation analysis to the records of all
grid points, for both runs, and for daily as well as biannual
resolution.
[36] In the case of the historical simulation we find that

most continental sites have fluctuation exponents a between
0.6 and 0.7. Near the equator the exponents of the historical
simulation seem to be smaller, which is possibly an artifact
due to ENSO. For the ocean sites, the exponents depend on
the latitude, with a around 0.5 at the equator and a ^ 1 at
the Arctic and Antarctic circles. In the control run the
fluctuation exponents are reduced, the latitude dependence
is more pronounced and also visible at continental sites. We
have also analyzed biannual data, where cycles with a
period of up to 2 years are suppressed, and find stronger

long-term correlations in the historical run at continental
sites and a less pronounced latitude dependence.
[37] The exponents obtained for continental sites from the

historical run are rather in agreement with the values found
by Eichner et al. [2003], who report a ’ 0.6. . .0.7 with
a maximum at 0.65, and by Király et al. [2006], who find
a ’ 0.63. . .0.75 with a maximum at approximately 0.69.
By studying the 1000-year record of the historic run we
have found that these long-term correlations should hold at
least for 200 years, considerably extending the largest
scales for instrumental records of typically 50 years [see
also Rybski et al., 2006]. This outcome is rather surprising,
since in a such long model run, which already is affected
by accumulation of model error and difficulty in simulat-
ing long-term changes in ocean circulation, processes
governing longer-term climate change, such as vegetation
and glaciers, are not even included. Nevertheless, our results
strongly support long-term scaling at least for 200 years.
Further, the comparison between control run and historical

Table 1. Continental Average a Values and Corresponding Standard Deviations for Eurasia, Africa, America, and Australia, Obtained

From the Historical Simulation and the Control Run, Both in Daily and Biannual Resolutiona

Continent

Daily Data Biannual Data

Historical Simulation Control Run Historical Simulation Control Run

Eurasia 0.62 ± 0.04 0.60 ± 0.04 0.67 ± 0.06 0.61 ± 0.06
Africa 0.61 ± 0.04 0.55 ± 0.05 0.68 ± 0.06 0.57 ± 0.07
North America 0.60 ± 0.05 0.59 ± 0.07 0.66 ± 0.06 0.63 ± 0.10
Australia 0.55 ± 0.06 0.52 ± 0.04 0.62 ± 0.07 0.54 ± 0.07

aCompare to Figure 2. We would like to remark that this averaging to some extent masks the results for very continental sites, since there are more land
grid points with maritime climate. We use the following areas (top left to bottom right): Eurasia, (�7.50�E, 79.78�N)–(�176.25�E, 38.97�N), (52.50�E,
35.26�N)–(120.00�E, 9.28�N); Africa, (�15.00�E, 35.26�N)– (48.75�E, �31.54�N); America, (�165.00�E, 83.48�N)– (�56.25�E, 12.99�N), (�82.50�E,
9.28�N)–(�37.50�E, �50.10�N); and Australia, (116.25�E, �5.57�N)–(150.00�E, �38.97�N).

Figure 7. Values for the DFA2 fluctuation exponent averaged along the circles of latitude, separated
into (top) land and (bottom) ocean grid points for (a–d) daily and (e–h) biannual data. In Figures 7a, 7c,
7e, and 7g we consider the historical simulation, and in Figures 7b, 7d, 7f, and 7h we consider the control
run. The plots show the average fluctuation exponents with the standard deviations as error bars against
the geographical latitude (south: left, north: right). (a) Daily data, historical simulation, land; (b) daily
data, control run, land; (c) daily data, historical simulation, ocean; (d) daily data, control run, ocean;
(e) biannual data, historical simulation, land; (f) biannual data, control run, land; (g) biannual data,
historical simulation, ocean; and (h) biannual data, control run, ocean. The grey areas indicate the range
of exponents found in instrumental records, 0.6 < aland < 0.7 for continental sites [Eichner et al., 2003]
and 0.675 < aocean < 0.925 for ocean sites [Monetti et al., 2003]. The horizontal dashed lines indicate the
uncorrelated case (a = 0.5) and the border to nonstationarity (a = 1.0). The vertical dashed lines represent
the Arctic and Antarctic circles (±66.5�), the Tropic of Cancer or Capricorn (±23.5�), and the equator.
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simulation shows, that the forcings are essential for the
long-term correlations in the temperature records.
[38] We could verify neither the claim that the long-term

correlations vanish in the middle of the continents [Fraedrich
and Blender, 2003; see also Bunde et al., 2004] nor that the
strength of these correlations increases from the poles to the
equator [Huybers and Curry, 2006]. Both claims not only
differ from our findings for the model runs, but are also in
remarkable contrast to the enormous number of observational
data [Eichner et al., 2003; Király et al., 2006]. Since in
particular the results of Huybers and Curry [2006] are
opposite to our results, we would like to comment on them
in more detail. Huybers and Curry [2006] use Thomson’s
multitaper method to characterize the surface air temper-
atures from the NCEP-NCARmodel (instrumental reanalysis
1948–2002). In their Figure 1.d the authors plot versus
the latitude the spectral exponents b = 2a � 1 [see, e.g.,
Kantelhardt et al., 2001], determined on scales between
2 months and 30 years after removing the annual oscillations
and harmonics. For ocean grid points, Huybers and Curry
[2006] report b > 1 (a > 1) at the equator and b � 0 (a� 0.5)
at the poles. The reason for the contradiction in the results of
Huybers and Curry [2006] and this work, are probably due
the different model, different method, and different time-
scales. In addition, the authors find anticorrelations be-
tween the annual cycle and the long-term correlations: the
weaker the annual cylce, the stronger the long-term correla-
tions. On the basis of proxy and some instrumental records,
Huybers andCurry [2006] quantify in their Figure 2 on scales
between 1.1 and 100 years b = 0.37. . .0.56 (a = 0.69. . .0.78)
and on scales between 100 and 15,000 years they find b =
1.29. . .1.64 (a � 1.15. . .1.32). We like to note that latter are
also considerably larger than those we obtained recently for
several reconstructed temperatures of the Northern Hemi-
sphere [Rybski et al., 2006], ranging up to 2000 years.
[39] Finally, in this paper, we only studied temperature

records and focused exclusively on the linear correlation
properties. It is an interesting question how far the global
climate models are able to reproduce also the nonlinear
‘‘multifractal’’ features of the climate system [see Koscielny-
Bunde et al., 1998;Weber and Talkner, 2001;Govindan et al.,
2003; Ashkenazy et al., 2005; Bartos and Jánosi, 2006;
Livina et al., 2007]. It is known that in particular rainfall
is significantly multifractal [see, e.g., Tessier et al., 1996;
Kantelhardt et al., 2006], and it will be interesting to see if this
feature is also reflected in model rain fall data.
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