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Stress relaxation in AX41 magnesium alloy studied at elevated 

temperatures.  

 

By Zuzanka Trojanová∗, Pavel Lukáč, Karl Ulrich Kainer 

 

Magnesium alloy AX41 has been deformed at elevated temperatures. Stress relaxation tests 

were performed in order reveal features of the thermally activated dislocation motion. Internal 

and effective components of the applied stress have been estimated. Apparent activation 

volume decreases with the increasing effective stress. Estimated values of the activation 

volume as well as the activation enthalpy indicate that the main thermally activated process is 

connected with the rapid decrease of the internal stress. 

 

1. Introduction  

 

For recent years, research and development of magnesium alloys have shown that the Mg-

based alloys have great potential for applications ad the lightweight materials. Among them, 

the Mg-Al-Ca alloys exhibit good resistance due to the presence of a heat-stable phase. 

During plastic deformation in a certain range of temperature and strain rate, different 

micromechanisms may play important role. The analysis of deformation microstructures has 

shown that one should consider dislocation-based mechanisms in order to explain the 

deformation behaviour. It is widely accepted that the resolved shear stress τ necessary for the 

dislocation motion in the slip plane can be divided into two components: 

 

τ = τi +τ*,                                                           (1) 

 

where τi is the (internal) athermal contribution to the stress, resulting from long-range internal 

stresses impeding the plastic flow.  

 

τi = α1Gbρt
1/2 ,                                                      (2)   
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where G is the shear modulus, α1 is a constant describing interaction between dislocations, b 

is the Burgers vector of dislocations and ρt is the total dislocation density. The effective shear 

stress τ* acts on dislocations during their thermally activated motion when they overcome 

short range obstacles. The mean velocity of dislocations v is connected with the plastic shear 

strain rate by the Orowan equation: 

vbmρ=γ&                                                          (3) 

 

where ρm is the density of mobile dislocations. The dislocation velocity (the plastic shear 

strain rate) is controlled by obstacles (their strength, density) and it depends on temperature 

and the effective shear stress. In polycrystalline materials, the resolved shear stress τ and its 

components are related to the applied stress σ and its corresponding components by the 

Taylor orientation factor ψ: σ = ψτ. A simple relation between the resolved shear strain rate 

and strain rate is εψ=γ && .  

   The most common equation used in describing the average dislocation velocity as a function 

of the effective stress is an Arrhenius type. The plastic strain rate ε&  for a single thermally 

activated process can be expressed as: 
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where ε& 0 is a pre-exponential factor containing the mobile dislocation density, the average 

area covered by the dislocations in every activation act, the dislocation Burgers vector, the 

vibration frequency of the dislocation line, and the geometric factor. T is the absolute 

temperature and k is the Boltzmann constant. ∆G(σ*) is the change in the Gibbs free enthalpy 

depending on the effective stress σ*= σap−σi and its simple form is 

 

∆G(σ∗) = ∆G0 - Vσ∗ = ∆G0 - V(σ - σi).                                            (5) 

 

Here ∆G0 is the Gibbs free enthalpy necessary for overcoming a short range obstacle without 

the stress and V = bdL is the activation volume where d is the obstacle wide and L is the mean 

length of dislocation segments between obstacles. It should be mentioned that L may depend 

on the stress acting on dislocation segments. 



   The stress relaxation (SR) technique has been demonstrated to be quite useful experimental 

method for estimating the activation volume and hence for determining the thermally 

activated process(es). In a stress relaxation test, the specimen is deformed to a certain stress 

σ0 and then the machine is stopped and the stress is allowed to relax. The stress decreases 

with the time t. The specimen can be again reloaded and deformed to a higher stress and the 

stress relaxation test may be repeated. The time derivative σ&  = dσ/dt is the stress relaxation 

rate and  σ = σ(t) is the flow stress at time t during the SR. Stress relaxation tests are very 

often analysed under the assumption that the stress relaxation rate is proportional to the strain 

rate ε&  according to [1] as: 

M/σ−=ε &&                                                              (6) 

 

where M is the combined modulus of the specimen – machine set.  

   Combining (3), (4), (5) and (6), we have 
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Taking the logarithm of this equation we get 
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   The stress decrease with the time during the SR can be described by the well known 

Feltham equation [2]: 

∆σ(t) = σ(0) − σ(t) = αln(βt+1) ,                                              (9) 

 

where σ(0) ≡ σ0 is the stress at the beginning of the stress relaxation at time t = 0,  

 

V
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where ε& (0) the plastic strain rate at the beginning of the relaxation. 

 

   Most of die cast or squeeze cast magnesium alloys are Mg-Al alloys. Third alloying 

elements are used to improve properties of these alloys. Among the alloying elements Ca is a 

promising elemental addition as a cheaper and lighter alternative to rare earth elements, also 

contributes to high temperature properties. Thus, the Mg-Al-Ca systems are very important 

for further development.  

   The objective of this paper is to examine stress relaxation during plastic deformation of 

magnesium alloy AX41 at different temperatures. We shall use the stress relaxation tests to 

obtain the values of the activation volume and the activation volume stress dependence in 

order to identify thermally activated processes in magnesium alloy AX41.  

 

2. Experimental procedure 

 

   Magnesium alloy AX41 (nominal composition 4 wt% Al, 1 wt% Ca, balance Mg) was 

prepared by the squeeze cast technology. Samples for tensile tests had a cylindrical form with 

a diameter of 5 mm and a gauge length of 25 mm. Samples were deformed in an INSTRON 

5882 machine at a constant cross head speed giving an initial strain rate of 6.7x10-5 s-1 over 

the temperature range of 23 to 300 °C. Sequential stress relaxation tests were performed at 

increasing stress along a stress-strain curve. Duration of the SR was 300 s. Ductility of the 

alloy at room temperature is very low and therefore only one SR test could be performed at 

room temperature. On the other hand, recovery during the SR test was observed at 300 °C. 

Results obtained at this temperature were not taken into account because the above given 

equation describing the SR were derived under an assumption that the internal stress σi is 

constant during the SR. Only in the first SR test at this temperature, recovery may be 

considered to be negligible, i.e. σi is constant. 

   Components of the applied stress (σi, σ∗) were estimated using Li’s method [3,4]. The SR 

curves were fitted to the power law function in the form: ( )[ ] ( ) m1

1

0m1
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i tt1ma −− +−=σ−σ , 

where a, t0 and m are fitting parameters. 

 

3. Results and discussion 

 



   A part of the true stress-true strain curve at 100 ºC with indicating the stresses at which the 

SR tests were performed is shown in Figure 1. Blank circles and full squares depict the stress 

at the end of the SR test σR and the internal stress σi, respectively. It is obvious that the 

internal stress σi form the substantial contribution to the applied stress σap. Similar 

dependences obtained at 200 °C are given in Figure 2. It can be seen that the true stress-true 

strain curve obtained at 200 °C is more flat than that measured at 100 °C. The work hardening 

at 200 °C is lower. On the other hand, the SR was more pronounced, i.e. the stress decrease 

during the SR at 200 °C is higher than at 100 °C. It is also obvious that the internal stress 

component of the applied stress decreases with increasing strain. Figure 3 shows the variation 

of the effective (thermal stress) σ*= σi − σap with strain for three deformation temperatures. It 

can be seen that the values of thermal stresses at a given strain are practically the same, 

independent of the testing temperature.  

   The dislocation (true) activation volume Vd is done by the following equation 
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where the subscripts T and s indicate that both the temperature and the dislocation 

microstructure (especially the mobile dislocation density) must be constant during the test. 

Equation (12) is usually used for the activation volume estimation in tests with changes in 

shear strain rate (or strain rate). 0ε&  term is essentially structure-dependent and can be 

expressed as 
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where A is the mean area swept by the dislocation segment per successful thermally activated 

event, νD is the Debye frequency and lc is the critical dislocation length for the thermally 

activated process to occur. In the stress relaxation experiments of polycrystals, it is only 

possible to record the variation of the applied stress σap associated with the change in plastic 

strain rate (stress relaxation rate) and to determine an apparent activation volume, Vapp, by 

using the expression 
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   A comparison of relations (5), (12) and (14) indicates that, at a given temperature, Vd and 

Vapp are related by  
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Considering the mobile dislocation density and the internal stress are constant, the 

relationship (14) can be written as Vapp=(1/ψ)Vd.  

   Apparent activation volumes Vapp for AX41 magnesium alloy polycrystals were estimated 

using equations (9) and (10). As usual, the values of V divided by b3 are plotted against the 

applied stress. It is done for three testing temperatures in Figure 4. It can be seen that the 

apparent activation volumes decrease with applied stress for all temperatures measured. If the 

activation volumes for all temperatures are plotted against the thermal stress σ*, the values 

appear to lie on one line - “master curve” (Figure 5). Similar curve has been estimated for the 

strain dependence of the activation volume (Figure 6). Kocks et al. [5] suggested an empirical 

equation between the Gibbs enthalpy ∆G and the effective stress σ* in the following form: 
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where ∆G0 and ∗σ0 are Gibbs enthalpy and the effective stress at 0 K. From (4) and (15) it 

follows: 
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where p and q are phenomenological parameters reflecting the shape of a resistance profile. 

The possible ranges of values p and q are limited by the conditions 0 < p ≤ 1 and 1 ≤ q ≤ 2. 

Ono [6], suggested that Equation (16) with p = 1/2, q = 3/2 describes a barrier shape profile 

that fits many predicted barrier shapes. Equation (17) can be rewritten 
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and for the activation volume one obtains: 
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   The values of the activation volume should lie at the curve given by the equation (19). The 

experimental values were fitted using equation (19) for various values p and q. The best 

correlation with the experimental data has been found for p = 1/2, q = 2 and the activation 

enthalpy value ∆G0 = 0.96 eV. It can be seen from Figure 5 that the dependence (19) 

describes well the experimental results. Using binominal expansion in (19), the activation 

volume should depends on the effective stress Vapp ∝ (σ*)-n. Generally, the values of the 

power exponent found in the literature vary from -0.5 to -1 [5].  

   The activation enthalpy ∆H = ∆G - T∆S (∆S is the entropy) is done by 

T
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For polycrystals, we can measure experimentally ∂σ/∂T. Substituting from (12) into (20) it 

follows for the activation enthalpy 
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   The activation enthalpy calculated according to (21) for 100 °C gives (0.95 ± 0.05) eV. The 

same value of 0.95 eV has been estimated for Mg in creep experiments at 400 K [7,8]. The 

values of the activation volume and the activation enthalpy may help to identify thermally 

activated process. Consider some of the common short range barriers to dislocation motion 

[9]. The dislocation–dislocation interaction mechanism has an activation volume ranging from 

about 102–104 b3, with the activation volume and enthalpy varying with strain. A rapid 

decrease in the internal stress with temperature (see Figure 7) indicates that softening is 

connected with dynamic recovery.  

   The AX41 alloy, with hcp structure, may deform on many possible glide systems with 

dislocations of Burgers vector <a> = [ ]02113/1  in basal, prismatic and first order pyramidal 

planes and with dislocations of Burgers vector <c+a> = [ ]32113/1  in first and second order 

pyramidal planes. The main deformation mode in magnesium is basal slip of <a> dislocations. 

The secondary conservative slip may be realised by <a> dislocations on prismatic and 



pyramidal of the first order. Couret and Caillard [10,11] studied by TEM prismatic glide in 

magnesium in a wide temperature interval. They showed that the screw dislocations with the 

Burgers vector of [ ]02113/1  are able to glide on prismatic planes and their mobility is much 

lower than the mobility of edge dislocations. The deformation is controlled by thermally 

activated glide of those screw dislocation segments. A single controlling mechanism has been 

identified as the Friedel-Escaig cross slip mechanism. This mechanism assumes a dissociated 

dislocation on a compact plane (0001) that joints together along a critical length Lr producing 

double kinks on non-compact plane. The activation volume is proportional to the critical 

length between two kinks. Amadieh et al. [12] found for the activation volume of the Friedel-

Escaig mechanism value of 70 b3. Prismatic slip has been also observed by Koike and 

Ohyama [13] in the deformed AZ61 sheets. The activation of the prismatic slip and 

subsequent annihilation of the dislocation segments with the opposite sign are probably the 

main reason for the observed internal stress decrease. The double cross slip may be thermally 

activated process controlling the dislocation velocity. Beside of this mechanism, the thermally 

activated glide of the <c+a> dislocations should be taken into account. The internal stress 

acting on the dislocation is determined by the details of the internal structure at that moment 

and it is independent of the applied stress. The stress that changes when the applied stress is 

changed is only the effective stress. The internal stresses during plastic deformation of this 

alloy can be considered as the sum of stresses resulting from various dislocation arrangements 

and obstacles existing in the deformed material [14,15]. A decrease in the yield stress with 

increasing temperature and strain is very probably a consequence of dislocation annihilation 

during the deformation. 

 

Conclusions 

 

The main results of the complex analysis of the stress relaxation curves are: 

 the internal stress decreases with increasing deformation temperature; 

 the values of the apparent activation volumes are in the order of tens b3; 

 the activation volume depends on the thermal stress so that all values lie at the master 

curve Vapp ∝ (σ∗)n; 

 the estimated activation energy indicates that the main thermally activated process is 

very probably the glide of dislocations in the non-compact planes. 
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Figure Captions 

 

Fig. 1. A part of the true stress-true strain curve at 100 ºC. The points on the curve indicate the 

stresses at which the SR tests were performed. 

 

Fig. 2. A part of the true stress-true strain curve at 200 ºC. The points on the curve indicate the 

stresses at which the SR tests were performed 

 

Fig. 3. The strain variation of the effective stress at three different testing temperature 

 

Fig. 4. The plot of the activation volume in b3 against the applied stress 

 

Fig. 5. The plot of the activation volume in b3 against the thermal stress 

 

Fig. 6. Strain dependence of the activation volume in b3  

 

Fig. 7. Variation of the internal stress with temperature 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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