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Abstract

A pressing task in numerical weather prediction and climate modelling is the evaluation of
modelled cloud fields. Recent progressin spatial and temporal resolution of satellite remote
sensing increases the potentia for such evaluation efforts. This paper presents a new
methodology to compare satellite remote sensing observations of clouds and output of

atmospheric models. We discuss the first applications of this method, namely to cloud cover. The
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comparison is carried out for two scenes from the BALTEX Bridge Campaigns. Both scenes are
characterised by low-level, shallow clouds with a substantial amount of liquid water. The cloud
cover of five different models, LM, Méso-NH, MM5 (non-hydrostatic models), RACMO2, and
RCA (regiona climate models) as well as corresponding retrievals from remote sensing
observations with MODIS onboard TERRA form the basis of a statistical analysis to compare the
data sets. Two different measures are defined for comparison: 1) average properties and 2) single
cloud features, with the following objectives: A set of parameters which is suitable for an
automated, unsupervised analysis and continuous and fast processing of cloud cover received
during long-term studies is identified, and the applicability of these parametersis evauated. Itis
shown that the newly devel oped methodology is useful for evaluation purposes and that the
extension of average characteristics with single cloud features helps to avoid ambiguities. In
particular, the newly introduced patchiness parameters are able to separate differences between
the two scenes on the one hand and between the model s and the satellite on the other hand. Méso-
NH turned out to have a more patchy structure than the other models and MODI S with many
small fragmented clouds. The comparison shows that our method can clearly separate differences
in cloud cover, which is usefull for the derivation of automated, unsupervised agorithms for

evaluation of longer timeseries of model output.

Keywords. Patchiness, Contingency tables, Non-hydrostatic models, Climate models, Satellite

remote sensing

1. Introduction
Numerical wesather prediction and climate models are essential tools for understanding the

hydrological cycle, cloud dynamic processes, large scale cloud radiative processes and the energy



budget of the earth. Hence, the development and examination of evaluation strategies is of great
importance in order to assess the reliability of the models and to identify limitations.

In the past, clouds and precipitation were not the main focus in model evaluation. With the
development of new measuring techniques available for studies on clouds and precipitation, this
ischanging (e.g. Yu et a., 1996; Barros and Bindlish, 1999; Klein and Jacob, 1999; Hollars et al.,
2004; Hennemuth et a., 2003). Most frequently, averages, correlations and histograms of
parameters of interest aswell asthelir differences are utilised for evaluation purposes (e.g. Hollars
et a., 2004). Yu et al. (1996) concentrated on the sub-grid model variability to identify best cloud
overlap within amodel column. Klein and Jacob (1999) focused on the positioning of midlatitude
baroclinic systems while Barros and Bindlish (1999) approached evaluation with the help of
texture analysis. Besides eval uation efforts, the eval uation techniques can partly be utilised to
classify cloud systems. E.g., the texture parameters introduced by Barros and Bindlish (1999) are
providing a measure for changes in climate monitoring and forecasting activities. Vilaand
Machado (2004) introduced a series of parameters capable of characterising the shape and

internal structure of convective systems. Further examples for texture and shape anaysisin
remote sensing are presented by Walther and Bennartz (2004). They used this technique to
discriminate frontal from non-frontal contributionsin precipitation fields. Ryan et a. (2000)
present an evaluation of models with different resolutions (ranging from 5 to 300 km), e.g.
concluding that the accuracy of regiona climate models depends on large scale forcing.

This study extends the results presented in Van Lipzig et al. (2005). They discussed the temporal
evolution of low-level clouds, whereas in this paper, we will discuss the spatial characteristics of
the same regiona atmospheric models using observations of MODIS onboard TERRA. Thefive
models are LM, Méso-NH, MM5 (non-hydrostatic models), RACMO2, and RCA (regiona

climate models). The major goal isto outline away to compare cloud cover, being afirst order



parameter for the earth’ s energy budget. The proposed methodology is tested using two cases
from the BALTEX Bridge Campaigns in order to identify its usefulness for the evaluation of the
models with MODIS data. The evaluation of two cases will not reveal any systematic
deficiencies. However, the applicability of the methodology can be assessed to prepare along-
term evaluation. The next section introduces the BALTEX Bridge Campaigns, MODIS, and the
models. Thisisfollowed by a presentation of the methodology which separates between average
characteristics and single cloud features. The results are presented in section 4 and discussed in

more detail in section 5. Finally, conclusions are provided.

2. Data sour ces

2.1 The BALTEX Bridge Campaigns

The BALTEX Bridge Campaigns took place around the Cabauw Experimental Site for
Atmospheric Research (CESAR), the Netherlands, in August and September 2001 (BBC) and in
May 2003 (BBC2). BBC was ajoint venture between the European CLIWA-Net project (Crewell
et a., 2002) and the German 4D-Clouds project. BBC2 was a cooperation of several institutions
across Europe with mgjor contributions from the 4D-Clouds project and the Dutch weather
service, KNMI. During both experiments coordinated observations of clouds by various ground
based and airborne instruments were carried out. An overview of BBC including introductions to
utilised instruments and first resultsis given by Crewell et a. (2004). In this study we use
observations taken on 23 September 2001 and 21 May 2003. Details on the synoptic situation of

these days are provided in part | (Van Lipzig et a., 2005).



2.2 Remote sensing observations

Remote sensing observations utilised in this study were carried out with the Moderate Resolution
Imaging Spectrometer (MODIS) onboard the U.S.-American TERRA satellite. MODI S takes 3D
measurements of radiances: two spatial dimensions (along track through the propagation of the
satellite and across track with 1354 spatia pixels, which corresponds to a swath of ~2330 km)
and one spectral dimension (36 channels, spanning the visible, near infrared and thermal range).
The spatial resolution of MODIS at nadir varies between 0.25 and 1 km, depending on the chosen
channdl. Several operational NASA algorithms for the retrieval of various atmospheric and cloud
products exist. Among them is the MODOS5 product (King et a., 1997) which isused in this
study. It is accessible viainternet (Distributed Active Archive Center, DAAC:

http://daac.gsfc.nasa.gov, funded by NASA). MODO5 data includes a cloud mask that has been

developed by Ackerman et al. (1997). The cloud mask has a spatial resolution of 1 km.

The cloud mask utilises calibrated and navigated radiance observationsin 17 MODIS channels
plus ancillary datainputs, like e.g. viewing geometry and a digital elevation model. Clouds are
generally characterised by higher reflectances and lower brightness temperature differences than
the underlying earth surface. Therefore, the algorithm relies on a set of radiance differences and
ratios as well as absolute values. Mgjor uncertainties in discriminating cloudy from clear sky may
arise from thin cirrus, low stratus at night and small cumulus due to insufficient contrast. Cloud
edges may also be problematic because the pixel may not be completely covered by clouds
(Ackerman et d., 1997).

TERRA isapolar-orbiting satellite that achieves global coverage every 2-3 days. It flies over
central Europe 1-2 times a day with overpass times around 10:30 UTC. The comparison of
MODIS and model cloud cover is carried out for two scenes which had been taken at 10:45 UTC

on 23 September 2001 (S1) and at 10:05 UTC on 21 May 2003 (S2).



2.3 Regional atmospheric models

Output of five modelsis utilised to illustrate the method: the Lokal Model (LM) from Deutscher
Wetterdienst, the MESOsca e Non-Hydrostatic model Méso-NH developed by Centre National
de laRecherche Scientifique and Météo France, the Mesoscale Model MM5 from the Penn-State
University and the National Center of Atmospheric Research and operated by GKSS, the
Regional Atmospheric Climate Model RACMO2 developed by KNMI, and the Rossby Center
Atmospheric Modd (RCA). LM, Méso-NH, and MM5 are non-hydrostatic models while
RACMO2 and RCA are hydrostatic limited-area models used for the purpose of regional climate
prediction. The models are introduced in detail in Van Lipzig et a. (2005). In this paper, also
details about the cloud schemes that are used can be found. In Méso-NH, LM, and MM5, an al-
or-nothing scheme is used assuming that clouds are resolved by the model grid. Additionally, LM
utilises a subgrid cloud scheme which contributes only to radiation and not to the hydrological
cycle. In the climate modelsit is assumed that the models do not resolve the clouds, and a
partially cloud cover is used. The domain size of each model (together with resolution) isgivenin
Fig. 1. The models were initiated at 12 UTC and integrated over a period of 36 hours. 2D spatia
fields are recorded every full hour, beginning 12 hours after initialisation. Consequently, each
model provides 2D cloud cover at 11:00 (RCA at 10:45 UTC) and 10:00 UTC for S1 and S2,
respectively. Although the time difference of 15 minutes can cause significant discrepancies for

individual clouds, we do not expect that the statistics of the cloud fields have changed.



3. Approach

The comparison of LM, Méso-NH, MM5, RACMO2, and RCA to MODIS s carried out for
cloud cover observations at two specific times without averaging in time. The outermost eight
pixels of each model are not considered for the comparison.

Thefirst step of the comparison includes the interpolation of the satellite data to each model grid.
If the model utilises arotated grid, the geographic parameters of MODIS are rotated using the
same parameters for rotation as the model does. The transformation follows the equations
provided by Pearson, 1990 and is applicable for the LM, RACMO2, and RCA.. In the remaining
cases, the geographic information of MODIS isinterpolated to the model grid by triangulation. If
MODIS does not cover the model domain size completely (RACMO2 and RCA), only overlaping
areas are considered for comparison. All models have alower resolution than MODIS. Therefore,
the cloud cover is aggregated by straightforward spatial averaging, and afractional cloud cover is
introduced. Histograms of fractional cloud cover are investigated in section 4.1.

In genera, fractional cloud cover is kept aslong as the determination of average characteristics
and single cloud features (see next sections) alowsit. As soon as an interpretation of the pixel
being either cloudy or cloud freeisrequired, athreshold of 0.5 is defined for the models (LM,
RACMO?2, RCA) and MODIS: All pixelswith fractional cloud cover larger than 0.5 are
considered as cloudy and the remaining pixels as cloud free. The chosen threshold is reasonable
in the sense that it divides the range of valuesin equal parts. A histogram analysis of fractiona
cloud cover does not exhibit specific features, i.e. aclear minimum in the frequency of
occurrence, in neither model nor MODIS.

We first investigate the spatial average characteristics (section 3.1) and then focus on single cloud
characteristics (section 3.2): Thefirst part provides average information of the cloud cover, e.g.

total cloud cover, while the second part describes the features of single cloudsin assigning a



certain set of parameters, like e.g. fragmentation, to each cloud. For this analysis, we need to
define acloud entity. Here, asingle cloud areais determined using an eight-connected neighbour
algorithm: The a gorithm searches for cloudy pixelsin x- and y- aswell asin diagonal direction
of the datafield to identify connected pixels (see Fig. 2). Each connected cloud areais labelled
with aunique areaindex. If cloud free areas are considered, a four-connected neighbour
algorithm is applied in order to avoid pixels being connected across the links of cloudy pixels.

In the following, the cloud mask is retrieved from (fractional) cloud cover through application of

the threshold, and a single connected cloud areais named ‘cloud’.

3.1 Spatial average characteristics

In this section (spatial) average properties of the cloud cover are presented.

The first to mention is the total cloud cover, b, which is determined by normalising the
summation of fractional cloud cover to the total number of pixels.

Second, the quality of the spatial matching between the MODI S and the model cloud masksis
assessed. Both cloud masks are ssmply added and subtracted to construct a contingency table.
Thisisa2x2 matrix that, in this work, contains percentages of the number of pixelsthat are: 1)
cloudy in the model and the satellite data, [1,1], 2) cloud free in both cases, [0,0], 3) cloud freein
the satellite and cloudy in the model, [0,1], and 4) as 3), but vice versa, [1,0]. The normalisation
is carried out to the total number of cloud free and cloudy MODI S pixels, respectively. Overlap
plots are generated by assigning different colours to the categories of the contingency table and
allow a quick visua impression of possible discrepancies between MODIS and model in terms of
overall performance and location of cloud and cloud free areas. The fraction of the pixelsthat are
either zero or one in both fields, i.e. the sum of the pixels corresponding to the[1,1]- and [0,0]-

category and normalised to the total number of pixels, defines the overlap parameter and can be



understood as single parameter summarising the contingency table. The overlap parameter
extends the evaluation potential of total cloud cover sinceit can be interpreted as quality measure
for spatial matching of cloudy and cloud free pixels. The visua impression of spatial matching in
the overlap plotsis expressed in asingle parameter. If, e.g. b=0.5, the overlap can be zero, if the
cloud islocated in the western part of the MODIS and in the eastern part of the model image. A
large number of parameters can be extracted from a contingency table, as discussed, e.g. in
Conner and Petty (1998) and Ebert (2003), but our definition of the overlap parameter differs
from usual ones: The definition of correctly identified pixelsincludesthe[1,1]- and [0,0]-
categories, instead of [1,1]-category alone (usually denoted as “hit rate”), because a correct
interpretation of cloudy pixelsis not of higher priority than one of cloud free pixels.

In the following, the term patchiness is introduced. Generally speaking, the degree of patchiness
increases with increasing number of cloud and cloud free areas (Ngq and Niree, respectively). In
Fig. 3, avisua impression is given: The cloud mask in the left panel has a larger degree of
patchiness than the cloud in the right panel due to the cloud free pixels within the large cloud, and
the necessity to include cloudy and cloud free areas becomes obvious. In order to determine the
degree of patchiness, N¢g and Niee are determined for the MODIS and model cloud masks. The
patchiness is then characterised by two parameters: The first parameter gives the overall
patchiness of the cloud mask and is defined as

PL= (Ngg + N ) /1 (1)

free
with n being the total number of pixels. The normalisation is carried out in order to allow a
comparison of pl between the different models and MODIS. The degree of patchinessislarge if
plislarge, and maximum patchiness is achieved, if the cloud mask appears as a chess board with

each pixel surrounded by four cloud free and four cloudy pixels. If thisis the case, then all

overcast pixels are connected and count as a single cloud, which leads to the maximum
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pl=1/2+1/n. The second parameter assigns a qualitative attribute to p1, and is determined as

the normalised difference between Neg and Niree:
pP2=(Ngy —N;)/n. (2

p2 can take values between —0.5 and 0.5. The margins can be explained with the same argument
used for the margins of pl. If p2 is closeto —0.5, then many cloud free areas and only afew
clouds are present. The other extreme, avalue close to 0.5, is given, if many clouds, but only a
few cloud free areas are found. A value of zero refers to the case, that the number of cloudsis
identical to the number of cloud free areas. Therefore, p2 showsif either cloudy or cloud free
areas contribute most to the patchy appearance of the cloud mask. Note, that both values do not
change if identical areas are added, i.e. the domain size is duplicated. If pl and p2 are determined
for the cloud masksin Fig. 3, the largest patchinessisfound in the left panel of Fig. 3

(pl=11/150), dominated by cloud free areas ( p2 = —-1/150), while the cloud mask in the right
panel is dominated by clouds ( p1=6/150 and p2 = 4/150).

A parameter with similar character as the patchiness, is the contrast which is defined here as the
normalised summeation of the perimeter (see next section) of al clouds. The normalisation is
carried out to the total number of pixels. In contrast to patchiness its dependence on small clouds
Is less pronounced. The contrast is a measure for the number of boundaries within an image
(Barros and Bindlish, 1999).

For identification of these spatial average characteristics, single cloud features need to be defined

asisdonein the following section.

3.2 Single cloud features
In this section the spatial characteristics are extended to features of single connected cloud areas.

The parameters presented in the foll owing describe the shape of a cloud (shape descriptors, e.g.
10



area and perimeter). The original shape may not entirely be reconstructable from these
parameters but they should contain enough characteristics of a shape to discriminate it from other
shapes. Topologica descriptors, like e.g. fragmentation, describe geometrical structuresin a
qualitative way. They are measures of the similarity of shapes and are mainly oriented in away
that agrees with human intuition. Recall, that connected cloud areas are | abelled with a unique
index, utilising an eight-connected algorithm.

The areaof acloud, A, is simply the number of pixels of asingle cloud. The center of the cloud is
understood as the center of mass with all pixels contributing equally, i.e. the cloud is
homogeneous. The center of the cloud is determined by taking the arithmetic mean of the
coordinates of al its pixels, separately for elementsin x- and y-direction.

The perimeter of acloud is defined as the number of pixels of the cloud’s border, i.e. al cloudy
pixelsthat have at least one neighbouring pixel in x- or y-direction that is cloud free.
Fragmentation, f, is determined by counting all cloud free pixelsthat are in either x- or y-
direction surrounded by cloudy pixels of one cloud. The criterion is not strictly in the sense that
the cloud free pixel withindicesi and j must have acloudy neighbour at i £1 orat j 1 but at
any point in the x- or y-direction (see cloud on theright in Fig. 2), aslong as it belongs to the
same cloud. fis normalised on A and includes the number of cloud free pixels within the cloud, h.
hisaso retrieved and normalised on A. In Fig. 2, acloud mask is presented to give an example
for the determination of f and h: The cloud on the left shows higher fragmentation ( f =4/5 and
h=0/5) than the cloud ontheright (f =3/7 and h=1/7).

If hissubtracted from f, f characterises the fractiona degree of the border of the cloud, the
“wigglyness’, and h the brokenness within the cloud. If both parameters are considered, they can
be understood as a measure of compactness, i.e. how closely packed is the cloud. Even if
identical total cloud cover is observed, qualitative differences can be found due to spatial

11



displacement (recall overlap parameter) and compactness. The idea of estimating the
fragmentation of a cloud is taken from Vilaand Machado (2004) and is extended by introducing
h to separate cloud border from interior effects. Vilaand Machado (2004) identified the
fragmentation (in combination with areq) as a useful parameter to estimate the phase of a cloud

field.

4. Results

The comparison of the cloud cover of the models and MODIS, interpolated and adapted to each
of the model’ s resolution, is presented in this section. The section is divided into three
subsections: In the first subsection cloud cover images are presented, in the second subsection
average characteristics of model and MODIS cloud cover and in the third subsection single cloud

features of cloud masks are compared.

4.1 Cloud cover

In Fig. 4 the cloud cover observed by MODIS for S1, left panel, and S2, right panel, is shown.
The S1 cloud mask is dominated by alarge, unbroken cloud over the Netherlands and two
relatively large cloud free areas around the coast of the Netherlands and at the SE corner of the
image. In contrast, the S2 cloud mask is characterised by many relatively small cloud free areas,
in particular over land, which reflects the convective nature of this day.

The cloud cover of the five modelsis presented in Fig. 5 (S1) and Fig. 6 (S2). The same areaiis
shown in al panels (reduced domain size of the climate models). All models are characterised by
arelatively large amount of total cloud cover with MM5 having smallest total cloud cover. The
MMS5 cloud cover found for S2 shows a clear-sky North Sea and large cloud free areas over

western Netherlands. Also LM and RACMO2 show a part of the North Sea cloud free, but the
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agreement with MODI S is better than for MM5. The convective nature of S2 becomes evident in
the cloud cover of LM and Méso-NH: They show many relatively small cloud free areas.

The agreement between cloud cover of the climate models and MODIS for the full domainis
excellent. The major differenceisalarger cloud cover over the Batic Seafor RCA in comparison
to MODIS and RACMO2 (not shown).

The number of pixelswith fractional cloud cover different from zero and one is between 10% and
20%, if non-hydrostatic models are considered. In contrast, the amount of such pixelsis
significantly larger (up to 50%) in case of the climate models. Obviously, the probability of a
pixel being either cloud free or cloudy decrease with increasing pixel size (confirmed by Tian and
Curry, 1989 and Willen et a., 2005), ssmply because small-scale cloud structure is no longer
resolved. If histograms of fractional cloud cover (not shown) of MODIS are compared to the
models (LM, RACMO2, and RCA), they exhibit the following: The three models underestimate
the frequency of occurrence of cloud free pixels, and the climate models are more skewed than

than the satellite observations. This was also found by Willen et al. (2005).

4.2 Comparison of spatial average characteristics of MODI S and model cloud cover

Average characteristics and contingency tables are determined for an areathat is covered by al
models (roughly between 3°E and 7.5°E as well as 51°N and 53.5°N). However, the overlap plots
show the full domains of LM, Méso-NH, and MM5 (and reduced domains of RACMO2 and
RCA).

Tables 1 and 2 give the total cloud cover, the overlap, and the patchiness for the models and
MODIS for S1 and S2, respectively. The total cloud cover iswell represented by most models,
within about 10% of the observations, and the relatively large overlap shows that the spatial

distributions of clouds and cloud free areas are comparable. The largest differenceto MODIS s
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found for MM5, which underestimates the S2 total cloud cover by ~25%. Thisisrelated to the
large cloud free region over the North Sea and western Netherlands which is not present in
MODIS observations (see previous section). Also RACMO2 underestimates the S2 total cloud
cover, but the location of the cloud free area over sea, just west and north of the Netherlands, is
well represented. Thisisreflected in the overlap parameter, which is about 13% larger for
RACMO2 than for MM5.

Analysing patchiness revealed the following: The patchinessin LM corresponds most closely to
the measurements for these two cases, although the patchiness is underestimated in both scenes.
In contrast to LM, Méso-NH overestimates the patchiness in both scenes. The number of clouds
and cloud free areas is much larger than the measurementsindicate. As explained earlier, the
difference in number of clouds and number of cloud free areasisrelevant for p2. From p2itis
clear that there are too much cloud free areas in this modél, rather than too much clouds. The
overestimation of the occurrence of small cloud free areas can aso be seen in the histogram
analysis of areain section 4.3. The overestimation of patchinessin case of Méso-NH might be
related to the fact that shallow convection is not parameterised in this model. In addition, no
subgrid scale cloud scheme is used in Méso-NH. On the other hand, LM does not represent
shalow convection either, and the patchiness in this model is underestimated for the two cases.
The MM5 results are similar to those of LM for S1, but its patchiness for S2 shows largest
observed underestimation: Thereis one large cloud situated over most of the Netherlands,
whereas the North Sea and the west of the Netherlands are cloud free. In part | of this paper, we
have already seen that for S2, MM5 overestimates the lifetime of clouds over Cabauw, whichis
reflected in an underestimation of the variability in liquid water path, and probably explains the

low patchiness.
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In both scenes the patchiness related to the climate modelsis larger than the patchiness related to
the non-hydrostatic models. Thisisaso found for MODI S after interpolation to either the climate
or the non-hydrostatic model grids. Thisis a consequence of the very different total number of
pixels (given in the caption of Table 1) between both groups of models. Small changesin Ngq or
Niree Would dramatically change the patchinessif nissmall. One might argue that aslong as the
total number of pixelsislarge for both groups (but neverthel ess very different) a comparison
between models of different resolutionsis possible, i.e. the maximum pliscloseto 0.5 for both
cloud masks (see discussion for Eq. (1)). But thisis only given if the sum of N¢g and Niree
increases in the same way as the total number of pixels does. Thiswill strongly depend on the
considered cloud cover situation and cannot be expected a priori. However, for evaluation
purposes, i.e. comparison between satellite and model observations, patchinessiswell suited.

In Fig. 7 the overlap plots of the five models are presented for S1 and allow adirect visual
impression of the performance of the models. In general, the overlap plots show large spatial
agreements, mainly dueto alarge cloud found in both MODIS and model cloud masks. All
models consistently have larger cloud cover than MODI S at the west coast of the Netherlands.
Table 3 quantifies the results of the overlap plots (recall aso the overlap parameter in Table 1).
Of all pixels, the pixelsthat are cloudy in the model and in MODIS ([1,1]) have the largest
number of occurrence. In addition, there are more pixels where MODIS is cloud free and the
models have acloud ([0,1]) than vice versa ([1,0]). A good performance in view of the
contingency tableisfound for LM and RACMO2. MM5 shows smallest percentagein the [1,1]-
category and largest in the [0,0]-category. The latter is a consequence of an underestimation of
total cloud cover by MM5 what increases the probability for coincidence with MODI S cloud free
pixels. If the percentages are achieved by normalisation on total number of pixels, we find 52%

inthe[1,1]- and 11% in the [0,0]-category for MM5. However, the latter value is not
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representative since it depends on 1-b . The overlap parameter is determined by normalisation
on total number of pixels and provides information on the spatial matching of cloudy and cloud
free pixels (recall section 3.1). The contingency tablesis an extension of this measure and shows
details on contributions from cloudy and cloud free pixels.

Overlap plotsfor S2 are provided in Fig. 8. LM and Méso-NH, each by a different degree,
reproduce the patchy appearance of the spatia distribution of clouds over land surfaces. MM5
shows afew cloud free patches, but less than MODIS (and LM and Méso-NH). If the climate
models are considered, RCA shows patchy structure over the Netherlands but MODIS and
RACMO2 not. Table 4 summarises the performance of the models. In all cases besides MM5, the
largest percentages are found for the [1,1]-category and the largest misinterpretations for the
[0,1]-category. Remarkable is the high percentage for RCA in the latter case. In Fig. 8eit can be
seen that cloud free areas are shifted in NE direction between RCA and MODIS.

Average parameters, overlap plots, and contingency tables (not shown), retrieved from the full
domain size of RACMO2 and RCA, are aso analysed. Both models underestimate tota cloud
cover but have alarge overlap. The patchinessis smaller, if compared to MODIS and the reduced
domain results, and still dominated by cloud free areas. In contrast to the reduced domain, the
contingency tables show significantly larger valuesin the [0,0]-category. If the comparison of
histograms of cloud cover isrecalled (section 4.1), the climate models underestimate clear-sky.

Thisis compensated by larger frequencies at values between 0 and 0.5.

4.3 Comparison of single cloud features of MODI S and model cloud masks

The cloud cover of satellite and models are dominated by afew large clouds, recall section 4.1

and results related to p2, and al other clouds are significantly smaller in size. Therefore, single
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cloud features are determined for cloud free areas. Furthermore, they are determined for the full
domain of each model to optimise the variability of classes and frequency of occurrence.

In Fig. 9 areaand in Fig. 10 fragmentation histograms of the models and MODIS are given for S1
and in Fig. 11 and Fig. 12 for S2. All models underestimate the frequency of occurrence of small
cloud free areas ( A <10) and the frequency of small fragmentations ( f < 0.3), except Méso-NH:
The cloud mask of Méso-NH consists of more small areas and spans awider variety of
fragmentation than MODI S does.

Although Méso-NH largely overestimates the patchiness and differences to histograms related to
MODIS are quite large, it has the most realistic representation of the frequency of occurrence of
cloud free area and fragmentation among the non-hydrostatic models. Many small cloud free
areas can be identified for S1 and S2, and the frequency of occurrence decreases with area. Also
small fragmentations have a high frequency of occurrence, and this frequency decreases with
increasing f. From thisit is clear that one single measure is not sufficient to have agood
description of the spatia distribution of clouds, and by looking at different measures, amore
complete view can be obtained.

All models except Méso-NH underestimate the frequency of occurrence of small clouds. When a
cloud isformed, it is covering alarger areathan the measurements indicate, at |east for the two
scenes considered. From a comparison of measured time series of liquid water path at Cabauw
(Van Lipzig et a., 2005), it turned out that the lifetime of clouds is underestimated by LM. An
analysis of its model output pointed to alarge variability in the vertical velocity occurring
together with alarge variability in the liquid water path. Apparently, this development and
disappearance of clouds occurred in arelatively large area around Cabauw. Thisisin contrast to
Méso-NH, where the lifetime of clouds is underestimated, but the area of the cloud is aso

underestimated.

17



The climate models underestimate the frequency of occurrence of small clouds. Thisis consistent
with Van Lipzig et a. (2005), where it is shown that variability in the liquid water path is smaller
than the measurements indicate, even after aggregating the measurements to the model grid. The
remarkable large fragmentations for the climate models for S1 result from alarge v-shaped cloud
freeareain RACMO2Z2 and RCA, which is not connected in the MODIS cloud mask, while the
large fragmentation of MODISin Figs. 12d and e has its origin in the cloud free area over the
Baltic Seawhich isless compact than in the models.

The variety of cloud areas and fragmentations as well as their frequency of occurrence should be
larger, i.e. alarger number of casesis needed to increase the reliability of conclusions. However,
the histograms enabled the identification of discrepancies between model and MODIS and are
helpful to aid the conclusions based on patchiness.

Histograms of h are not shown since their frequency and variability is not sufficient. It shall be
mentioned here, that for MODIS and in particular for Méso-NH hislarger for S2 than for S1.
Histograms of h could be seen as a complement to patchiness: h is given in pixel numbers while
patchiness is defined as number of patches, being either cloud free or cloudy and regardless of

their area.

5. Discussion

This section shows differences between the two scenes, and deepens the discussion about the
usefulness of the introduced methodol ogy.

The comparison of total cloud cover of MODI S between S1 and S2 (see Tables 1 and 2), shows a
difference of about 10% which is not reflected in the models. The reason can be found in the
large cloud free area at the west coast of the Netherlands observed by MODIS which is not

present in the models.
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The average parameters for the satellite are not identical in the first three columnsin Tables 1 and
2, even though the considered domain is the same in al three cases. This can in part be explained
by different resolutions (see caption of Fig. 1): Fig. 4 reveals that many small cloudy and cloud
free areas are found in the satellite image, so that even though the difference in the resolutions
between the non-hydrostatic models is small, the presence of small areas seemsto have an effect
on the difference, at least for the patchiness. A second reason can be interpolation uncertainties
due to different resolutions, interpol ation approaches, and geographic coordinates. This gives an

indication of the robustness of the measures, and it can be concluded that differencesin

patchiness (in total cloud cover) of the order of 0.2x107% (0.02) are not significant. This does not
affect previously made conclusions.

The contrast parameter can be utilised to confirm the results related to patchiness. It has the
advantage that it does not depend as strongly as the patchiness parameters on small cloud and
cloud free areas, and therefore, it does not depend so much on the resolution of the models and
interpolation uncertainties. The results related to contrast are qualitatively similar to those related
to patchiness, but show smaller variations between MODIS data related to the different models.
Fig. 4 exhibits aremarkable difference between cloud cover for S1 and S2: Convection resultsin
large spatial variabilitiesin cloud cover over land surfaces for S2 while the S1 cloud cover is
more homogeneous, caused by alarge stratiform cloud. If the patchiness parameters are
compared between both cases, neither in the MODIS nor in the non-hydrostatic model results this
visual impression isreflected in larger patchiness for S2. The reason for thisis that many broken
clouds both in the models and in MODI S are found at the coast and over the North Seafor S1
(verify Figs. 4, 5, and 6). If the patchiness parameters are calculated over land and for longitudes
larger than 5°E, MODIS as well as LM and Méso-NH observe significantly larger absolute

values for S2 than for S1 but not MM5 (not shown). This points to the conclusion that LM and
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Méso-NH are better in representing the convective cloud structure for S2 than MM5, whichisin
agreement with Van Lipzig et a. (2005).

The analysis of scatterplots of A versus f and h shows neither clusters nor relevant correlations.
An exception is LM (S1) where a slight dependence of fragmentation on area could be found for
large areas. This might explain the smooth appearance of the cloud mask of LM since cloud free
areas partly surround a few but large cloud segments. A similar argument was given for the large
fragmentations found in the histograms of fragmentation of RACMO2 and RCA (see section 4.3).
Another aspect isthat in particular for small clouds, minor changes in the cloud mask can largely
affect fragmentation: If the cloudy pixel at the lower right corner of the cloud on theright in Fig.

2 would not be present, f =1/7 (and h=0) isfound, achange by afactor of three. Therefore,

histograms of fragmentation should be accompanied by histograms of area.

There are severa problems related to an evaluation of the cloud cover alone. Such an evauation
does not give any information about cloud optical properties and vertical distribution of cloud
layers. Therefore, the method presented here should be extended to cloud optical thickness, being
related to liquid water path, to cloud top heights, and cloud phase.

Furthermore, the comparison was carried out for two cases of specific time, and the temporal
evolution of clouds was not considered in this paper. However, this paper adds spatial aspects to
the temporal evolution of clouds presented in part | (Van Lipzig et al., 2005). The combination of

both studies helped to draw conclusions from both parts.

6. Conclusions
In this second part of a series of two papers (first part by Van Lipzig et a., 2005), severd
methods are presented for a quantitative evaluation of cloud patterns in atmospheric models,

namely LM, Méso-NH, MM5, RACMO2, and RCA. The usefulness of the methodology is tested
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by applying it to cloud cover observations at 10:45 UTC on 23 September 2001 (S1) and at 10:05
UTC on 21 May 2003 (S2). Patchiness and probability density functions of the area of clouds
turned out to be very relevant to distinguish different types of cloud cover. For example, the
patchiness enabled the differentiation between the convective cell structures observed for S2 and
the more stratiform cloud cover for S1, if restricted to land surfaces. Furthermore, Méso-NH
turned out to have a different spatial distribution of clouds for both S1 and S2 compared to the
other non-hydrostatic models and MODIS. Already by looking at the cloud cover, this difference
between the models can be clearly identified, with Méso-NH showing alot more small scale
structure. Thisisreflected in an overestimation of the patchiness parameter (pl) compared to the
MODIS results. The analysis of patchiness and histograms of area and fragmentation reveal ed,
that asingle measure is not sufficient to have a good description of the spatial distribution of
clouds. The average characteristics need to be complemented by the single cloud features, e.g. the
interpretation of patchinessiseaser, if area histograms are provided.

Based on two scenes, systematic deficiencies in modelled cloud fields cannot be identified.
However, the overestimation of the patchiness of the two scenesin Méso-NH is consistent with a
short lifetime of clouds in thismodel at Cabauw (Van Lipzig et a., 2005). Apparently, small
cloud structures are advected over the site. This result isin contrast with LM: Although Van
Lipzig et a. (2005) showed that also LM underestimates the lifetime of clouds at Cabauw,
correspondence with MODIS is good, with atendency of LM to underestimate patchiness. So
clearly, the short lifetime of clouds at Cabauw is not due to the fact that the cloud structures are
too small, but rather related to appearance and disappearance of clouds on short time scales. This
Is confirmed by comparing the vertical velocitiesin LM, that are also highly variable in time and

correlated with the liquid water content. This example illustrates how the combination of
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information on spatial and temporal distribution of clouds can help to gain insight into the
behavior of the models.

This paper has provided a method by which satellite data can be used for model evaluation and
shows results of first applications to the BBC cases — one of the cases of the WMO cloud
modeling workshop 2004. The description of the spatial distribution in the model is
complemented by a description of the synoptic situation and temporal evolution of shallow
clouds at Cabauw in part | of this paper (Van Lipzig et a., 2005).

For an atmospheric model it is not feasible (nor relevant) to forecast an individual cumulus cloud
system at the exact location and time. However, the models need to be able to describe the
statistical properties of the cloud cover. Satellite images are of particular use since they cover a
large area at high spatial resolution.

In the near future the evaluation of non-hydrostatic and climate models with satellite remote
sensing should be extended to a significantly larger amount of cases, i.e. along-term study is
planned. In particular, this study will allow the analysis of the diurnal cycle of cloud systems, if
data from the M SG satellite, which takes full disk observations every 15 minutes, is utilised.
Furthermore, the comparison should be extended to other cloud properties, like optical thickness,
cloud top height, and cloud phase. The methodology presented by Walther and Bennartz (2004)
will be used to process satellite data and model output in order to separate frontal from non-
frontal cloud systems. If atracking technique is applied to two successive images, separately, for
the satellite and the model, it will offer away to identify and compare the path of frontal systems.
Another relevant study will be the analysis of the mismatch between satellite and model in, e.g.,
the vicinity of frontal areas, using the adopted frontal/non-frontal classification and the overlap

plots. The latter might also be useful to find areas where misinterpretations, either over- or
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underestimations, are most frequent and which might be related to, e.g., orography or land/sea
transitions.

The parameters and methods presented above allow afast, unsupervised processing of data sets
for evaluation purposes and therefore are applicable to long-term evaluations with significantly

larger data amounts.
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Fig. 1. lllustration of the different domain sizes of the non-hydrostatic and climate models. The
MM5 domain lies compl etely within the domain of LM. The resolutions of the models are 2.8

(LM), 2.5 (Méso-NH), 3.0 (MM5), and 19 km (RACMO2, RCA).

Fig. 2. Gimic showing two clouds (white pixels) imbedded in acloud free area (black). White
arrows indicate neighbours in x- and y-direction and black arrows neighbours in diagonal
direction. Connected cloud areas are determined using an el ght-connected algorithm while
connected cloud free areas are identified by a four-connected agorithm. Therefore, the cloud free
pixel in the center of the right cloud does not belong to the large cloud free area. f marks pixels
contributing to fragmentation and h pixels that contribute to number of cloud free pixels within a

single cloud. The total number of pixelsin each panel is 15x10=150.

Fig. 3. Gimic showing two cloud covers (white and black pixelsindicating cloudy and cloud free
pixels, respectively). The cloud cover on the left contains five clouds and six cloud free areas, the
cloud cover on theright five clouds and one cloud free area. Therefore, the degree of patchiness

is larger in the left than in the right panel.

Fig. 4. Cloud cover retrieved from MODIS S1 (Fig. @) and S2 (Fig. b) data. Cabauw, 4.93°E and

51.96°N, is marked in both panels.

Fig. 5. Cloud cover of LM (@), Méso-NH (b), MM5 (c), RACMO2 (d), and RCA (e) for S1.
Cabauw, 4.93°E and 51.96°N, is marked in both panels. RACMO2 and RCA show a section of

thelir full domain to alow better comparison between the models.
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Fig. 6. AsFig. 5 but for S2.

Fig. 7. Overlap plots between MODIS and LM (@), Méso-NH (b), MM5 (c), RACMO2 (d), and
RCA (e) observations for S1. The overlap for RACMO2 and RCA is shown for areduced domain
size. The legends provide cloud cover for MODIS (first value) and model (second value). The
white and black cruxes mark the center position of the largest [0,1]- and [1,0]-areas. Cabauw,

4.93°E and 51.96°N, ismarked in al panels.

Fig. 8. Overlap plots between MODIS and LM (@), Méso-NH (b), MM5 (c), RACMO2 (d), and
RCA (e) observations for S2. The white and black cruxes mark the center position of the largest
[0,1]- and [1,0]-areasin Figs. (a), (b), (d) and (e). In Fig. (c) both cruxes are white. Besides this,

the figure set up isidentical to that of Fig. 7.

Fig. 9. Cloud free area histograms of LM (@), Méso-NH (b), MM5 (c), RACMO2 (d), and RCA
(e) in comparison to MODIS (S1). Not included are one-pixel-areas. Note the different range for

Méso-NH.

Fig. 10. Fragmentation histograms of LM (&), Méso-NH (b), MM5 (¢), RACMO2 (d), and RCA
(e) in comparison to MODIS (S1). The maximum fragmentation of 1.2 for RACMO2 is not

shown. Fragmentation is determined for cloud free areas. Not included is a fragmentation of zero.
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Fig. 11. AsFig. 9 but for S2.

Fig. 12. AsFig. 10 but for S2 and with maximum fragmentation of RACMO2 below one.
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Tablel1

Comparison of average parameters extracted from the S1 data (b: total cloud cover; pl, p2:
patchiness). p1 and p2 were multiplied by 100 to provide larger values. The values in brackets

refer to MODIS. The total number of pixelsis between 11000 and 19000 for the non-hydrostatic

and almost 300 for the climate models.

Parameter LM Méso-NH MM5 RACMO2 RCA
b 0.83 (0.74) 0.75 (0.73) 0.65 (0.74) 0.69 (0.74) 0.70 (0.74)

overlap 0.76 0.68 0.63 0.75 0.66
p1/100 0.28 (0.66) 1.24 (0.62) 0.30 (0.65) 1.43 (1.79) 1.43 (1.79)
p2/100  -022(-0.34)  -092(-027)  -001(-0.27)  -0.00(-0.36)  -0.72(-0.36)
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Table2

AsTable 1 but for S2.
Parameter LM Méso-NH MM5 RACMO2 RCA
B 0.72 (0.84) 0.79 (0.84) 0.59 (0.84) 0.69 (0.85) 0.72 (0.85)
overlap 0.74 0.72 0.67 0.77 0.76
pl/100 0.24 (0.59) 1.28 (0.56) 0.06 (0.74) 2.51 (1.43) 2.51 (1.43)
p2 /100 -0.21 (-0.55) -1.13 (-0.50) -0.05 (-0.69) -1.08 (-0.72) -1.79 (-0.72)
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Table3

Contingency tables for the models (S1). The percentages are retrieved by normalisation on the
number of cloud free and cloudy pixels as observed by the satellite. The spatial distribution of the

classes (e.g. [1,1], first entry in all contingency tables) can be seenin Fig. 7.

LM/ MODIS cloudy cloud free Méso-NH / MODIS cloudy cloud free
cloudy 91% 67% cloudy 79% 63%
cloud free 9% 33% cloud free 21% 37%
MM5/MODIS cloudy cloud free RACMO2/MODIS cloudy cloud free
cloudy 69% 54% cloudy 85% 59%
cloud free 31% 46% cloud free 15% 41%
RCA /MODIS cloudy cloud free
cloudy 79% 79%
cloud free 21% 21%
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Table4

AsTable 3 but for S2. The spatial distribution of the classes can be seenin Fig. 8.

LM/ MODIS cloudy cloud free Méso-NH / MODIS cloudy cloud free
cloudy 76% 39% cloudy 80% 7%
cloud free 24% 61% cloud free 20% 23%
MM5/MODIS cloudy cloud free RACMO2/MODIS cloudy cloud free
cloudy 66% 23% cloudy 83% 70%
cloud free 34% 7% cloud free 17% 30%
RCA /MODIS cloudy cloud free
cloudy 84% 93%
cloud free 16% 7%
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