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The dispersion of spin wave modes which due to the dipolar interactions propagate along different
directions of ordered superlattices of nanospheres is investigated. For this purpose a procedure
similar to the well-known method of linear combination of atomic orbitals is applied. Different
geometries of two-dimensional �triangular and square� and three-dimensional �simple cubic and
hexagonal-close-packed� arrangements are considered and the influence of dimensionality on the
spin wave dynamics is analyzed. A phase transition which is caused by the competition between
dipolar and uniaxial anisotropy interactions is predicted by the investigation of the dispersion of the
uniform Kittel mode for the superlattice of the hexagonal order. In conclusion, it is shown how the
weak dipolar interaction enhances or decreases the relaxation time in the samples with a controlled
direction of the easy axis. © 2008 American Institute of Physics. �DOI: 10.1063/1.2832756�

The preparation and investigation of new nanostructured
materials, especially of those which consist of superparamag-
netic spheres, are of great importance due to their anticipa-
tion technological application in magnetic storage devices.1

One of the most exigent problems is the enhancement of the
storage stability, which depends on the energy barrier be-
tween the two possible ground states of uniaxial nanopar-
ticles. This barrier primarily depends on the value of the
nanoparticle anisotropy constant and there are already con-
siderable achievements concerning the enhancement of this
factor.2 The second parameter that changes the energy barrier
�and, consequently, the relaxation time and the blocking tem-
perature� is the interparticle interaction of dipolar origin.
Much attention has been paid to this question, both theoreti-
cally and experimentally.3,4 It is known that the effect of the
dipolar interaction strongly depends on the space geometrical
order in nanoparticle superlattices and that it can either en-
hance or decrease the blocking temperature.5

In this article we present a theoretical investigation of
spin waves �SW� which propagate through a superlattice that
consists of interacting nanoscale spheres. By the application
of new technologies it is possible to produce self-assembled
two-dimensional �2D� and three-dimensional �3D� superlat-
tices with various and well defined long-range translational
order and with only small deviations from the average size of
nanoparticles.1,2,4 We find a considerably different effect of
the dipolar interaction in 2D and 3D superlattices and calcu-
late the specific parameters of the 3D hexagonal-close-
packed �hcp� system. Due to the competition between crys-
talline anisotropy within every particle and the dipolar
interaction between the particles, the SW dispersion suggests
a phase transition from the initial ferromagnetic �FM� order
into probably6 a helicoidal order. Our interest in this topic

has been stimulated by new inelastic neutron experiments on
the uniform mode in small ferromagnetic particles.7 Experi-
mentally, the effects described here—in particular the soften-
ing of the uniform mode and the critical behavior near the
phase transition point—can be probed by neutron scattering.

There are two scales at which superlattices of nanocrys-
tals are studied: at an atomic level �i.e., the material itself�
and a scale which is determined by the characteristic nanos-
cale length of the superlattice. A certain temptation to apply
the well-developed methods of solid state physics to new
artificially nanostructured materials arises naturally. In this
article we apply the well-known method of linear combina-
tion of atomic orbitals �LCAO� on the analysis of propagat-
ing spin waves in 2D and 3D superlattices that consist of
spherical ferromagnetic nanoparticles.8 If the solutions of the
wave functions and energies for fluctuating spins in the indi-
vidual spheres are known �correspondingly, the original
method LCAO works with wave functions and energies of
the electron states of the atom�, the solutions for the SW
considered as correlated fluctuations of spins between the
nanoparticles must be a correction of these individual states.
Such an approach is justified if the gaps between the energies
of each individual state are larger than all the characteristic
values of the dipolar energies. By taking the translation in-
variance of the superlattice and the corresponding Bloch
theorem into account, the wave function of the entire ob-
served system can be written as a linear combination of wave
functions of spin fluctuations that are centered in every
sphere. By comparing the average energy scales for the in-
trinsic particle exchange interaction �which determines the
distances between individual particle energy levels� with the
characteristic dipolar energies, it can be concluded that our
considerations are best applied to FM spheres with radii �R�,
approximately, 2 nm�R�10 nm. For much larger particles
with a size of more than a few tens of nanometers the ap-
proach presented in Ref. 9 is valid. For the smaller particles
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with size of approximately 1–2 nm a consistent quantum
description was already presented in Ref. 10. Based on ex-
isting experimental specimen preparation methods,2 we
choose the effective distance between particles to be 2 nm.
Therefore, although the principal results only depend on the
ratio R /L �with L being the distance between the centers of
the spheres�, we based our concrete calculations on the ex-
plicit case of nanospheres with R=5 nm and L=12 nm.

We now consider an assembly of spherical ferromagnetic
nanoparticles with easy axis anisotropy and all the easy axes
of the individual nanoparticles aligned parallel to the z axis.
Preparation of such oriented nanoparticles is of great techno-
logical importance11 which is reflected by reports on new
technological methods that allow to grow highly oriented
nanoparticle structures.12 We assume that an external mag-
netic field �which can be removed after this action� aligned
the magnetic moments of all particles in one direction and
arranged them in one of two possible minima of easy-axis
energy states before the external magnetic field is switched
off again. Below the blocking temperature magnetic mo-
ments precess around the easy axis and can be described by
M=M0+m, where M0 is the saturation magnetization of the
ferromagnetic material and m is a vector that describes small
fluctuations. In linear SW approximation the vector m is per-
pendicular to M0. In accordance with the LCAO method we
write the two components of m as

mi =
ai

�N
�

j

��r − r j�eikrj , �1�

where k is a wave vector of the SW propagating through the
nanocrystal superlattice due to the long-range dipole interac-
tion between the nanoparticles, N is the total number of the
nanoparticles, r j is a coordinate vector giving the center of
each nanoparticle sphere, ��r−r j� is a function describing
the SW of chosen symmetry centered at the individual sphere
with index j, and the sum is taken over all the nanoparticles
in the superlattice. This approach also allows one to take the
specific shape of nanoparticles into account. The correspond-
ing collective modes with energy E�k� feel the influence of
the boundary conditions due to the surface of the nanopar-
ticles. The dependence of E�k� on the superlattice Bloch
wave vector k can be considered as a correction of the en-
ergy levels of the individual spheres.

Intrinsic exchange forces and the boundary conditions
on the surface of the sphere determine the profile of standing
SW for an individual nanoparticle. We remind that the non
pinning condition is �m /�n=0 on the surface of a nanopar-
ticle �n is the normal to the surface�, in contrast to strong
pinning, when m=0 on the surface. In the case of a small
surface anisotropy for the nanoparticles of spherical �ellip-
soidal� shape—i.e., when the particle size is small compared
to the exchange length—the nonpinning case occurs.13 Con-
sequently, the lowest mode is the uniform Kittel mode.14

Recent experimental observations of the uniform mode in
maghemite nanoparticles prove a validity of such an
aproach.7 In small particles the energy level of the Kittel
mode lies much lower than other �exchange� SW levels. For
a zero external field and for typical values of the anisotropy

simple estimation gives EKittel�50–100 �eV. In the case of
weak pinning, i.e., for small particles, corrections to the Kit-
tel mode should be considered. However, in the case of
strong pinning i.e., for particles with a size of approximately
50–100 nm, the angular symmetric mode of the shape j0�K��
takes its place �compare with the case of cylindrical dots15�.
Here we only consider the case of uniform Kittel mode.

For the uniform mode the wave function in Eq. �1� is

��r − r j� = X��r�� = �1,

0,
	��r� � R

�r� � R
	 .

Whenever methods of solid state physics are applied to arti-
ficial structures, it is important to make use of the similarities
between systems with discrete energy levels even though
these levels are of different physical origin and nature. It
allows applying the same approach for both, quantum me-
chanics and phenomenological equations. In our case the role
of the equation of motion is taken by the Landau–Lifschitz
equation �LL� for the dynamic components of the magneti-
zation, instead of the Schroedinger equation which is found
in the usual LCAO. By substituting Eq. �1� into LL, one
obtains the linear system for the unknown coefficients ai.
The determinant of this system has to be equal to zero. The
SW energy E�k�, is then expressed in a usual form as

E�k� = g�B�
Heff − �hz − hx�k���
Heff − �hz − hy�k����1/2,

�2�

where Heff=Hext+Hanisotropy �remember that we assume that
all the anisotropy axes are parallel to the external field and
therefore also parallel to M0�. The terms hz, hx�k�, and hy�k�
are effective dipolar matrix elements given by

hz =
M0

V
�
i�j
�

Vi

�
Vj

drdr�
�

�z

�

�z�

1

�r − r��
,

hl�k� =
M0

V
�
i�j

eik�ri−rj��
Vi

�
Vj

drdr�
�

�l

�

�l�

1

�r − r��
.

Here we denote l=x or l=y, the summation is over the vec-
tors of the centers of the spheres ri,j and integration runs over
the volumes Vi ,Vj of each of the spheres, V is an average
volume of the nanoparticles.

As it is known, the value of the effective dipolar fields
strongly depends on the geometry of the superlattice. This is
also closely linked with theoretical investigations of ground
states and dynamical behavior of dipole lattices which derive
from the classical works of Luttinger and Tisza �see Refs.
16–18, and references therein� and is also connected with the
resent analysis of collective excitations in nanodots and
nanospheres.9,19 Here we calculate the SW dispersion in the
most important arrangements which are 2D triangular and
3D hexagonal structures. We assume that the 2D structure is
a triangular monolayer �consisting of spheres� with the
rhombic angle of � /3. The 3D hexagonal structure consists
then of such monolayers. The distance between them corre-
sponds to the ideal hcp structure with a ratio of �3 /2 be-
tween interplane and in-plane lattice parameters.20 We also
assume the z and the x axis are in the plane of the monolayer,
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and that M0  z. In order to compare our approach with pre-
vious investigations, we also present results for square and
simple cubic �SC� structures.

For superlattices consisting of point dipoles it has been
shown that dipole forces stabilize the ferromagnetic 2D
structure in 2D triangular lattices.18 As it follows from prop-
erties of the dipolar forces the magnetic moment lies in the
plane of the dipoles. For our case with the rhombic angle of
equal to � /3 this plane is isotropic. From this point of view
the properties of the 2D superstructure both of point dipoles
or spheres are similar to those of easy plane thin films21 and
even a small disorder in the anisotropy can destroy the long-
range order. It is also similar to the case, when—in accor-
dance with Mermin–Wagner theorem—thermal fluctuations
can destroy the long-range order in 2D system. However, if
we consider the ordered assembly �the entire easy axes are
aligned and the system is ordered ferromagnetically�, the SW
energy should be real valued �meaning that, its square is
positive� for any direction of the wave vector k. Figure 1
shows the square of the SW energy as it was obtained for
zero external and zero anisotropy fields for both 2D and 3D
lattices of identical nanospheres. For these calculations it is
convenient to locate the origin of the coordinate system at
the center of one selected sphere. Because of the long-range
order of dipolar interaction one has to take a quite large
cluster of the superlattice9 into account. The strongest disper-
sion of collective SW arises if the wave vector is parallel to
the x axis �compare with Fig. 4 in Ref. 17�. For a 2D trian-
gular lattice the square of the energy is positive, but that of a
3D close packed lattice is negative and, hence, the energy of
the SW is imaginary. This suggests instability of the FM
order in the system. It is important to note that the instability
arises even if the amount of layers of nanospheres is small.
Three layers are already sufficient to obtain an imaginary
energy for a SW that propagates along the x direction.

The reason for this can be understood in the following
way. It follows from the Eq. �2�, that if Hext is zero, the sign
of E�k�2 directly depends on the signs of the terms �hz

−hx�k�� and �hz−hy�k��. In the triangular lattice �2D case�
both are negative. Furthermore, �hz−hx�0�� becomes zero
which suggests the absence of the anisotropy of dipolar ori-
gin in the plane, and �hz−hy�0�� is negative which indicates
the easy plane anisotropy. If we move to the 3D lattice, the
term �hz−hx�k�� does not change its sign because the geom-
etry of the plane remains the same. However �hz−hy�k��
does change its sign and becomes positive. From this follows
that if the SW energy is real for some direction of dispersion
in a 2D structure, it becomes imaginary in the corresponding
3D superlattice and vise versa.

It is interesting to illustrate this observation by some
results on SW dispersion in square and cubic lattices. It is
already known that the FM state with a magnetization along
the �1,0� direction is unstable in square lattices and the FM
state with a magnetization direction along the diagonal �1,1�
is metastable �Ref. 17, and references therein�. The ground
state for the corresponding 3D SC lattice is
antiferromagnetic.16 Concequently, the FM order must be un-
stable. For the unstable FM order in a 2D square lattice
�M0  �1,0�� we obtain that the energy of SW, which propa-
gates parallel to M0, is imaginary. However, for SW propa-
gating perpendicularly to M0, it is real valued. This is just
the opposite in the 3D SC structure. Their corresponding
curves are presented in Figs. 2�a� and 2�b�. The real-valued
SW energy for metastable 2D squares becomes imaginary in
the 3D SC lattice, if the magnetization preserves the same
direction along the in-plane diagonal �not shown�.

We can now address the question how these properties of
dipolar interaction influence the observable properties of or-
dered superlattices of ferromagnetic nanospheres in presence
of an easy-axis anisotropy. For this purpose we consider the
magnetic moment of the nanoparticles aligned in a FM order
as described earlier. Figure 3�a� shows that the SW energy
becomes zero for a 3D hexagonal superlattice with R /L
=0.417 �the distance between nanoparticles is L−2R
=2 nm, R=5 nm, L=12 nm� for a certain value of Heff, and
the corresponding wave vector of k= �k0x ,0 ,0� in the consid-
ered geometry. The value k0x�0.7� /L can be estimated nu-
merically. Due to the infiniteness of the dipolar sums, k0x can
be incommensurable with the principal vectors of the Bril-
louin zone. For comparison, the SW energy is presented in
Fig. 3�b� for the wave propagating along the y direction �per-
pendicular to the original monolayer�.

The results presented in Figs. 3�a� and 3�b� suggest a
phase transition in the vicinity of Heff�0.25 T for the super-
lattice with the chosen parameters of the magnetization
��M0�=0.14 T� and the L /R ratio. If Heff�0.25 T, the FM
order stabilizes due to the influence of the anisotropy and
external fields. If the L /R ratio is smaller Heff is larger. The
questions of the order of the magnetic structure which forms
after the transition and the question of the kind of the corre-
sponding phase transition are both complicated to answer. In
any case, the new magnetic order forms due to the competi-
tion between anisotropy and external field on the one side
and the dipolar field on the other side. Both questions are

FIG. 1. The square of the SW dispersion of the uniform mode �Heff=0� as
calculated for the dipolar interaction between Co spheres for 2D triangular
and 3D hexagonal superlattices with M0  z, k x, �M0�=0.14 T �bulk Co�,
and g=2. The rhombic angle in the xz plane in both 2D and 3D structures is
assumed equal to � /3. Correspondingly, the 3D hexagonal structure is an
ideal hexagonal �hcp� structure with a ratio of �3 /2 between interplane and
in-plane lattice parameters The insets give the corresponding structures and
vectors, respectively. The ratio between the radius of nanospheres R and the
distance between their centers L is R /L=5 /12 �as it was used for all the
calculations throughout the article�.
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also closely linked to the problem of how to determine the
ground state in hexagonal 3D dipolar lattices. To our knowl-
edge, extensive investigations of the dipolar order were re-
ported for cubic lattices �SC, body-centered-cubic, and
face-centered-cubic16,22�, but for hexagonal 3D lattice the
question is still unanswered at the present time. The SW
theory presented here suggests that this magnetic order
should be rather helicoidal than FM or AFM. However, this
question demands an additional investigation and is out of
the scope of this article.

From numerical results, it follows that the influence of
dipolar interaction is rather small as it is known that dipolar
FM are “soft.” Hence, it obviously is negligible for samples
with a large crystallographic anisotropy constant �as it was
shown2 in experiments with CoPt3�. However, it would be
quite considerable in the materials with decreased anisotropy
as it was observed in experiments with 	-Co �the first article
in Ref. 4 and the second article in Ref. 11�.

We emphasize that the FM ordered models considered
here are attractive for investigations of the relaxation time in
such systems. The influence on the superlattice ordering is
simple and definite due to the known direction of the crys-
tallographic anisotropy field �one can find the influence of
arbitrary direction external field in Ref. 23�. Evidently, if
both the anisotropy and the dipolar field enhance the order-
ing effect of each other, the energy barrier increases. On the
other hand, a competition between these fields leads to a

reduction of the energy barrier. For the geometry considered
here, the energy of the system with anisotropy and dipolar
interaction can be written as a sum of two terms, E
=KV sin2 
+C sin2 
 sin2 �, where K�0 is the easy-axis
anisotropy energy constant, 
 is the angle between the mag-
netization and the easy axis, and C�−�hz−hy�0�� corre-
sponds to the dipolar interaction. Assuming that C /kT�1,
one obtains the expression �=�0 exp��KV+C /2� /kT� for the
relaxation time.7 As shown earlier, for the 2D triangular lat-
tice C becomes positive. Hence, the relaxation time increases
for the 2D case. In comparison, in the 3D case of hexagonal
lattices C is negative, and thus the relaxation time decreases
for the 3D case.24

In conclusion, in this article we considered 2D �square
and triangular� and corresponding 3D �SC and hcp� superlat-
tices of dipolar interacting nanospheres with ferromagneti-
cally ordered moments. The well established method of
LCAO used in solid state physics and modified here for as-
certained spin wave modes in selected structures of nano-
spheres can be easily generalized for any kind of mode in a
variety of regular superlattices of nanoparticles. We showed
that by SW analysis an evidence for a reorientation phase
transition is given. For the first time, we considered in detail
how these properties are connected with a change in the di-
mensionality �from 2D to the corresponding 3D ordered sys-
tems�. Our computational results are in a good agreement

FIG. 2. �a� and �b� The square of SW dispersion of the uniform mode
�Heff=0� for square �2D� and cubic �3D� lattices with M0  �1,0 ,0� for �a�
k M0 and for �b� k�M0 �but within the same plain�.

FIG. 3. �a� and �b� The uniform mode energy dispersion in a hcp superlat-
tice of FM spheres for M0  z, with �a� k x and �b� k  y �Fig. 3�b��. The
horizontal lines indicate the energy of the uniform mode as obtained for the
same case of Heff=0, but without dipolar intersphere interaction.
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with a theory of ordered lattices of point dipoles �see Refs.
15–17, and references therein� which has been developed
over many decades. The applied approach allows one to es-
timate the relaxation time in ordered systems which are in
accordance with experimental results and are of great tech-
nological importance.
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