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1. INTRODUCTION: BACKGROUND HISTORY AND AIM OF THE PRESENT  
    INVESTIGATION 
 
Wobblers are flexible couplings between the drive spindles and the working rolls of four-high 
rolling stands typically used for hot forming in heavy plate mills (Figure 1). Such a wobbler 
the diameter of which was about 1 meter failed by brittle fracture during a first pass this way 
causing the shutdown of the complete equipment. The subsequent failure investigation 
revealed the pre-existence of a fatigue crack of a depth of about a = 17 mm and a surface 
length of about 2c = 90 mm (Figure 2). Originating from this defect the cross section broke 
by a cleavage fracture mechanism. The result is schematically illustrated in Figure 3.  
 
 

 
 

Figure 1: Schematic drawing of a wobbler connecting the driving shaft with the roll. 
 
 
The aim of the present investigation was to simulate the failure from a fracture mechanics 
point of view. The underlying question was whether the damage was caused by inadequate 
design or by other reasons such as material defects, improper use in service or others.  
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Figure 2: Fracture surface of the broken wobbler. The cleavage fracture 
event had its origin in a shallow fatigue crack at the surface. 

 

 

Figure 3: Schematic drawing of the broken wobbler. 
 
 
 
For this purpose information had to be provided on 
 

- The service loading of the component in terms of load spectra as well as the stress 
distribution across the relevant cross section as a function of the applied torsional 
moment, 

- The initial crack size to be assumed as pre-existent in the analysis, 
- The deformation behaviour of the material in terms of its stress-strain curve, and 
- The crack propagation and fracture resistance of the material under static and cyclic 

loading. 
 
Based on this information, the critical crack size and the residual lifetime subsequent to a 
routine inspection had to be determined by fracture mechanics analyses and compared with 
the real service conditions. 
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2. THE MATERIAL 
 
The material was a quenched and tempered steel 34CrNiMo6 showing a yield strength of Rp0.2 
= 807 MPa, an ultimate tensile strength of Rm = 948 MPa and an elongation at fracture of 
14%.  The temperature dependency of the Charpy energy is shown in Figure 4.  
 
 

 
 

Figure 4: Temperature dependency of the Charpy energy of the steel investigated. 
 
 
Fatigue crack propagation (da/dN-ΔK)-curves were determined for three R ratios (Kmin/Kmax = 
0.1, 0.3 and 0.5) and processed to take into account crack closure effects. Basis for this was 
the so-called NASGRO approach [1] 
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and  3 o 1A 2A A 1= + − .         (6) 
 

 
In Eq.(3) σo is originally defined by the average between the static yield and tensile strengths 
and α is a constraint factor between 1 and 3. Following recommendations for steels in [1] the 
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authors have chosen σmax/σo = 0.3 and α = 2.5.  The term ( ) ( )  n
C 1 f 1 R K⋅ − − Δ⎡ ⎤⎣ ⎦  in Eq. (1) 

represents the Paris equation modified for the stress ratio R, and the terms ( )p

th1 K K− Δ Δ  and 

( )q

max c1 K K−  model the S-shape of the curve; p and q are fit parameters chosen as p = q = 

0.5. The Paris range of the da/dN-ΔKeff curve ( ( ) ( )effK 1 f 1 R KΔ = − − Δ ) of the material is 

shown in Figure 5 which also includes percentile values referring to probabilities of 5%, 
20%, 50%, 80% and 95%. The statistical analysis is based on the C value of Eq. (1) and 
explained in detail in Appendix A. The fatigue crack propagation threshold ΔKth was 
experimentally determined as ΔKth = 6.0 MPa.m1/2 for an R ratio of R = 0. Note, however, that 
the subsequent analysis was carried out consistently taking into account crack closure. This 
includes the assumption that the only crack closure effect considered was the plasticity 
induced one. 
 

 
 

Figure 5: Paris range of the da/dN-ΔKeff curve including percentile curves for  
various probabilities. These have been obtained as described in Appendix A. 

 
 
The fracture mechanism is characterised by a ductile-to-brittle transition behaviour typical for 
ferritic and bainitic steels. A certain amount of stable ductile tearing is terminated by cleavage 
and the fracture resistance shows a considerable scatter band. Four toughness values have 
been determined and statistically processed by the Master Curve approach [2].1) Based on this 
the statistical distribution of Figure 6 was obtained. 
 
 
 
 
 
1) Note that this number of specimens does not really satisfy the requirements in [2] although the 
fracture resistance of all specimens was small enough to pass the census criterion.  
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Note that the toughness distribution is defined for so-called 1T specimens showing a crack 
front length of about 25 mm. The application to real structures, therefore, still requires a 
transformation with respect to the crack front length in the component under consideration. 
However, since the fracture resistance did not play an essential role in the subsequent residual 
lifetime analysis no details on this issue will be provided here. 
 
 

 
 

Figure 6: Fracture resistance distribution of the wobbler material at room temperature. 
 
 
 
3. THE INITIAL CRACK SIZE 
 
Initial cracks may have been introduced as incipient cracks during the manufacture of the 
components or they may have grown from defects and imperfections during service. In any 
case their existence has to be supposed in the analysis. What counts is the largest crack that 
could escape its detection by non-destructive inspection (NDI). This has to be chosen as the 
initial crack size the value of which, of cause, is largely dependent on the NDI method used in 
practice.  
 
The wobbler of the present study was regularly investigated using a standard liquid penetrant 
technique and, additionally, at larger time intervals, by magnetic and ultrasonic techniques. 
For the present analysis a standard NDI initial crack size was chosen for the liquid penetrant 
method. This was a crack length at surface of 2c = 3.8 mm (0.15 in.) for part through cracks 
of an aspect ratio a/2c = 0.5 in a heavy plate (thickness t ≥  1.9 mm/ 0.075 in.) [3].  
 
 
4. THE LOADING CHARACTERISTICS 
 
4.1 Stress Profile Across the Wall 
 
Globally a wobbler is torsion loaded which is transferred as bending at the relevant cross 
section. Note that the loading pattern is not a trivial one since not the complete surface of the 
low ends is loaded but rather the edge regions. In order to cover this effect various loading 
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patterns have been simulated by finite element analyses. Finally the configuration shown in 
Figure 7 was chosen as a slightly conservative alternative. The maximum principal stresses at 
surface due to a global torsional moment of 3000 kNm are shown in Figure 8. 
 

 
 

Figure 7: Loading of the low ends of the wobbler  
realised in the finite element analysis. 

 
 

 
 

Figure 8: The maximum principal stresses at surface  
due to a global torsional moment of 3000 kNm.  
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4.2 Stress Intensity Factor 
 
The stress intensity factors both for the deepest point (A) and the surface points (B) of the 
assumed crack were determined referring to a global torsional moment of 3000 kNm such as 
illustrated in Figure 9. For this the most critical through wall maximum principal stress 
profile from the finite element analysis was approximated by a polynomial 
 
 ( ) 2 3 4 5 6

0 1 2 3 4 5 6x x x x x x xσ = σ + σ ⋅ + σ ⋅ + σ ⋅ + σ ⋅ + σ ⋅ + σ ⋅ .             (7) 

 
The K factor was then determined by 
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            (8) 
 

for the deepest point of the crack (point A in Figure 9) and by      
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a
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I I 0 0 1 1 2 2 3 3 4 4 5 5 6 6

0

K x M x,a dx K K K K K K K= σ ⋅ = σ ⋅ + σ ⋅ + σ ⋅ + σ ⋅ + σ ⋅ + σ ⋅ + σ ⋅∫
            (9) 
 

for the surface points of the crack (points B in Figure 9) [4]. The auxiliary functions A
iK and 

B
iK  (i = 1…6) are given in Appendix B.     

 

 
 

Figure 9: Approximation of the maximum finite element principal stress 
distribution across the relevant section by the polynomial of Eq. (7). 
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4.3 Loading Spectrum 
 
As mentioned above the K factors of section 4.2 were determined for a global torsional 
moment of 3000 kNm. In reality the wobbler experienced a loading sequence comprising 
larger and smaller load amplitudes. It is common to re-arrange the loading data sequence as a 
loading spectrum displaying the loading amplitudes as a function of its occurrence. The 
present example spectrum for a time period of one year is shown in Figure 10. It is sorted 
such that it starts with the highest amplitude. In a fatigue crack propagation analysis the load 
spectrum is repeatedly applied to the structure until the critical crack size is reached. For this 
purpose the number of cycles of one spectrum can be varied proportionally. However, the 
highest amplitude must occur at least one times per spectrum. The K factors obtained by Eqs. 
(8) and (9) correlate proportionally to the referring bending stresses because of which they 
can simply be scaled in the fatigue crack propagation analysis.  
 
 
 

 
 
 

Figure 10: One year loading spectrum of the wobbler showing the  
maximum bending stress at the surface edge of the relevant section. 

 
 
 
4.4 Ligament Yielding Parameter Lr 
 
When the crack grows larger, ligament yielding effects have to be taken into account even at 
relatively low loads except for very brittle materials. The ligament yielding correction can be 
realised by multiplying the K factor by a term 1/f(Lr) which can easily be obtained by 
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-1 22

ref r
r

ref ref ref

E L1
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2 E
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= +⎢ ⎥σ ⋅ε σ⎣ ⎦

 for max
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with σref  being a net section reference stress defined by     
 
 ref r YLσ = ⋅σ  .         (11) 
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and εref being the according strain at the true stress-strain curve. For more detailed 
information see [5]. The parameter Lr is a measure of ligament yielding which, in the present 
example, was determined by  
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[6]. Eqs. (12) – (14) can be applied to plates large enough in comparison to the length of the 
crack so that edge effects do not influence the result, and to a crack depth no larger than 60% 
of the wall thickness if the loading is predominant bending [7].  max

rL  refers to the collapse 

limit of the structure simply determined by max
rL =0.5 (σY + Rm). The membrane and bending 

stresses, σm and σb, in Eq. (12) are given by  
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m

0

1
dx

t
σ = σ∫           (15) 

 

and 
t

b 2

0

6 t
x  dx

t 2

⎛ ⎞⎟⎜σ = σ − ⎟⎜ ⎟⎜⎝ ⎠∫ .        (16) 

 
If, as in the present case, the through thickness stress profile is available as a polynomial these 
equations can be solved as 
 

 m 0 1 2 3 4 5 6

1 1 1 1 1 1

2 3 4 5 6 7
σ = σ + σ + σ + σ + σ + σ + σ      (17) 

    

 b 1 2 3 4 5 6

1 1 9 2 5 9

2 2 20 5 14 28
σ =− σ − σ − σ − σ − σ − σ .     (18) 

 
If the polynomial is lower than sixth order the superflous σi coefficients are simply set to 
zero, e.q. for a polynomial of the third degree σ4 = σ5 = σ6 = 0. Note that the specification of 
the σi coefficients is different to that of Eq. (7) such that it is referred to a relative distance 
(x/t) and not simply to x. The specification is given by 
 

 ( ) ( ) ( ) ( ) ( )2 3 4

0 1 2 3 4x t x t x t x t x t ..................σ = σ + σ + σ + σ + σ +   (19) 

 
Note further that the definition of the membrane and bending stresses in Eqs. (15) and (16) is 
different to those commonly applied to K factor determination. For a more detailed discussion 
see again [5].  
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In Figure 11 the finite element results, again for a global torsional moment of 3000 kNm, are 
plotted for both the tension and compression side of the plate. The offset in the centre of the 
plate is due to numerical effects. Nevertheless, the approximation by Eq. (18) is quite 
reasonably. Since the membrane stress σm = 0.2 MPa was much smaller than the bending 
stress σb = 297.4 MPa it was set to zero for the subsequent analysis.  
 

 
 

Figure 11: Approximation of the maximum finite element principal stress 
distribution across the relevant section by the polynomial of Eq. (19). 

 
 
 
5. RESIDUAL LIFETIME ANALYSIS 
 
The input information discussed so far was used for simulating the propagation of the initial 
fatigue crack of section 3. The analysis was performed consistently taking into account the 
crack closure effect, i.e., the crack driving force was determined in terms of ΔKeff and the 
crack propagation was controlled by the da/dN-ΔKeff curve and the threshold ΔKth,eff. The 
result of the analysis is shown in Figure 12 for percentile values of 5 and 50% (cf. Figure 5). 
Whereas the 50% result gives the most probable scenario the 5% results defines an upper 
bound solution relevant for design purposes.  
 
The crack depth versus loading cycles curves show a distinct pattern with retardation and 
acceleration phases of the crack propagation. The crack is accelerated at the beginning of the 
loading sequence with its high amplitude(s) and it decelerates at the end of the loading 
sequence which is characterised by small load amplitudes. Generally this “wiggles” could be 
smoothed out by proportionally shortening the individual loading sequences. However, as 
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already mentioned this is possible only as long as the highest load amplitude occurs at least 
one times per spectrum. Since exactly that was the case in Figure 12 no further smoothening 
was possible. 
 
It was also mentioned that the exact measure of the fracture resistance did not play much a 
role in the analysis. As can be seen in Figure 6 the 5% probability value of the fracture 
resistance is as small as 67.3 MPa.m1/2. This refers to a critical crack size in the order of a = 
15 mm in Figure 12 (50% percentile curve) which is in good agreement with the crack size at 
real failure (Section 1). However, as can be seen from the curves in Figure 12 no much 
residual lifetime is left beyond this crack size. A crack depth of 15 mm refers to a number of 
loading cycles of approximately 12.6.105 (5% percentile value) and 22.5.105 (50% percentile 
value). If the wobbler were operated continuously this would refer to about 80 and 140 days 
respectively. However, in reality the same wobbler is not continuously operated for such a 
long time. Instead the tools are replaced about once per month and a routine inspection is 
carried out at this opportunity.  
 
 

 
 

Figure 12: Results of the fatigue crack propagation and residual lifetime analysis. 
The percentile values of 5 and 50% refer to the curves in Figure 5. 

 
 
6. CONCLUSIONS AND SUMMARY 
 
The residual lifetime obtained in Figure 12 was shown to be too small for a meaningful 
inspection and maintenance regime which could accompany the service of the wobblers. Note 
that these wobblers were older tools and not originally developed for the new production line. 
In terms of the latter they were inadequately designed with the consequence of the failure 
event described above. 
 
Since the performance could not be improved by accompanying measures the old wobblers 
were retired from service. At that time new equipment made of another material was already 
available. In addition the design was optimised with respect to the notch stresses.  
 
Summarising, the example also shows that the fracture mechanics concept applied was a 
powerful tool for both explaining the failure event as well as improving the design of the 
structure.  
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Appendix A: Statistical processing of the Paris line of the da/dN-ΔKeff curve 
 
The percentile curves in Figure 5 were obtained by a stepwise procedure: 
 
Step 1: All data points of the da/dN-ΔKeff curve  
 

 eff

1 f
K K

1 R

−⎛ ⎞Δ = Δ⎜ ⎟−⎝ ⎠
         (A1) 

 
not belonging to the Paris range were eliminated by eye.  
 
Step 2: The exponent n was fixed to n = 3 for steel. This allowed the determination of one C 
value for each of the remaining data points by 
 

 
3
eff

da dN
C

K
=

Δ
          (A2) 

 
Step 2: The resulting C values are sorted such that i = 1 referred to the smallest, i = N to the 
largest value. N was the overall number of data points, i was a counting parameter such that 
i = i to N. 
 
Step 3: For each C value a probability P is determined by 
 
 P i N=           (A3) 
 
Step 4: This probability is plotted versus C such as shown in Figure A1. The percentile values 
for C then are simply taken from this curve. 
 

 
 

Figure A1: Empirical probability function of the C values referring to  
the Paris range of the da/dN-ΔKeff curve of the present case study.  
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Appendix B: Auxilary functions referring to Eqs. (8) and (9) (according to [4]). 
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⎡ ⎤ ⎡ ⎤= − ⋅ − ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

     (B28) 

 
2  3

1

a a a
A 3.022 10.8679 14.94 6.8537

c c c
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − ⋅ + ⋅ − ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

    (B29) 

 
2  3

2

a a a
A 2.28655 7.88771 11.0675 5.16354

c c c
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − + ⋅ − ⋅ + ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

   (B30) 

 
 1.65

a a
Q 1 1.464   for 1

c c
⎡ ⎤= + ⋅ ≤⎢ ⎥⎣ ⎦

       (B31) 

 
 

1

a
F

c

β
⎡ ⎤= α ⋅ ⎢ ⎥⎣ ⎦

          (B32) 

 
 

2

a
F

c

δ
⎡ ⎤= γ ⋅ ⎢ ⎥⎣ ⎦

          (B33) 

 
2

a a
1.14326 0.0175996 0.501001

t t
⎡ ⎤ ⎡ ⎤α = + ⋅ + ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

     (B34) 

 
2

a a
0.458320 0.102985 0.398175

t t
⎡ ⎤ ⎡ ⎤β = − ⋅ − ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

     (B35) 
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2

a a
0.976770 0.131975 0.484875

t t
⎡ ⎤ ⎡ ⎤γ = − ⋅ + ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

     (B36) 

 
2

a a
0.448863 0.173295 0.267775

t t
⎡ ⎤ ⎡ ⎤δ = − ⋅ − ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

     (B37) 

 
 

 
 
 
 
 
 
 
 
NOMENCLATURE 
 
a  Crack depth (Figure 2) 
 
c Half crack length in surface direction (Figure 2) 
 
C, n  Fitting parameters of the Paris range of the da/dN-ΔK curve 
 
da/dN  Fatigue crack propagation rate 
 
f  Crack closure function (Eq. 2) 
 
K  Stress intensity factor (K factor) 
 
Kc  Fracture resistance of the material 

 
Kmax  Upper K factor (cyclic loading) 
 
Kmin  Lower K factor (cyclic loading) 
 
Kop  K factor referring to crack opening (cyclic loading) 
 
Lr  Ligament yielding parameter (= σref/σY) 
 
Lr

max  Plastic collapse limit Lr value  
 
N Cumulative number of loading cycles 
 
N Number of da/dN-ΔKeff data points (Appendix A) 
 
P Probability 
 
R Stress ratio in fatigue crack propagation, R = Kmin/Kmax 
 
t  Wall thickness of the component  
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α Constraint parameter (Eqs. 3 and 4) 
 
ΔK Stress intensity factor range, ΔK = Kmax - Kmin 
 
ΔKeff Crack closure corrected effective ΔK  
 
ΔKth Threshold value of ΔK below which there is no crack propagation 
 
εref Reference strain (referring to σref in the true stress-strain curve) 
 
σ  Stress 
 
σo Reference stress in Eqs. (3) and (4); usually chosen as  0.5 (σY + Rm) 
 
σb Bending stress component 
 
σm Membrane stress component 
 
σref  Net section reference stress (= Lr

.σY) 
 
σY  Yield strength (for materials with Lüders’ plateau σY = Rp0.2) 
 
Indices 
 
A   Deepest point of the crack (Figures 9 and 11) 
 
B  Surface points of the crack (Figures 9 and 11) 
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