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1. BACKGROUND HISTORY 
 
Subsea umbilicals are composite cable and small diameter tubular bundles deployed on the 
seabed in conjunction with offshore installations for oil or gas exploitation.  Their aim is to 
supply necessary power and control to remote production valves, chokes and control systems. 
For this purpose umbilicals consist of cores of cables and tubes encapsulated in a 
polyurethane sheath for protection as schematically illustrated in Figure 1. The tubes contain 
control fluids. They are loaded by alternating internal pressure. Once an umbilical is installed 
on the seabed failure-free operation is intended over its whole lifetime (safe-life design 
philosophy). 
 

 
 
Figure 1: Schematic drawing of the umbilical investigated 
 
 
In the present case a performance check of the installed umbilical revealed that one tube had a 
leak and was not able to carry load. In order to find the reason a spare line section was 
investigated which had experienced the same treatment during manufacture. It was found that 
some of the tubes were largely ovalised to an extent of 55%. The same section was then used 
to determine the pressure needed for re-rounding the ovalised pipes. Subsequently this 
pressure was applied to the installed umbilical as well.  
 
Since it could not be excluded that potential cracks just small enough not to snap through the 
wall existed in the re-rounded umbilical fracture mechanics investigations were necessary in 
addition to the confirmation of leak tightness. The general scheme of such an investigation 
follows a proof test philosophy [1] where the overload test provides information on the 
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serviceability at the time of the test but not on potential pre-damage which could affect the 
future component behaviour.   
The aim of the fracture mechanics analysis is to provide information on 
 
(a) the maximum crack size in the component which just would not have caused component  
     failure due to the boost pressure applied for re-rounding and on 
 
(b) the residual lifetime of the component under regular in-service loading. This is based on  
     the assumption that the maximum possible crack size at the end of the proof test really  
     exists.  
 
In the present analysis step (b) is further complicated by the fact that the re-rounding process 
introduces high residual stresses which effect both fatigue crack propagation and final failure. 
 
 
 
2. FRACTURE MECHANICS MODELLING 
 
2.1 The Tube Investigated 
 
The tube had an outer diameter of 22 mm and a wall thickness of 1.1 mm. It was made of 
SAF 2507, a high-alloy super duplex stainless steel. Its tensile properties provided by 
individual testing (mean value of 6 tests) were: 
 
 - Yield strength: 756 MPa, 
 
 - Tensile strength: 947 MPa,    
 

- Elongation:  31 %,  
  

and its fracture and crack propagation properties were: 
 
 - Crack Tip Opening Displacement: 0.46 mm (maximum of  welded SAF 2507) 
 
 - Paris parameters of fatigue crack propagation: 
  - C = 2.3.10-10 (mean + 2 standard deviations; for da/dN in mm/cycle  
                          and ΔK in MPa.m1/2);   
  -  m = 3.52   
 
 - Fatigue crack growth threshold ΔKth = 6.8 MPa.m1/2  
 
 (all fatigue data for for R = 0.1 and a frequency of 10Hz) 
 
[6]. The upper service pressure pmax of the loading cycle was 34.4 MPa, the lower pressure 
pmin = 2.8 MPa (static head pressure), the boost pressure for re-rounding the tubes was pproof = 
65.5 MPa. 
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2.2 Maximum Potential Crack Size Subsequent To Proof Testing 
 
The fracture mechanics analysis can be carried out completely numerically or by means of 
analytical assessment procedures such as R6 [2], BS 7910 [3] or SINTAP [4]. Note that the 
latter has been extended in the European Fitness-for-Service Network (FITNET) recently [5]. 
These procedures are equivalent with respect to their basic approach. For a detailed 
introduction into the methodology see [6].  
 
The required input information and the analysis steps of the analytical approach are illustrated 
in Figure 2. In the following only what is called the FAD method shall briefly be introduced. 
In the FAD (Failure Assessment Diagram) the crack driving force in terms of the linear elastic 
stress intensity factor (K factor) is referred to the toughness of the material, Kmat (in general 
terms)  
 
  r matK K K=          (1) 
 
and plotted against a ligament yielding parameter Lr defined by 
 
  r Y ref YL F F= = σ σ         (2) 
 
(Figure 3) with F being the load (in general terms), FY the yield (or limit) load of the 
component with crack, σref a net section reference stress and σY the yield strength of the 
material. The FAD curve is defined by  
 
  ( )r rK f L=          (3) 
 
with Lr being a function of the stress-strain curve of the material 
 

 ( )

 -1 22
maxref r

r r
r r ref ref ref

max
r r

E L1 for L L
K f L 2 E

0                                         for L L

⎧ ⎫⎡ ⎤⋅ε
⎪ ⎪+ ≤⎢ ⎥= = σ ⋅ε σ⎨ ⎬⎣ ⎦
⎪ ⎪>⎩ ⎭

    (4) 

 
but being independent of the component and loading geometry. max

rL  defines the limit 
condition for plastic collapse failure and is given by:  
 
  ( )max

r Y m eLL 0.5 R R= ⋅ σ +⎡ ⎤⎣ ⎦ .      (5) 
 
The principle of how these equations are used is illustrated in Figure 4. For a given applied 
load F the ligament yielding parameter Lr in the component is determined by r YL F F= . This 
is taken as the input parameter for determining a reference stress σref by 
 
  ref r YLσ = ⋅σ           (6) 
 
which then defines a corresponding reference strain εref on the true stress-stain curve.  
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Figure 2: Flow chart of analytical flaw assessment analyses. (a) Determination of critical 
crack size; (b) Determination of critical load; (c) Determination of minimum required fracture 
toughness (according to [6]). 
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Figure 3: Determination of the critical crack size by the FAD approach. 
 
 

 
 
Figure 4: Determination of (σref,εref) points on the true stress-strain curve dependent on the 
ligament yielding parameter Lr of the component. 
 
 
Note that the yield load FY or the associated reference stress σref is a crucial parameter for any 
assessment since the quality of the whole analysis strongly depends on it. In the present 
analysis the existence of an internal semi-elliptical axial crack was assumed in a 
representative tube section. For this case various yield load solutions are available in the 
literature some of which have been incorporated into compendia of the procedures mentioned 
above. Most of the solutions have been developed recently. Figure 5 gives an impression of 
the different crack size dependency of these solutions for crack geometries a/c of 0.05, 0.2 
and 1 (a = crack depth; c = half crack length at surface of the semi-elliptical crack).  
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Figure 5: Dependency of various yield load solutions on crack depth referred to wall 
thickness, a/t, for the material described in Section 3.1 and crack grometries a/c =  0.05, 0.2 
and 1: (1) Kim & Shim (2005) [8], (2) R6, Rev. 4 (2001) [2] , (3) BS 7910 (2005) [3], (4) 
Sattari-Far & Dillström (2004) [9], (5) Staat & Khoi Vu (2007) [10], (6) API 579-N (2000) 
[11], (7) API 579-L (2000) [11], (8) FITNET (2006) [5].    
 
 
 
The applied solutions were:    
 
(a) Kim & Shim [8] (curve 1 in Figure 5): 
 

  Y Y
t cp A ln B
R Rt

⎡ ⎤⎛ ⎞= σ ⋅ +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

      (7) 
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 (b) R6-Rev. 4 [2] global solution with crack face pressure (curve 2 in Figure 5): 
 

  oi
Y Y

i R6 i i

RRap ln
R M R a R a

⎡ ⎤⎛ ⎞
= σ +⎢ ⎥⎜ ⎟+ +⎝ ⎠⎣ ⎦

      (8) 

 
(c) BS 7910 [3] no specification (curve 3 in Figure 5):   
 

  Y
Y

S

2tp
1.2M D

σ
=         (9) 

 
(d) Sattari-Far & Dillström [9] (curve 4 in Figure 5): 
 

  ( )1.93.11
Y Y

2tp 1
D

= − ζ σ        (10) 

 
(e) Staat & Khoi Vu [10] (curve 5 in Figure 5): 
 

  o i i i
Y Y

i i 2S i i

R R R a R a1p min ln , ln
R R a 2 M R R
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(f) API 579-N [11] net section collapse (curve 6 in Figure 5): 
 

  Y
Y

4N

2tp
M D
σ

=          (12) 

 
 (g) API 579-L [11] local collapse (curve 7 in Figure 5): 
 

  Y
Y

4L

2tp
M D
σ

=          (13) 

 
 (h) FITNET [5] global solution with crack face pressure (curve 8 in Figure 5): 
 

  oi
Y Y

i FITNET i i

RRap ln
R M R a R a

⎡ ⎤⎛ ⎞
= σ +⎢ ⎥⎜ ⎟+ +⎝ ⎠⎣ ⎦

     (14) 

 
 
The Folias factors and other auxiliary functions corresponding to Eqs. (7-14) are given in the 
Appendix. Unfortunately it cannot be decided which of the solutions is best suited for the 
purpose of the present analysis although it has to be assumed that the more recently obtained 
equations are closer to reality than the older ones.  
 
The differences between the yield load solutions are significant with the British Standard BS 
7910 solution (3) being a lower bound to all other curves. For common applications this 
would be conservative. However, in the context of a proof test philosophy conservatism 
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requires its own definition. In a common analysis conservative means an underestimation of 
the critical crack size whereas the target of a fracture mechanics analysis of a proof test is the 
maximum crack size that could have occurred without causing failure. In that case 
conservative means overestimation! As a consequence upper-bound fracture toughness values 
have to be used instead of lower-bound toughness for this type of applications. Likewise the 
yield load solution, if not exact, should provide an upper bound to reality. 
 
With respect to the limit load of structures with semi-elliptical surface cracks in pressurised 
hollow cylinders it has to be distinguished between global and local yield loads, between 
solutions obtained for von Mises and Tresca yield criteria, between yield loads considering 
crack face pressure and those not considering it, and, particularly for older solutions, between 
plane stress and plane strain solutions [12]. Usually lower bound solutions will be local 
solutions based on plane stress and Tresca. In contrast upper bound solutions are obtained for 
plane strain, von Mises and global conditions. The consideration of crack face pressure lowers 
the yield load compared to analyses which neglect it. 
 
Note that the newer yield load solutions tend to higher values than the older ones, particularly 
to those of BS 7910. Unfortunately, as can be seen in Figure 5, even they do not give identical 
results with respect to the crack depth (a/t; t = wall thickness) dependency for the a/c ratios 
investigated. The Staat & Khoi Vu equation (curve 5) leads to the highest yield loads for short 
cracks, but this is not the case for longer cracks, the Kim & Shim approach (curve 1) gives 
high yield loads for a/t < 0.7, the FITNET (curve 8) and the R6-Rev. 4 (curve 2) solutions 
yield almost identical values, the Sattari-Far & Dillström equation (curve 4) shows lower limit 
loads than the other equations for short cracks, but higher limit loads for long cracks. Finally, 
both API criteria (curves 6 and 7) give nearly identical results for a/c < 0.6.  
 
For the further analysis the global solution of the FITNET compendium was applied to the 
boost pressure of 65.5 MPa whilst its local solution was used for the subsequent residual 
lifetime analysis (see Section 3.3). The SAF 2507 steel was very ductile because of which the 
potential tube failure was predicted as plastic collapse according to the max

rL criterion of Eq. 
(5). Since the maximum crack size at failure also depends on the crack geometry a/c the 
analysis was carried out for various combinations of crack depths, a, and crack lengths at 
surface, 2c. The result is shown in Figure 6 where the grey area marks a-c-combinations for 
which failure was predicted. The limit curve for crack dimensions which would just survive 
(or just fail) the test is shown as fat dashed line. The subsequent residual lifetime analysis has 
to be carried out for a number of different initial crack depths and lengths according to this 
line.   
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Figure 6: Crack depth (a) – half crack length (c) combinations for which failure by plastic 
collapse was predicted by using Eqs. (5) and (14) (grey area) or excluded (white area). The fat 
dashed line marks all combinations of a and c for which the tube would just survive (or just 
fail) the proof test. 
 
 
2.3 Fatigue Crack Extension 
 
As mentioned above, empirical evidence showed that the ovality, here determined by the 
relation (Dmax-Dmin)/D (definition based on DNV OS F101) of the damaged tube was 0.55. 
During boost loading the tubes were re-rounded this way causing residual stresses which had 
to be considered in the fatigue crack extension analysis. Therefore, the complete deformation 
history including ovalization, re-rounding and relaxation during the shutdowns was modelled 
by finite elements using the program ANSYS 10.0. The calculations were performed for large 
deformations and isotropic hardening. Due to symmetry conditions, only one half of the cross-
section had to be modelled. The section was idealized by plane strain elements with mid-side 
nodes. 
 
It was found that ovalization caused stresses up to 620 MPa. The maximum values were 
obtained in the centre of the wall at the 6 o’clock, 9 o’clock and 12 o’clock positions. At the 9 
o’clock position, high stresses were also obtained at the inner surface of the wall. The 
subsequent re-rounding left high plastic deformations in the pipe wall the relaxation of which 
was also simulated. The first principal stresses after relaxation are shown in Figure 7. For the 
subsequent analysis these stresses had to be split into primary and secondary (residual) 
components. This was done by subtracting the known secondary stresses from the overall load 
case. 
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For determining stress intensity factors according to 
 

  
j3

I j j
j 0

aK i a
t=

⎡ ⎤⎛ ⎞= σ ⋅ ⋅ ⋅ π⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∑        (15) 

 
with the coefficients ij being given in [14] the residual hoop stress profile was approximated 
by a polynomial 
 

  
j3

j
j 0

x
t=

⎛ ⎞σ = σ ⋅⎜ ⎟
⎝ ⎠

∑         (16) 

 

which was solved as 
2  3x x x (in MPa) = -122.73 - 2927.5 14984 14040 

t t t
⎛ ⎞ ⎛ ⎞ ⎛ ⎞σ + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. 

 
for the 9 o’clock position. The distance x is the path from the inner to the outer wall surface 
and t is the wall thickness such that x/t = 0 marks the position at the inner and x/t = 1 the 
position at the outer surface of the tube.  
 
 

 
 

Figure 7: Distribution of mode I residual stresses at the 9 o’clock position after ovalization, 
re-rounding and relaxation.  
 
 
The determination of the crack size corresponding to final failure during service loading was 
carried out using the method described in Section 3.2. However the conditions for 
conservatism were reversed again, i.e., the analysis had to be performed for a yield load 
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solution which underestimated reality. As mentioned above, in the present case the local yield 
load of the FITNET compendium was chosen: 
 

  
( ) ( ) a aY i

Y 4
4 i i i

R RRp s 1 a t ln c ln
c s 1 a t R R a R a

⎡ ⎤⎛ ⎞ ⎛ ⎞σ
= − +⎢ ⎥⎜ ⎟ ⎜ ⎟+ − + +⎝ ⎠ ⎝ ⎠⎣ ⎦

  (17) 

 
 
Furthermore, in order to consider the effect of combined primary and secondary loading on 
the critical crack size Eq. (1) had to be modified by an interaction term V which describes 
both ligament yielding and relaxation effects caused by the secondary stresses:  
 
  ( )p s

r matK K V K K= + ⋅        (18) 
 
No detailed description on the analytical determination of V shall be given here since this can 
be found in various sources, e.g. [2-6].   
 
The determination of the fatigue crack propagation up to finale failure was based on a Paris 
type equation 
 

  nda C K
dN

= ⋅Δ .         (19) 

 
In order to take into account crack closure effects this was extended in the NASGRO 
approach [13] to 
 

  

pn
th

q th
max

c

th

K1 fC K 1
1 R K

for K K
da K1
dN K

0mm                                    for K K

⎧ Δ− ⎛ ⎞⎛ ⎞⋅ Δ ⋅ −⎪ ⎜ ⎟ ⎜ ⎟− Δ⎝ ⎠ ⎝ ⎠⎪ Δ > Δ⎪ ⎛ ⎞⎪= −⎨ ⎜ ⎟
⎝ ⎠⎪

⎪
⎪

Δ ≤ Δ⎪⎩

   (20) 

 
with f being an analytical crack closure correction  function defined by 
 

  

3
i

i
i 0

0 1

max R , A R if R 0
f

A A R if R 0
=

⎧ ⎛ ⎞⋅ ≥⎪ ⎜ ⎟= ⎨ ⎝ ⎠
⎪ + ⋅ <⎩

∑       (21) 

 

with   

1

2 max
0

Y

A (0.825 0.34 0.05 ) cos
2

α⎡ ⎤⎛ ⎞σπ
= − α + α ⋅ ⋅⎢ ⎥⎜ ⎟σ⎝ ⎠⎣ ⎦

,    (22) 

 

  max
1

Y

A (0.415 0.071 ) σ
= − α ⋅

σ
,       (23) 

  2 0 1 3A 1 A A A= − − − ,       (24) 



 12

 
and   3 0 1A 2A A 1= + − .        (25) 
 
The fit parameters p and q were chosen as p = 0.25 and q = 0, the constraint value as α = 2.5 
and the stress ratio as σmax/ σY = 0.3 such as recommended for steels in [13].   
 
The fatigue crack propagation analysis was performed stepwise such as illustrated in Figure 8 
starting with various maximum crack depth-crack length-combinations which even could 
have survived boost loading. What is important in such analyses is the independent treatment 
of the depth and length growth of the crack. The assumption of a constant a/c ratio would lead 
to a severe error in residual lifetime. Note that the end-of-life-analysis described above is 
incorporated in each cycle of the iterative fatigue crack propagation analysis.  
 
The effect of the residual stresses on fatigue crack propagation is different to those on final 
failure as it was described above. The fatigue crack is driven by the cyclic stress intensity 
factor ΔK which is not affected by the residual stresses. However, the latter shift the Kmin and 
Kmax in each loading cycle by the same absolute value this way changing the R ratio of the 
loading. In order to cover this effect the analysis was based on the NASGRO approach of Eqs. 
(18)-(23) because this allows for variable R ratio analysis. 
  
 

 
 
 
Figure 8: Scheme of the determination of residual lifetime in a fatigue crack extension 
analysis.  
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2.4 Residual Lifetime: Results and Discussion 
 
The results of analyses for three possible maximum crack sizes (a = 0.44 mm, c = 4.4 mm / a 
= 0.67 mm, c = 3.35 mm / a = 0.86 mm, c = 3.2 mm) after boost loading are illustrated in 
Figure 9. Note that the calculations were terminated for the first two cases after 5.000 loading 
cycles without failure.  However, the last case yielded final failure by plastic collapse after 
only 1820 loading cycles. This example was chosen such that the minimum residual lifetime 
for all possible a-c-combinations after proof testing was predicted. Since no information on 
the initial crack geometry in the installed umbilical was available the lowest value of 1820 
cycles had to be chosen as a basis for any decision-making. 
 
 

 
Figure 9: Final results: The analyses were terminated after 5000 loading cycles for crack 
dimensions of a = 0.44 mm (a) and c = 4.4 mm and of a = 0.67 mm and c = 3.35 mm (b). No 
failure was predicted up to that time. The third crack (a = 0.86 mm, c = 3.2 mm) (c) was 
predicted to grow up to its critical size within only 1820 loading cycles.  
 
 
Note that this is a worst case prediction, i.e., it is based on a number of pessimistic 
assumptions: 
 
(a) The tube under consideration was largely damaged before and/or during boost loading.  
      Little increase in pressure would have yielded failure already during this action.  
 
(b) The applied yield load solutions for both, maximum crack size at boost loading and final  
      failure are probably conservative. However, even moderate changes in the yield load  
      could be of tremendous effect on the final result. 
 
Therefore, a throughout validation of the recently proposed yield load solutions and, perhaps, 
the development of further improved solutions is a key issue for reducing the inherent 
conservatism of fracture mechanics analyses in conjunction with any proof test philosophy.  
 
An additional factor which, however, did not affect the present analyses is the use of upper 
and lower bound fracture toughness values. By now statistical approaches are only available 
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for the lower bound. In order to perform meaningful statistical assessments in conjunction 
with proof tests also a method for upper bound statistics should be developed.  
 
An alternative approach to reduce the conservatism of the analyses is to provide further 
information, e.g, on the crack geometry range a/c to be expected after ovalization and re-
rounding of similar components. And of cause any application of non-destructive inspection 
would have a most beneficial effect.  
 
 
3. SUMMARY AND CONCLUSION 
 
The residual lifetime and fitness for service of a pre-damaged tube of a subsea umbilical was 
determined. The tube had experienced large ovalisation and re-rounding by applying a boost 
pressure prior to service. The aim of this paper was to describe and to critically discuss the 
methodology of the fracture mechanics analysis required in addition to leak tightness testing. 
Special emphasis was put on the reversal of conservatism between the two steps: 
 
(a) Determination of the maximum crack size in the component which just would not have  
      caused component failure under the boost loading applied for re-rounding the tubes, and  
 
(b) Prediction of the residual lifetime of the component under in-service loading assuming the  
     existence of the maximum possible crack size of step (a). 
 
A number of yield load solutions for axial cracks in pressurised hollow cylinders was applied 
which yielded quite different results. The fatigue crack extension analyses were performed for 
various crack depth-crack length combinations which just would have survived the boost 
pressure. For both the simulation of crack propagation under service load and the prediction 
of the end-of-life state residual stresses due to the pre-history of the tube were considered. 
The information on these stresses was provided by finite element simulation.  
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APPENDIX: Folias factors and other auxiliary functions corresponding to Eqs. (7-14) 
 
 
BS 7910:     

  T
S

a t1
MM

1 a t

−
=

−
         (A1) 

 

  
2

T
i

cM 1 1.6
R t

= +         (A2) 

 
R6-Rev. 4: 
 

  ( )
( )R 6 2

i

aM a,c, t 1 1.61
a c R

= +       (A3) 

 
FITNET:  
 

  
( )FITNET 2

i

aM 1 1.05
a c R

= +       (A4) 

 

  4
a ai

i FITNET
i i i

acs
R RRR M ln ln a
R R a R a

=
⎡ ⎤⎛ ⎞ ⎛ ⎞

− −⎢ ⎥⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎣ ⎦

    (A5) 

 
Sattari-Far & Dillström: 
 

  ( ) ( )

( )

ac for 2W 2 c t
t c t

ac for 2W 2 c t
tW

⎧ > +⎪ +⎪ζ = ⎨
⎪ < +⎪⎩

      (A6) 

 
Staat & Khoi Vu: 
 
 

  
( )

2

2S
i

cM 1 1.25
R a a

= +
+

       (A7) 
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Kim & Shim: 
 

  mRA 1 0.847 tanh 0.352 a t 0.006
t

⎡ ⎤⎛ ⎞= − + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
    (A8) 

 

  m mR RB 1 0.751tanh 0.256 a t 2 0.98 tanh 0.312
t t

⎡ ⎤⎛ ⎞ ⎛ ⎞= − + + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
  (A9) 

 
API 597-L (local collapse): 
 

  
i

1.818c
R t

λ =          (A10) 

 

  
2 4

tAPIL 2 6 4

1.02 0.4411 0.006124M
1.0 0.02642 1.533 10−

+ λ + λ
=

+ λ + ⋅ λ
     (A11) 

 

  ( )
( )

1
tAPIL

4L

1 C a t M
M

1 C a t

−− ⋅
=

−
       (A12) 

 
  C 0.85=     
 
 
API 597-L (net section collapse) 
 
 

  a
i

1.818c
R a

λ =          (A13) 

 

  
2 4

a a
tAPINS 2 6 4

a a

1.02 0.4411 0.006124M
1.0 0.02642 1.533 10−

+ λ + λ
=

+ λ + ⋅ λ
    (A14) 

 

  
( ) ( )4N 1

tAPINS

1M
1 a t a t M −=

− + ⋅
      (A15) 
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NOMENCLATURE 
 
a  Crack depth  
 
c Half crack length in surface direction   
 
C, m  Fitting parameters of the Paris range of the da/dN-ΔK curve 
 
da/dN  Fatigue crack propagation rate 
 
D  Mean diameter of the tube; D = Ro + Ri = 2R 
 
Dmax  Larger diameter of the ovalized tube 
 
Dmin  Smaller diameter of the ovalized tube 
 
E  Modulus of elasticity (Young’s modulus) 
 
F  Load (general term) 
 
FY   Net section yield load (general term) 
 
K  Stress intensity factor (K factor) 
 
Kmat  General term of fracture toughness expressed in terms of the K factor 

 
Kr  Ordinate of the Failure Assessment Diagram (FAD) (= K/Kmat) 
 
Kp  Stress intensity factor for primary loading  
 
Ks  Stress intensity factor for secondary loading  
 
KI  Mode I stress intensity factor 
 
Lr  Ligament yielding parameter (= F/FY = σref/σY), abscissa of the FAD diagram 
 
Lr

max  Plastic collapse limit Lr value  
 
N Number of loading cycles 
 
Nc Critical number of loading cycles at fracture 
 
p Internal pressure  
 
pmax Upper service pressure 
 
pmin Lower service pressure; static head pressure 
 
pboost Boost pressure applied for re-rounding the tubes 
 
pY Yield internal pressure 
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R  Mean radius of the tube; R = 0.5 (Ro + Ri) = 0.5 D 
 
Rm Uniaxial tensile strength 
 
Ri, Ro, R   Inner, outer and mean radius of hollow cylinders 
 
R Stress ratio in fatigue crack propagation, R = Kmin/Kmax 
 
t  Wall thickness of the component  
 
V  Correction factor for primary and secondary stresses interaction   
 
x  Distance from the outer wall surface  
 
α Constraint parameter (Eqs. 21 and 22) 
 
Δa, Δc Fatigue crack propagation in depth and surface directions referring to ΔN 

loading cycles (Figure 8) 
 
ΔK Stress intensity factor range, ΔK = Kmax - Kmin 
 
ΔKeff Crack closure corrected effective ΔK  
 
ΔKth Threshold value of ΔK below which there is no crack propagation 
 
εref Reference strain (Figure 4) 
 
σ  Stress 
 
σj Polynomial coefficients for fitting the stress distribution (Eq. 16) 
 
σmax Upper stress; cyclic loading (Eq. 22) 
 
σref  Net section reference stress (= Lr

.σY) 
 
σY  Yield strength (for materials with Lüders’ plateau Rp0.2) 
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