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Abstract

In this work the local near-shore wave climate for the Island of Helgoland is studied. The focus

is on the assessment of wave extreme events, which are of major importance for the coastal

engineering and management. This problem requires multi-decade wave statistics provided by

measured data. The lack of long-term homogeneous observations is often an obstacle to the

direct statistical analysis of the local wave climate. On the other hand, regional wave hindcasts

are available from simulations for the last decades. In this thesis several so-called downscaling

methods are tested, compared and applied to the evaluation of the past local wave climate.

These methods make it possible to reconstruct the instantaneous local wave situations from the

regional atmosphere/ocean conditions taking the local effects into account. Dynamical down-

scaling as a shallow water wave model, statistical and statistical-dynamical approaches are

considered. 

First, the results of the small-scale dynamical wave modeling are validated against the meas-

urements. The dynamically obtained local wave data is compared with the existing regional

wave hindcast and is found to better describe the local wave statistics. The statistical downscal-

ing techniques in combination with the dynamical method are proposed as a time-saving

procedure for the reconstruction of the instantaneous local wave fields. Linear regression,

canonical correlation analysis and the analog method are applied and found to be reasonable in

representing the local wave statistics. The linear regression method is chosen for further wave

simulation experiments. 

The wave climate for the past 40 years is reconstructed and corresponding extreme wave statis-

tics are examined in terms of intra-annual variability, trends and local tendencies. Although the

general behaviour of the small-scale wave statistics is similar to that of the regional scale, the

local details provide additional information for the development of nearshore constructions.

The potential impact of anthropogenic climate change on local wave extreme events is investi-

gated within the scenario study. The changes in magnitude of local wave extremes are evaluated

for the global future A2 and B2 IPCC SRES development scenarios based on the regional

wind/wave data obtained within the PRUDENCE project. 



Hochaufgelöste Analyse des Seegangsklimas in der Region Helgoland

Zusammenfassung 

In dieser Arbeit wird das küstennahe Seegangsklima der Insel Helgoland untersucht. Den

Schwerpunkt bildet hierbei die Abschätzung von extremen Seegangsereignissen, welche von

ausschlaggebender Bedeutung für Küstenschutz und Küstenzonenmanagement sind. Diese

Anwendungen erfordern Seegangsstatistiken, die auf multi-dekadischen Beobachtungsdaten

basieren. Das Fehlen von möglichst weit in die Vergangenheit zurückreichenden homogenen

Beobachtungen stellt oftmals eine Hürde für die direkte statistische Analyse des lokalen See-

gangsklimas dar. Eine Möglichkeit die eingeschränkte Beobachtungsdatenlage zu verbessern

stellen regionale historische Simulationen des Seegangs der letzten Jahrzehnte dar, die in den

letzten Jahren vermehrt erstellt wurden. In dieser Arbeit werden verschiedene so genannte

Downscaling-Methoden zur Bewertung des vergangenen lokalen Seegangsklimas getestet, ver-

glichen und angewandt. Diese Methoden erlauben es den momentanen lokalen Seegang in

Abhängigkeit von den regionalen atmosphärischen und ozeanischen Bedingungen sowie ein

unter Berücksichtigung von lokalen Effekten zu rekonstruieren. Es werden sowohl ein dynami-

sches Downscaling-Verfahren in Form eines Flachwasserseegangsmodells als auch statistische

und statistisch-dynamische Ansätze betrachtet. Zunächst werden die Ergebnisse der kleinska-

ligen dynamischen Seegangsmodellierung mit vorliegenden Beobachtungsdaten verglichen.

Anschließend werden die dynamisch erzeugten lokalen Seegangsdaten mit bereits vorhande-

nen regionalen historischen Seegangssimulationen verglichen. Dabei stellt sich heraus, dass

erstere das lokale Seegangsklima besser beschrieben und auf diese Weise somit ein Mehrwert

gegenüber den regionalen Rekonstruktionen geschaffen werden kann. Daran anschließend wer-

den verschiedene statistischen Downscaling Methoden in Kombination mit den dynamischen

Methoden als eine zeitsparende Maßnahme zur Rekonstruktion des momentanen lokalen See-

gangsfeldes vorgeschlagen und getestet. Es stellt sich heraus, dass sowohl lineare Regression,

kanonische Korrelationsanalyse als auch die Analog Methode adäquat für die Wiedergabe des

lokalen Seegangsklimas sind. Im folgenden wird die lineare Regression ausgewählt, um das

Seegangsklima der letzten 40 Jahre zu rekonstruieren. Diese Rekonstruktion wurde anschlie-

ßend hinsichtlich ihrer intra-annuellen Variabilität, Trends und lokaler Tendenzen von

Extremereignissen untersucht. Obwohl das allgemeine Verhalten der kleinskaligen Seegangs-

statistik der der regionalen Skala ähnelt, bieten die lokalen Details zusätzliche Informationen

für die Entwicklung von küstennahen Bauten. Der potentielle Einfluss von anthropogen indu-

zierten Klimaänderungen der lokalen Seegangsextreme wurde im Rahmen einer Szenariostudie

untersucht. Die Änderungen in der Stärke der lokalen Seegangsextreme wurden für die IPCC-

Treibhausgasemmissionsszenarien A2 und B2, basierend auf den regionalen Wind/See-

gangsdaten des PRUDENCE-Projekts, abgeschätzt.
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Chapter 1

Introduction

Coastal zones comprise a considerable part of the most developed and populated areas of
the world. Providing diverse resources and variety of economical and social opportunities,
these areas are at the same time extremely vulnerable and complex natural systems, strongly
dependent on the influence of the sea. Therefore, for correct evaluation of the potential
dangers for the off-shore and coastal facilities and of the coastal development options, it
is important to have adequate, detailed and long-term information about the near-shore
sea properties. For such safety and management assessments, many aspects of the sea
impact on the shore as well as coastal processes should be considered. These could be, for
example, the sea level change, tides, waves and storm surges, erosion, sediment transport,
ice coverage and so on, depending on particular application and specific features of the
area studied. This study is mainly dedicated to one component of the complex sea-land
interaction system, namely to the local waves and wave climate assessment for the coastal
zones, having in mind possible applications to the coastal protection and management
planning, off-shore construction and vessel design problems, as well as the assessment of
long-term changes and potential future developments.

The planning and the life-span of coastal constructions are heavily dependent upon
the impact that the facility is supposed to undergo. Consequently, in coastal engineer-
ing many applications require the knowledge of wave statistics, especially the magnitude,
frequency and duration of wave extreme events, for adequate evaluation of future wave
influence. At first approach, the observed data from wave gauges, satellites or radars is
considered as the main source for obtaining the wave statistics. Although such data is
widely used in applications and give a general insight into the past wave climate, it often
suffers from different sorts of inhomogeneity (see e.g. WASA Group [1998]) and/or do not
cover long enough periods of time. Another drawback is that the measurement points are
not regularly located in space and can be situated rather far from the coastal facilities in
question. In this case, the nearest available data can be used together with methods of
the wave data transformation to obtain the statistics required. Such methods are usually
based on first principals of shallow water processes (see e.g. Coastal Engineering Manual
(http://chl.erdc.usace.army.mil)). However, this methodology does not help to overcome
original inhomogeneities of the measured wave data. Another approach is provided by wave



2 1 Introduction

modeling and multi-decade wave hindcasts. This method is often used as a complementary
tool to the observed data for the reconstruction of the wave climatology with the required
accuracy. First, some measurements are needed to validate the hindcast, and then the
hindcast itself can be used instead of observations at locations or time periods not covered
by the data.

The first attempt to produce a long-term wave hindcast with a dynamical wave model
was undertaken within the WASA (Waves and Storms in the North Atlantic) project
(Günther et al. [1998], WASA Group [1998]) for the North Atlantic region. The recon-
structed period covered four decades (1955-1994) and the wave data was hindcast on a
coarse spatial resolution of about 50x50 km. The main aim of this reconstruction was to
investigate the storm and wave changes in the past. Several other hindcasts produced dur-
ing the past decade, for example, global wave reanalysis (Cox and Swail [2001], Simmons
and Gibson [2000]) or regional wave reconstructions for the North Atlantic with statistical
models (e.g. Kushnir et al. [1997], Wang and Swail [2001]) mainly pursued a similar purpose
to describe the wave climate and tendencies of the past in general. However, for coastal
zones and shallow water areas with complicated bathymetry the reconstructions obtained
are rather coarse and hardly applicable. The next qualitatively new step towards a bet-
ter description of the local near-shore wave climatology was made within the HIPOCAS
(Hindcast of Dynamic Processes of the Ocean and Coastal Areas of Europe) project (Soares
et al. [2002]). Unlike the major part of previous studies, this project was aimed at pro-
viding wind, wave and storm surge hindcasts for the European coastal seas appropriate for
the coastal applications, which require producing more homogeneous wind fields, increasing
the spatial resolution and considering shallow water and coastal processes. This task has
been successfully completed and a medium-scale wave hindcast for the last four decades
with approximately 5x5 km spatial resolution was obtained. The data has been used for
different studies and applications such as wave risk assessments, hazard modeling or simu-
lation of ship movements as well as boundary conditions for high-resolution wave models.
At the same time, this hindcast still remains weak in its ability to represent the local wave
statistics for basins with complicated coastline and bathymetry.

This thesis. The general aim of this work is to investigate the local wave climate in the
coastal zones of the North Sea with respect to past and future changes. This task requires
development and implementation of methods to obtain proper long-term high-resolution
(tens to hundreds of meters) wave statistics. The central part of the study is dedicated to
the development and investigation of a methodology allowing the use of the medium-scale
wave data for coastal applications, i.e. the determination of the best ways to obtain the
local wave statistics from the existing medium-scale hindcast. For this task the objective is
twofold and comprises (1) evaluation of the relevancy of existing multi-decade wave hind-
cast for coastal protection and management applications and its ability to represent the
small-scale near-shore features and (2) introduction and evaluation of the dynamical and
statistical methods for obtaining adequate long-term high-resolution wave statistics from
the medium-scale wave hindcast. A further part of this work is aimed at analyzing local
wave statistics for the past four decades obtained with the selected methodology, focusing
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on the wave extreme events as the most important characteristic for coastal protection
and management needs. The objectives include investigation of the relation between the
regional wind/wave climatology and the local wave climatology, and determination of past
tendencies for local wave extreme events. Along with the understanding of the past wave
climatology, the prospective wave climate is studied. In this work two approaches to the
evaluation of the future wave extremes are considered. The first one is based on the extreme
value analysis of the past local wave extremes and extrapolation of these obtained statistics
into the future. The second approach is aimed at illustrating the response of the local
system to global anthropogenic climate change. Here the two global IPCC scenarios, that
have previously been applied at the regional scale, are used for the local wave assessments.

Methods and tools. Until now most of the high-resolution dynamical wave modeling
experiments have been made for episodical wave simulations of selected storms or case stud-
ies and the modeled time period of such simulations varied from several hours to several
years. Here the ability of the dynamical models to produce multi-decade wave simulations
and provide adequate wave statistics is investigated and discussed. The statistical downscal-
ing models applied to the medium-scale wave data could provide an alternative to dynamical
wave modeling. The statistical downscaling experiments for the ocean waves were earlier
limited by the applications to the downscaling of extreme wave statistics on the coarse
(tens of kilometers) spatial scale (e.g. Kushnir et al. [1997], WASA Group [1998], Wang
and Swail [2001]). In this study the models appropriate for the high-resolution coastal wave
applications are selected and implemented. The data provided by the HIPOCAS project
was chosen as the medium-scale wave dataset forming the basis for the study. To our knowl-
edge, it represents the longest homogeneous wave hindcast for the North Sea, providing the
data with the finest resolution among available long-term hindcasts for the North Atlantic
and taking shallow water processes into account.

The surroundings of Helgoland Island located in the German Bight were chosen as an
example area for testing the methodology. Local wave effects are expected in the region
because of the presence of two islands of rather small size (about 1 km2) and complicated
bathymetry in the surrounding area. This allows the testing of the quality of the medium-
scale hindcast in an environment for which it was not explicitly intended. The deficiencies
of the existing wave climate reconstruction are shown and the methodology for localization
of the wave statistics for non-trivial surroundings is tested.

Objectives and procedure. A more specific description of the goals of this work and
procedure for their achievement are:

• Application of the dynamical spectral wave model to the localization of the medium-
scale wave data.

• Validation of the obtained local wave data against measurements, and evaluation of
the dynamical model’s abilities and limitations in representation of the near-shore
wave statistics.

• Skill assessment for the existing wave hindcast in representation of the coastal wave
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statistics by the evaluation of the additional information which can be provided by
small-scale wave modeling based on this data.

• Introduction, application and comparison of the statistical models to the downscaling
of the medium-scale wave parameters and evaluation of their ability to adequate
represent small-scale wave statistics.

• Application of the appropriate downscaling method to the long-term small-scale wave
simulations for the last four decades, description of the obtained wave climate, reveal-
ing local changes and trends and relation of them to the regional atmosphere/ocean
situation. Estimation of the magnitude and frequency of expected extreme wave
events based on the obtained statistics.

• Application of the downscaling method to the climate change scenarios with the aim
to compare the influence of different global scenarios on the local wave climate.

This thesis is grouped into three main parts and concluding comments. In Chapter
2 the basic concept of dynamical wave modeling and a brief description of the spectral
wave model developed at the GKSS Research Center and used in this work are presented.
The specification of the HIPOCAS hindcast data and the details of the high-resolution
wave modeling experiment are given. The second part of this chapter is dedicated to the
comparison of the HIPOCAS medium-scale and modeled small-scale wave parameters with
observations from different sources, and to the evaluation of the quality and uncertainties
of these two datasets in representation of the instantaneous wave parameters as well as
wave statistics. In the last part of the chapter the simulated high-resolution wave data are
compared to the data from the medium-scale hindcast with the goal of evaluating the added
value obtained by the small-scale modeling focusing on wave extreme statistics. In the third
chapter the statistical-dynamical approach to the downscaling of medium-scale wave data
is investigated. Three statistical methods are proposed as possible candidates for the high-
resolution wave downscaling models. The results of their application to the localization of
medium-scale wave parameters are compared with the outcome of the dynamical model.
Different aspects of the statistical approach such as application to the multiple downscaling
of several wave parameters, potential restrictions and computational costs are considered
and discussed. In Chapter 4 the results of the long-term high-resolution wave hindcast
provided by the statistical model are described and the obtained extreme wave statistics
are used for evaluation of the changes in past wave climate and for the estimation of the
future wave extreme events. The connection between regional changes in wind and wave
climate with the local extreme wave statistics is investigated and discussed. The high-
resolution wave field projections obtained for the end of the 21 century based on the IPCC
scenarios are assessed and the climate change issue is discussed in connection with the
small-scale wave climate. General discussion and some concluding remarks close the thesis
in Chapter 5.



Chapter 2

Dynamical wave modeling

2.1 Methods, data and tools

In this section the main principles and features of the spectral wave modeling are de-
scribed. In particular the K-model is discussed as the main tool for the wave simulations.
Subsequently, the HIPOCAS project, the main source of the external forcing data for the
K-model experiments, is described. Finally, the model domain in the German Bight is
specified and the details of the experiment setup are presented.

2.1.1 K-model. Description and features.

Wave models usually describe the evolution of a sea state depending on initial and
boundary conditions as well as external fields like wind, currents and bathymetry. The
sea state is defined as a number of wave trains with different wave lengths and periods
generated at or coming to a specific location at certain time. Within this concept two classes
of wave models can be distinguished (for recent overview see Ris [1997] or Cardone and
Resio [1998]). So-called ”phase-resolving models”, characterized by explicitly determined
superposition of wave trains considering their phases, belong to the first group. Such models
are advantageous in the problems where the changes in the environment occur on the scale
of wave lengths and periods or where diffraction is important. These models are often used
for specific small areas such as harbors or for short-time applications. The second class
contains ”phase-averaging” or spectral models. In these models the wave trains which form
the sea state are considered independently of their phases. With this approach the sea
surface can not be described in detail and the spatial and time resolutions of these models
are supposed to be larger than the typical wave length and wave period. These models
are used for the most of medium and large scale applications due to the computational
reasons as advantageous with respect to the phase-resolving models. They also allow the
easier and more accurate consideration of the random-phase source functions such as wind
energy input and wave dissipation. Further in this study the phase-averaging wave models
are considered. The theoretical background for this kind of models can be found in Komen
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et al. [1994]. Here only the main equation and related terms relevant for this work are
introduced.

The linear wave theory was developed for the idealized conditions of homogeneous and
stationary wave fields, then it was generalized for slowly varying fields (i.e. with the depth
and currents slowly varying in space and time with respect to the wave length and wave
period). The mathematical description of the sea state is given by the wave spectrum. Here
the spectrum F(k) is defined as the density function of the energy distribution over the wave
components with different wavenumber vectors k. The frequency-directional (F (f, θ)) or
wavenumber-directional (F (k, θ)) spectra are also considered in applications. Frequency f
and wavenumber k are connected by the Doppler shift equation and the dispersion relation:

2πf = σ(k, h) + k~U, σ2 = gk tanh(kh)

where σ is the intrinsic frequency, h - the water depth, g - the gravitational acceleration
and ~U - the current field. Since it is impossible to specify the instantaneous sea state in
all details, the statistical theory of linear random waves describes the sea surface by the
probability to find particular sea state. The sea state is defined as a superposition of waves
with different surface displacements (ηi). The knowledge of the joint probability function
of the surface displacements P (η1, η2, . . . , ηn) is generally required to find the probability of
a certain sea state occurrence. The wave spectrum is then defined as the Fourier transform
of this joint probability function. The evolution of the wave spectrum in time is described
by the action balance equation:

∂tN +∇ · (ẋN) + ∂k(k̇N) + ∂θ(θ̇N) = S(N)

where N(k, θ;x, y, t) is the action density dependent on the wavenumber (k) and direction
(θ) for each location (x = {x1, x2}) and moment of time (t). Action density is connected
to wave spectrum by

N(k, θ,x, t) = F (k, θ,x, t)/σ

The first term on the left-hand side of the balance equation represents the local rate of
change of the action density in time, the second term represents the propagation of the
action in geographical space. The third term represents the shift of wavenumber due to
variations of depth and currents and the last term represents the refraction caused by depth
and/or currents. The source function in the right-hand side of the equation represents
the energy sources and sinks in the system. It varies within different formulations and
generations of the spectral wave models and in general has the form

S(N) = Sin + Snl + Sdis

where Sin represents the energy input by wind, Snl represents the nonlinear wave interac-
tions and Sdis represents the energy dissipation by several processes such as wave breaking,
bottom interactions, etc. The specific form of the source function for the actual model is
given in the next subsection.
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For the wave simulation in this study the K-model is used, which is a third generation
spectral wave model adapted to small-scale shallow water applications. Third generation
models are characterized by the transition to full two-dimensional discretization of the
wave spectrum instead of artificial separation of the wind and swell parts of spectrum. The
development of third generation models started in mid 1980s by WAMDI Group [1988]. This
approach has been successfully used for the major part of spectral wave models constructed
for both open ocean applications (e.g. WAM-cycle4 (Günther et al. [1992])) and small-
scale and shallow water applications (e.g. high-resolution version of WAM (Monbaliu et al.
[2000]) or SWAN (Ris et al. [1999])). The K-model was developed on the basis of the
WAM-cycle4 model with some changes aiming mainly at the adaptation of the model to
small-scale coastal zone applications. With the increasing spatial and time resolutions and
consideration of areas with shallow water and complex topography, the model faces the
problems of inhomogeneity and non-stationarity of external fields. The main part of the
wave theory was developed for idealized conditions which can be accepted for the most of
medium-scale deep-water applications but need a strong revision and adaptation to the near-
shore small-scale environment. The changes between WAM and K-model include transitions
from the frequency-direction (f, θ) to the wavenumber-direction (k, θ) domain. This allows
avoiding additional multipliers with partial time derivatives in the balance equation, which
is crucial in non-stationary cases (Schneggenburger [1998]). Another difference is related
to the form of the source function. Non-linear wave-wave interactions have been neglected
following the reasoning of Schneggenburger [1998], who argued that in shallow water the
assumptions of homogeneity for the application of this theory are violated. Instead, a non-
linear dissipation source function (Günther and Rosenthal [1997] or Schneggenburger et al.
[1997]), accounting for the dissipation by wave turbulence, is used. In the K-model energy
input by wind is parameterized by a modified Philips linear function (Cavaleri and Rizzoli
[1981]) and a modified Snyder exponential function (WAMDI Group [1988]) similar to the
WAM model. Bottom dissipation is taken into account according to Hasselmann et al.
[1973].

The modeled and measured wave fields were originally given in the form of a wave
spectrum but for practical reasons different representations of spectrum or integrated pa-
rameters are used. This provides the opportunity to relate model results to observed data in
a sense that integrated parameters can be easily statistically interpreted as characteristics
of the sea state. The most usable integrated parameters are the moments mn:

mn =

∫
F (f, θ)fndfdθ, n = −1, 0, 1, 2

and quantities related to them. The zeroth order moment m0 is the total variance of
the spectrum which proportional to the total energy and defines another frequently used
integrated parameter the significant wave height (SWH):

Hs = 4
√

m0

which corresponds to the mean of the highest third of the observed waves (Longuett-Higgins
et al. [1963]). Different integrated periods can also be useful. The peak period Tp is defined
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through 1-D spectrum E(f):

E(f) =

∫
F (f, θ)dθ

Tp = f−1
max, E(fmax) = max

f
(E(f))

Other integrated periods are defined as

Tm1 =
m0

m1

, Tm2 =

√
m0

m2

, Tmean = Tm−1 =
m−1

m0

and Tm2 period corresponds to the observed zero-upcrossing period. The mean wave direc-
tion corresponds to the next integrated parameter:

θ̄ = arctan

∫
F (f, θ) sin θdfdθ∫
F (f, θ) cos θdfdθ

Further, these quantities are used for comparison of model results with observations. Model
output include integrated parameters for the total sea state, wind sea and swell as well as
the full frequency-direction wave spectra for selected locations. The swell part is defined as
the energy components which travel faster than parallel to them wind components.

The numerical schemes for the K-model implementation differ for the propagation-
refraction part and for the integration of the source function. The explicit first-order upwind
scheme was used for both propagation and refraction, similar to WAM cy. 4. The scheme
is conditionally stable and the stability CFL criterion was applied in form

|ẋ1
∆t

∆x1

|+ |ẋ2
∆t

∆x2

|+ |k̇ ∆t

∆k
|+ |θ̇ ∆t

∆θ
| ≤ 1

For applications with prerequisite small spatial resolution or large external field gradients,
such as highly variable bathymetry, the stability criterion can cause significant increase of
model computational time since the integration time-step is decreased. This problem can
be partially solved by applying the criterion to each part (propagation and refraction) sep-
arately and obtaining different suitable time-steps for propagation and refraction processes.
Centered implicit scheme similar to WAM cy. 4 was taken for the source-term integration.
This adaptation makes the K-model more appropriate to high spatial resolution applica-
tions. A more detailed description of the K-model can be found in Schneggenburger [1998].

Although those improvements have been made for reduction of the computational time of
the K-model for the small-scale applications, the feasibility of multi-annual wave simulations
was still in question. The code has been parallelized and run on a 7 CPU’s node of DKRZ
(German Climate Computing Center) super-computer. The improved model code was
tested and performance was about 6 times faster than the original version.
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2.1.2 HIPOCAS. Short project description.

As has been mentioned in Chapter 1, the part of this study is, in some sense, a logical
extension of the HIPOCAS project towards a more detailed near-shore wave climate de-
scription. Keeping this in mind, the main part of the external data used for modeling in
this study stems from the HIPOCAS results and it seems to be expedient to give a short
overview of the project goals, implementation and results in this thesis. Here the motives
and technical details of the project are briefly presented together with the description of
datasets used in the K-model simulation. The main results of the HIPOCAS validation
and data analysis will be described together with the similar tasks of the present study in
following sections. This European project was carried out during 2000-2003 and was aimed
at providing homogeneous and high resolution hindcasts of wind, wave and storm surge
climatology for European Coastal Areas for the period 1958-2002. Detailed description of
areas studied within the project can be found in Soares et al. [2002], further description
here is restricted to the Southern North Sea region.

The quality of numerical wave and surge hindcasts is strongly dependent on the accuracy
of the upper boundary conditions, i.e. driving wind fields. As has been shown in recent
studies, the uncertainty in wind fields (Holthuijsen et al. [1996]) or a too coarse time
resolution (Brauer and Weisse [2000]) have a considerable impact on the predicted wave
fields. Therefore, obtaining more homogeneous and detailed wind fields was the first goal
of HIPOCAS. This wind hindcast was based on NCEP (National Center for Environmental
Prediction) reanalysis (Kalnay et al. [1996], R. Kistler and Fioriono [2001]) and subsequent
dynamical downscaling. The regional atmosphere model REMO (REgional MOdel) was set
up for the European coastal areas as well as for the areas relevant to the generation of swell
which may propagate into selected coastal seas. It was driven on lateral boundaries by the
NCEP reanalyzed atmospheric fields with 200 km resolution. The results were stored every
hour on a spherical grid with a resolution of about 50 km (for details see Feser et al. [2001]).
This dataset is referred to later as the REMO wind.

The hindcast of the sea level evolution and current components was performed by the
Coastal Division of the Federal Engineering and Research Institute (BAW) with the finite
element hydrodynamical model TELEMAC2D. The model was driven by the REMO wind
and the influence of Atlantic external surges has been taken into account by assimilating
water elevation measurements at Aberdeen. Results, available on an irregular grid from
few kilometers in the Northern North Sea to hundred meters in German Bight, were saved
hourly. For the wave hindcast the WAM-cycle4 wave model was set-up with a one-way
nesting technique. The coarse grid with spatial resolution of 0.75◦ lon. x 0.5◦ lat covered
the entire North Sea and part of Northeast Atlantic. For this simulation the WAM deep-
water version was governed by the REMO wind. The model output was stored every 3
hours and later referred as the HC (Hipocas Coarse) run. The nested fine grid covers
the Southern North Sea between 51◦N and 56◦N, and between −3◦W and 10.5◦E with a
resolution of about 5 x 5 km. It was driven by hourly REMO wind fields and HC wave
spectra on the boundaries. In addition, for this run, the shallow water effects have been
taken into account by using the shallow-water version of the WAM model. Model results
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including wave spectra were stored hourly and referred to later as the HF (Hipocas Fine)
dataset.

2.1.3 Experiment setup. Model domain, boundary conditions
and forcing fields.

As an example coastal area for high-resolution shallow water wave modeling experi-
ments, the Helgoland Islands and surroundings have been chosen. Two islands (Helgoland
and Düne) are situated in the south-eastern part of the German Bight about 70 km off the
mainland. The islands have a size of about 1 and 0.6 sq.km. The main-island harbor is
protected by a breakwater ring. In addition, numerous breakwater walls provide protection
of the coasts from the wave influence. Most of these constructions are up to 90 years old
and some of them were partially damaged during the war and later not completely recon-
structed. In recent times there were attempts to reassess local wave climate and extreme
wave statistics using state of the art wave models and to evaluate safety ability of existing
protection constructions (Vierfuss [2002]). Further steps towards the local wave climate

Figure 2.1: K-model domain and bathymetry in meters. The location of a deep water buoy used
for validation is indicated by DWP. The rectangle indicates the area for which radar measurements
taken from a telecommunication tower at the main island are representative. LNA, HH1, HH2,
DE1 and DE2 represent model points near coastal facilities and are used for assessing model
performance.
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assessments are made in this work. The bathymetry of the area around Helgoland is char-
acterized by a large water depth gradient to the west and south from the islands (Fig. 2.1).
It is believed that because of the complicated topography, the shallow water near-shore area
and the small size of the islands themselves, the wave parameters at the coastal zone are
not adequately represented by the medium-scale North Sea wave hindcasts like HIPOCAS
and additional refinement of the wave data with consideration of shallow water processes
is required to obtain the reasonable near-shore wave statistics. This makes the Helgoland
area a good example for testing the quality of the medium-scale wave hindcast. At the
same time, the local wave hindcast obtained during the work is useful for the local coastal
protection. For these purposes the dynamical wave model is applied to the high-resolution
wave simulations in the Helgoland coastal zones.

To create adequately developed and remote enough from the lateral boundaries wave
spectra at the near-shore zone, and having in mind the spatial resolution of the bound-
ary spectra, the model domain is set up as a 10 x 15 km area around Helgoland islands
(Fig. 2.1). Spatial resolution is chosen based on a balance between the accuracy of the
wave representation adequate for for the engineering purposes and the computing resources
required. Computational costs increase significantly with the refinement of the spatial res-
olution, partially because of the increased number of the active model points, and partially
because of shorter model integration time steps required by the stability conditions of the
numerical scheme. Finally, 100 m equidistant spatial resolution and 4 second propagation
time step were adopted. During model integration, wave spectrum has 28 wavenumber and
12 wave direction bins.

Figure 2.2: The main experiments discussed in this chapter.

The bathymetry of the model area was obtained from the BAW (Norbert Winkel, pers.
comm.) in an unstructured grid about 50 m and interpolated to the K-model resolution.
3-hourly wave spectra from HF dataset were used as boundary conditions for the high-
resolution K-model simulation. Forcing sources comprise hourly 10 m height wind fields
from the REMO dataset, time-variable water depth and currents. For obtaining the latter,
two datasets of hourly water level and current fields from HIPOCAS were interpolated in
space to the K-model grid. In previous long-term wave simulations (e.g. WASA, HIPOCAS)
the changeable water depth and currents were not considered. In this study the influence
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of these fields on the simulated wave parameters was found to be appreciable and will be
discussed in the next chapter. Finally, integrated parameters at each grid point of the K-
model domain were stored hourly as well as the wave spectra for certain locations near the
protection facilities. This high-resolution wave simulation has been performed for the 12-
year period from January 1990 until November 2001 and referred later as KMH (K-Model
Hindcast).

2.2 Model validation

Comparison of the modeled data with observations is one of the necessary conditions for
further confident utilization of model results. For the K-model in the described formulation,
several validation experiments have been provided for different areas, time and spatial scales
and variable internal model parameters. The ability of the model to reproduce integrated
wave parameters on medium scales for the shelf seas and comparison with the results from
another wave models such as WAM or HYPAS (Günther and Rosenthal [1985]) was shown
by Schneggenburger [1998] with the example of Noth Sea storm. In the same work, the
applicability of the K-model to small tidal basins with variable currents was studied with
the example of the Sylt-Rømøbasin (eastern North Sea). Until now most of the validation
experiments for the K-model considered instantaneous integrated parameters obtained for
periods of several days to several months or selected storms. In this section the results of
the K-model validation for Helgoland are presented. Most of the experiments are aimed at
elaborating the quality of K-model long-term results in a statistical sense and at checking
the existence of systematic errors coming either from K-model itself or from the external
forcing fields. Although the main part of the validation experiments for the HIPOCAS
wind and wave fields was carried out within the project (Weisse et al. [2002]), here some
additional comparisons for German Bight are made between the HF wave heights and
satellite data with the aim to assess the rate of the error provided by boundary conditions
into the KMH simulation. It is shown later to what extent observed wave conditions are
reproduced by KMH. The main sources and characteristics of uncertainties which should
be considered during further data analysis are pointed out.

2.2.1 Comparison of the HIPOCAS wave statistics with the satel-
lite data

Satellite altimeter data is a commonly used source for the model validation and data
assimilation procedures. Altimeter wave data from ERS2 and TOPEX satellites is available
for the German Bight for several years in late 90s. The tracks of both satellites do not pass
through the K-model domain and therefore cannot be used directly for comparison with
KMH results. However, satellite data provides the opportunity to assess the quality of the
HF wave hindcast for the Helgoland surroundings and, therefore, to make an additional
evaluation of the boundary conditions for the K-model hindcast. Earlier, ERS2 altimeter
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data was compared with HF wave simulation for the southern North Sea and slight over-
estimation of high waves by the model has been revealed (Matthias Zahn pers. com.). In
the present study a similar comparison has been made for the surroundings of Helgoland
using three sources of altimeter data. The TOPEX wave data was obtained from the GFZ-
Potsdam dataset (Schöne et al. [2000]). Two differently processed datasets for the same
period were available from the ERS2 satellite, namely, the Meteomer dataset (Bonicel et al.
[1997]), later referred to as ERS Met and the GFZ-Potsdam dataset (ERS Pot). All the
data for significant wave height (SWH) was selected for the period 1998-2000 and the area
from 6◦E to 8.4◦E and from 53.6◦N to 55.8◦N. Each observation record was representative
for mean over an area of about 6x6 km. Hourly SWH fields from the HF simulation were
used for comparison. Only the altimeter data, for which times differ from the HF model
times by less than 10 minutes, were used so as to avoid the time interpolation.

Figure 2.3: Significant wave heights from the ERS satellite altimeter datasets postprocessed by
Meteomer (x-axis) and GFZ-Potsdam (y-axis) for the period 1998-2000.

Figure 2.3 shows the results of comparison between ERS Pot and ERS Met datasets.
From the scatter-plot it is revealed that the two datasets differ significantly. Firstly, it
concerns the processing of small waves where for ERS Met the cutoff at 0.77 m was accepted.
For the waves higher than 2 meters the wave heights from ERS Pot dataset are, in general,
lower than the data from ERS Met with the bias of about 0.37 m. Thus, together with high
correlation (0.94) the differences between two processing procedures are mainly expressed
by SWH bias. It is beyond the scope of this study to develop any correction techniques
or to investigate which altimeter data is more reliable, but the differences described above
should be taken into account during the analysis of the model data. There is no opportunity
to compare ERS Pot and TOPEX wave heights for the area and period of interest because
most of the time their tracks do not cross each other.
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Figure 2.4: Quantile-quantile plots of SWH between satellites (x-axis) and WAM model results
(y-axis) for common dates during the period 1998-2000. Quantiles from 0.01 to 0.99 are shown
with 0.01 interval.

To evaluate the correspondence of the HF modeled wave heights with different altimeter
datasets, the quantile-quantile plots were used and correlation, bias and standard deviation
were calculated for each pair of datasets (Fig. 2.4). Modeled SWH data shows similar
behaviour with respect to ERS Pot and TOPEX datasets characterized by overestimation
of waves higher than about 2-3 meters. For TOPEX this overestimation is more pronounced
and appears for the wave heights starting from 2 meters which amounts to 20% of the
highest waves. In case of the ERS Pot dataset the modeled SWH values are too large
for upper 15% of the waves. The bias is larger with respect to TOPEX for the modeled
data (0.23 m for TOPEX vs. 0.12 m for ERS Pot). With respect to ERS Pot, model
results appear to be slightly more scattered with standard deviation 0.66 for ERS Pot
and 0.58 for TOPEX. These moderate deviations together with rather high correlation
coefficients suggest a generally good agreement between modeled and observed SWH up to
85 percentiles. Coming to ERS Met data, it can be seen that the shape of quantile-quantile
dependency is similar to that of ERS Pot with obvious bias detected from the comparison
of these two satellite altimeter sources. Nevertheless, the correlation between ERS Met
and HF wave heights is slightly higher than for other satellites. Summarizing, modeled
HIPOCAS fine grid wave heights are overestimated for upper 10-15% of the waves for
the German Bight, which corresponds to earlier validation experiments carried out within
HIPOCAS project for the southern North Sea.

2.2.2 Comparison of the K-model results with in situ measure-
ments

For the period of interest there were no long-term measurements close to coastal facilities
but within the model area two wave observed datasets are available. The first one is
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provided by the BSH (Bundesamt für Seeschiffahrt und Hydrographie) waverider buoy
located approximately one kilometer south-west from the island. The water depth there is
about 20 m. The measured quantities comprise 9 parameters from which significant wave
height, peak period and mean direction for the period from March 1998 to October 2001 are
used for the comparison with the K-model results. Another data source is the WaMoS II
(Wave and Surface Current Monitoring System) radar (Hessner et al. [2001]) permanently
mounted on a telecommunication tower on the main island since March 1998 and providing
wave parameters averaged over the rectangular surface area in a distance of about 500 m
south-west from the islands (Fig. 2.1).

Figure 2.5: Hindcast (KMH) and observed wave parameters at DWP and the central point from
the area covered by radar measurements for October 1998. From top to bottom: significant wave
height in meters, peak period in seconds and mean direction (coming from) in degrees. Buoy
measurements are shown as crosses, radar measurements are shown as circles. The K-model
hindcast at the buoy (DWP) location is given by a blue line; hindcast at the central point of radar
rectangular is given by a thin brown line.

At first, to assess the quality of modeled instantaneous values with respect to observa-
tions, significant wave heights, peak periods and mean directions from all three data sources
(K-model, buoy and radar) were compared for October 1998 (Fig. 2.5) and in general a good
agreement between all datasets can be inferred. A closer look at differences provides a rea-
sonable explanation for the major part of them. At the first decade of examined month the
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modeled SWH values are lower at the radar area than at the buoy position. At the same
time easterly wind dominates the territory which causes the island shadow effect in the
area located west from the islands making the waves smaller. This effect is diminished at
the DWP position located farther to the south, which is in agreement with the buoy obser-
vations (Fig. 2.5a). The radar data for this case is not available. For the second part of the
period considered, the buoy and the radar observations are close to each other as well as
to the model results at the two locations. The discrepancy between observed and modeled
data occurs for some high wave situations where SWH appears to be overestimated by the
model. A similar tendency was observed for the HF SWH with respect to the satellite data
(2.2.1). The impact of the boundary conditions (HF) on the K-model results is discussed
later. For peak periods, more pronounced differences between buoy and radar locations
for the measured as well as for modeled data can be detected. Slight overestimation of
peak periods by the model, especially for some high wave situations, can be observed. The
measured wave directions are similar for both locations and the hindcast produced by the
K-model appears to be quite reasonable and close to the observations.

Figure 2.6: a) Quantile-quantile plot of observed by buoy (x-axis) and hindcast by K-model (y-
axis) significant wave heights at DWP for 1998-2001. Quantiles from 0.05 to 0.99 are shown with
0.01 interval. b) Observed (dashed) and hindcast (solid) monthly 90%-tiles (circles) and 99%-tiles
(crosses) of significant wave height at DWP. In all cases quantiles have been compared only for
dates for which observational data have been available. c) Quantile-quantile plot of observed by
buoy (x-axis) and hindcast by HIPOCAS (y-axis) significant wave heights at DWP for 1998-2001.
Quantiles from 0.05 to 0.99 are shown.

Figure 2.6a shows a comparison of modeled and observed significant wave height dis-
tribution for the period 1998-2001. For the lower 90% of the distribution a rather good
agreement between model and buoy observations can be seen. In the range between about
1.0 to 1.5 meters the K-model slightly underestimates the buoy data. For the highest 10%
of the waves an overestimation by the K-model of up to 80 cm can be inferred, indicating
that the highest waves occur too often or are too severe in the KMH simulation. Figure 2.6b
shows a more detailed comparison of observed and hindcast averaged monthly 90 and 99-
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percentiles. For the 90-percentile a reasonable agreement can be inferred. An exception is
found in the months November, December and February for which the model tends to show
higher extremes. A similar condition holds for the 99-percentile that represents the most
extreme events. For the 99-percentile KMH values are somewhat higher also for March,
September and October.

To check whether the overestimation of the high waves is caused mainly by the driving
boundary conditions or by the K-model physics, percentiles of the HF hindcast and the buoy
SWH data were compared (Fig. 2.6c). The overestimation of observed high waves was found
to be of the same order of magnitude for the HF run as for the K-model. This bias in upper
percentiles of boundary conditions (HF) is consistent with the results of the HF comparison
with satellite data for the German Bight shown in 2.2.1. This behaviour can be explained
by deficiencies of the model spatial resolution or by the uncertainties in driving forcing and
model physics of the HF run. In case the bias is caused by a too coarse spatial resolution of
the HF run, the K-model is supposed to improve the wave data representation with respect
to HF by taking into account processes on finer scales. However, this can be not the case
for the buoy position because of the relatively deep water at the location (20 m), which
diminishes the importance of such wave processes as refraction and bottom dissipation.
The errors in the HF data caused by uncertain external forcing or internal physics can
hardly be corrected by the K-model because a higher (in case of overestimation) energy is
expected to be transferred by the K-model to the interior locations from the boundaries.
Consequently, it can be concluded that the overestimation of the most severe wave events
is at least partially a result of the too high waves provided at the K-model boundaries. In
addition to the biased boundary conditions, the possible reasons of the K-model and buoy
data discrepancies are the uncertainties in bathymetry and wind data used by the K-model
as well as measurement errors.

2.3 Added value for the small-scale wave simulation

in terms of extremes

The previous section demonstrated the similarity of the local wave parameters modeled
by the K-model and measured wave data. The differences between the model results and
observations at DWP can mainly be attributed to the driving HF hindcast. Based on
this, it is assumed that the small scale features simulated by the K-model share some
resemblance with reality and, therefore, the KMH experiment is considered in the following
as a substitute for reality. This allows the testing of to what extent improvements in the
representation of near shore extreme wave statistics can be achieved by the application of
dynamical wave modeling (here K-model) to the medium-scale wave data (here HF). The
improvement will be assessed relative to the HF hindcast, as these data is readily available
and thus can be considered as a first guess of the prevailing near-shore wave conditions.

First the extent to which the HF hindcast may be used to reasonably assess long-term
wave statistics in the coastal zone is investigated. Here the evaluation is mainly focused
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Figure 2.7: 99%-tiles of significant wave height in meters derived from 3-hourly data for the
period 1990-2001 from the HF hindcast (left) and KMH experiment (right).

on the statistics of extreme events for the significant wave heights as they are essential
for coastal protection. Additional information about the quality of instantaneous HF wave
heights and other wave parameters is given in the next chapter in the context of the quality
assessments for different downscaling models. For the current experiment three datasets
are analyzed, namely significant wave height from the HIPOCAS coarse grid hindcast with
about 50 km resolution (HC), the HIPOCAS fine grid hindcast with about 5 km resolution
(HF) driven by the HC simulation, and the KMH hindcast with 100 m resolution driven
by the HF run (see also Fig. 2.2).

Figure 2.7 shows a comparison between the 99-percentiles of significant wave height for
the period 1990-2001 obtained from the HF and the K-model hindcast. It can be seen that
for both simulations a similar large-scale pattern of extreme wave statistics is reproduced.
The pattern is characterized by highest waves occurring in the western part of the K-
model domain that continuously decrease eastwards. East of Helgoland a distinct area with
relatively low wave extremes can be found which is mainly caused by the shadowing effect
of the islands against the prevailing wind and wave directions. The large-scale similarity
between both simulations is primarily a consequence of both simulations having identical
wave conditions at the K-model boundaries or, in other words, that the K-model uses
boundary conditions from the HF hindcast. In addition, the same wind fields have been
used in both simulations.

Despite a large-scale similarity between the HF and the KMH hindcasts, small scale dif-
ferences in extreme wave statistics are obvious (Fig. 2.7). In particular, the island shadow
effects are more pronounced and extend further eastward in the K-model simulation. South-
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Figure 2.8: Quantile-quantile plots of HF and KMH simulated significant wave height in meters
for the period 1990-2001 at points a) DWP b) LNA c) HH1 d) HH2 e) DE1 f) DE2.

eastwards of Helgoland the 99-percentile of significant wave height is about one meter higher
compared to the HF simulation. Furthermore, for the K-model run, small scale features
of the bathymetry are visible in the distribution of the wave extremes. While large-scale
features of extreme wave statistics are quite similar in both simulations, the small scale
differences may be significant for coastal protection. Figure 2.8 shows a comparison of the
frequency distribution for significant wave heights near different coastal facilities obtained
from the HF and the KMH hindcasts. The positions of the analyzed points can be inferred
from Figure 2.1. Although the K-model is driven with boundary conditions from the HF
run and both simulations utilize the same wind forcing, differences in the frequency distri-
butions, in particular for near coastal locations, do emerge. The details of these differences
depend on the location. At DWP both hindcasts are rather similar. Here water depth is
about 20 meters and the shadowing effect of the island plays a minor role as the prevailing
wind and wave directions are from the southwest to the northwest. At LNA the situation is
different. LNA is also located at the western side of the island, but here bathymetry effects
become important. While the lower 75% of the simulated wave height distributions are still
rather similar in the HF and the KMH, the uppermost 20% are remarkably higher in the
K-model simulation (Fig. 2.8b), demonstrating the results of shoaling1 for the KMH waves.

1Shoaling occurs when the waves enter shallow water. The wave speed and wave length decrease,



20 2 Dynamical wave modeling

Near the Helgoland harbor (HH1, HH2) shallow water effects and the strong gradients in
the bathymetry play a significant role. Here small water depths cause the reduction of the
wave heights and, independently of their heights, waves are generally lower in KMH. To
the east of the main island, waves are also generally smaller in the K-model hindcast. This
can be inferred from the comparison of the wave height frequency distributions at DE1 and
DE2, two locations near the coastal protection structures at the north and south shores of
the smaller Düne Island (Fig. 2.8e,f). Generally, the effect is larger for higher waves and
mainly results from a combination of lee and shallow water effects. Although the differ-
ences between HF and KMH wave statistics are significant and strongly location dependent,
it appears that for all locations the relationship between KMH and HF wave statistics is
almost linear which is also the case for the instantaneous SWH values (not shown here).

Figure 2.9: Quantile-quantile plots of HC and HF simulated significant wave height in meters for
the period 1990-2001 at points a) LNA and b) DE1. Quantiles from 0.05 to 0.99 are shown with
0.01 interval.

For completeness, an analogous comparison has been made between the HC and the
HF hindcast. Results for LNA and DE1 are shown in Figure 2.9. The situation is similar
to the comparison of the HF and the K-model hindcasts. Both simulations (HF and HC)
utilize the same wind forcing and the coarse grid simulation provides the wave boundary
conditions for the medium-scale hindcast. Comparing the HC and the HF simulations,
the general overestimation of the SWH by coarse grid run is observed. Partially, this is
caused by the differences in the WAM model setup, namely in the water depth treatment
for these two simulation runs. Namely, in the case of HC, the deep-water version of the
model was used, which does not include refraction. At the same time large fraction of the
differences in the simulated wave height distribution may be attributed to the presence
of the islands. While they are present in the HF simulation, the islands have not been
considered in the HC hindcast as they are too small to be resolved in the spatial resolution
used. As a result waves are generally higher in the HC hindcast. Summarizing, the spatial
resolution is an important issue for the modeled wave statistics representation as well as
for the consideration of the variable limited water depth and shallow water processes.

consequently, the energy per unit area increases, following by the increasing of the wave heights.
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2.4 Summary

In this chapter an overview of the dynamical approach to the high-resolution wave
modeling for coastal zones was given and the wave simulation experiment with the spectral
wave model was defined. The K-model was applied to produce 12-year hindcast of the high-
resolution wave fields for the Helgoland coastal area using the wave and wind fields from
the HIPOCAS project as boundary conditions. During the quality test of the boundary
conditions the results of the comparison of the HF wave fields with the satellite data for
the German Bight appeared to be consistent with the validation experiments made earlier
for HF datasets and showed a good agreement with the observations, with the tendency to
overestimate the highest 10% of the waves.

During the comparison of the KMH instantaneous wave parameters (significant wave
heights, peak periods, mean directions) with the data from the waverider buoy and from
the WaMoS radar situated in the area, the modeled wave representation was found to
be realistic. Analyzing the wave statistics, the simulated data showed a good agreement
with measurements in terms of distributions, although the upper percentiles of the modeled
SWH appear to be overestimated. The latter is partially caused by the boundary conditions
which provide too high waves in the case of severe storms. Finally it was concluded that
the KMH shares some resemblance with reality and in the following part of the study will
therefore be considered as a ”substitute reality”.

The comparative analysis of the wave height frequency distribution and extreme wave
statistics from the HC, HF and KMH experiments representing the wave simulations on
different scales has revealed that spatial resolution and shallow water effects may have
a significant influence on the wave statistics. The impact of the dynamical refinement
procedure is not uniform among the different locations around the island. In this way, for
some location these effects can be crucial for the assessment of near-coastal wave climate.

The possibility of the spectral wave model application to the very high resolution multi-
decade wave hindcast is limited by the fulfilment of several conditions. One is the presence
of adequate medium-scale boundary conditions and relatively good resolved forcing fields
such as water depth variations and currents. Another condition is the ability of the model to
produce long-term simulations within feasible time. For the spectral wave models, including
K-model, the consideration of high spatial resolution is followed by an enormous increase
of the model integration time. In this case some additional methodology is needed to
transfer the information from a long-term, but poorly resolved hindcasts (such as the HF
simulation), to local wave conditions similar to that obtained with the dynamical model.
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Chapter 3

Statistical-dynamical approach to the
wave simulation

It has been shown in the previous chapter that for an adequate assessment of the near-
shore wave statistics the large-scale wave data needs additional processing or downscaling.
The spectral wave model provides successful dynamical downscaling. However, faster meth-
ods are sometimes required, especially in case of long-term hindcasts or scenario studies
and of limited computational resources. The strong dependency of the local (KMH) wave
parameters on the boundary conditions (HF) provides the opportunity to apply less time-
consuming empirical downscaling models transforming medium-scale HF wave conditions
directly to the detailed high-resolution wave fields. The basis for the construction of the
statistical inter-scale relationships is provided by the medium-scale HF wave dataset and
by the corresponding local wave data obtained with the K-model. In case of reliable and
sufficiently homogeneous long-term measurements being available at the site of the con-
struction, they may be used instead of the K-model data. However, when such data is
not available, or information for some area surrounding the observation location is also
required, a very high-resolution wave model simulation (such as KMH), validated with at
least some existing data, is the best possible option. Thus, the combination of the statisti-
cal methods and high-resolution wave data obtained with the dynamical method form the
statistical-dynamical approach investigated further.

In this chapter the general concept of downscaling is described together with a review
of the methods and recent applications. Several statistical techniques are applied to the
wave parameter downscaling with the main goal to obtain reliable small-scale extreme wave
statistics. The results of the method’s application to the Helgoland area are compared be-
tween each other and with the independent dynamically obtained wave data. Comments
about the performance of the models, improvement options and potential limitations con-
clude the chapter.
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3.1 Downscaling introduction

The concept of downscaling is the translation of the climatological fields across the
spatial scales. It is based on the idea that regional or local climate is conditioned by larger-
scale climate and, therefore, the information about the global (or regional) climate together
with some of the regional (or local) details, such as topography or coastlines, define to some
extent the local climate. Historically, the idea of downscaling can be traced back to works
from the mid of the twentieth century in synoptic climatology and weather typing (e.g.
Grosswetterlagen (Baur et al. [1944]), Barry and Perry [1973]) where the types of synoptic
situations were related to distinctive local weather patterns. The term ”downscaling” was
introduced relatively recently, initially in connection with the General Circulation Models
(GCMs). The GCMs are the commonly used tool for impact, change and scenario studies
on global or continental scales. They are able to model the system response to large-scale
external or internal perturbations. At the same time GCMs have a of parameterizations
for small-scale physical processes and rather coarse resolution (the best one at the moment
is about 100 km), which is an obstacles to an adequate description of local climate. One
of the main objectives of the climatological studies is the application of atmospheric or
ocean data to reveal the economically or socially related impact of physical environment
on human system. This requires the impact and changes to be on a local-scale basis
and that is hardly reliable even with state of the art GCMs. Thus, a need for a more
detailed climate description was recognized and the downscaling concept seemed to be the
logically straightforward approach to the problem. The discussions of the GCM’s abilities
of regional climate assessments along with the proposed and applied downscaling methods
can be found in numerous studies (e.g. von Storch et al. [1993], Hewitson and Crane [1996]
and references therein). The downscaling procedure was later transferred to regional and
local-scale applications.

The downscaling techniques can be divided into two general categories. One is the
process related methodology based on a regionally/locally scaled dynamical model driven by
the larger-scale (for example GCM output) information. This approach is focused on nested
models and is implemented, for example, in the Regional Climate Models (RCM) (e.g. Denis
et al. [2002]). The direct description of the small-scale physical processes in the model makes
the relations between large and small scale fields flexible within the determined physical
laws. The response of the system to external perturbations has theoretical basis which helps
to understand and explain the system behaviour. It is difficult to consider all processes
influencing the system. For a part of local processes the precise form of the dependency
is often not clear, so they are skipped or replaced by more simple parameterizations. This
adds some uncertainty in representation of the modeled system. On the other hand, the
increase of the number of processes considered in the model processes makes the model more
complicated. Such models are often computationally demanding and their applicability for
long-term simulations and impact studies is limited.

The second category includes empirical downscaling techniques. In these methods the
relationship between the fields on different scales is derived empirically and usually from



3.1 Downscaling introduction 25

observed data. The small-scale fields consistent with the modeled large-scale situation
can be found directly, applying the derived relationship to the large-scale modeled data.
The obvious benefit of the empirical methods is the computational efficiency with respect
to the dynamical approach. The derived inter-scale connections often help to explain or
better understand the relations between the fields for which the physical picture is not
completely clear. Thus, the method serves both the assessment of the small-scale variables
unreachable with the dynamical models and the investigation of the inter-scale relation
principles. The general limitations of the empirical methods comprise the necessity of
availability of sufficiently long observed data for the empirical model construction and
fulfillment of several assumptions on the properties of the data and relations. For the
application of the empirical downscaling the validity of three conditions is assumed: (a)
the large-scale predictors are realistically modeled by the global/regional model, (b) the
relation between large and small scale fields remains unchanged under the changing climate
conditions, (c) the predictor fully represents the climate change signal.

The relative simplicity of empirical downscaling methodology, as well as the time-saving
procedure and the broad applicability, made them an appropriate tool for re-scaling ap-
plications on various scales and for a wide range of fields. Despite numerous studies and
widespread applications of the empirical downscaling, there is no unified gradation of down-
scaling techniques according to their abilities. Therefore, for different predictors and pre-
dicted fields, scales (from global to regional, from regional to local) and desired statistical
parameters (e.g. daily or monthly means, seasonal anomalies or yearly extremes, etc.) the
downscaling models are normally constructed and tested on a case-by-case basis. A review
of downscaling methods, their prospects and limitations in the connection to GCM output
downscaling can be found, for example, in Wilby and Wigley [1997] or Murphy [1999]. A
review of empirical downscaling techniques and a set of references on recent works concern-
ing downscaling applications for various fields and scales can be found in von Storch et al.
[2000] or in IPCC TAR WG1 Section 10.6 (Giorgi et al. [2001]).

Here the classification of empirical downscaling methods similar to that in IPCC TAR
2001 is briefly presented focusing on the methods used further in the study. The variety of
the empirical downscaling methods can be grouped into three types. For the regression-like
techniques, the statistical relation in form of transfer functions between the single point
or field of large-scale predictor and the small-scale predictand is derived. This category
comprises linear and non-linear methods. Typical and frequently used linear techniques
are the linear regression and the Canonical Correlation Analysis (CCA). They are applied,
for example, in ocean-related studies where the relation between sea-level pressure and
monthly sea-level variations (Cui and Zorita [1998]) or yearly salinity variability (Heyen
and Dippner [1998]) is explored. Other studies were dedicated to the modeling of extreme
events in form of upper monthly or seasonal percentiles of wave heights (WASA Group
[1998]) or storm surges (e.g. Langenberg et al. [1999]). The non-linear approach includes
models based on artificial neural networks. They are applied when the inter-scale relations
are not completely clear or have considerable non-linearities. A neural network is often
more powerful but less interpretable than a linear method. Examples of applications can



26 3 Statistical-dynamical approach to the wave simulation

be found in Crane and Hewitson [1998] or Weichert and Bürger [1998]

The next empirical downscaling type is formed by the weather typing approach evolved
from the traditional synoptic climatology. Here the weather classes or circulation patterns
are defined according to certain classification scheme. This can be objective methodology
like the Principal Components Analysis or a subjective classification (e.g. Grosswetter-
lagen). Then each weather type is related to a certain local situation or variable. The
observed data is often used for relation detection. For each weather type the corresponding
local situation is sometimes simulated with a dynamical model. The method is then referred
to as statistical-dynamical downscaling. One of the variety of the classification downscaling
techniques is the analog method. Here each large-scale record is considered as a single class.
The method was described and applied for example in Zorita and von Storch [1999]. The
third type of empirical downscaling methods includes weather generators. These stochastic
models replicate not the observed sequence of events, as in the case of the other two types of
the downscaling models but the statistical properties of small-scale fields such as means or
variance. Most of the applications are related to the representation of daily precipitations
and some secondary variables like temperature or wet-day amount (e.g. Wilks and Wilby
[1999])

3.2 Wave modeling with empirical downscaling tech-

niques

Turning to the problem investigated in this study, the downscaling methods are consid-
ered as a tool for the small-scale near-shore wave modeling. The abilities of the dynam-
ical approach have been tested in previous chapter on the example of the shallow water
wave model. To test the extent to which empirical downscaling in combination with high-
resolution dynamical wave modeling can be used to assess the near-shore wave climate,
several statistical methods are applied to the problem. The basis for the construction of
the statistical inter-scale relationships is provided by medium-scale wave fields obtained
from the HF hindcast and the local wave data from the K-model simulation.

Downscaling techniques such as Canonical Correlation Analysis or analogs are often ap-
plied to monthly, seasonal or annual statistics (e.g. Zorita and von Storch [1999] or WASA
Group [1998]). However, some applications, such as the simulation of ship movements,
would require high-resolution instantaneous data. Therefore, the extended downscaling
concept is proposed and its ability to estimate 3-hourly wave data is tested. Instead of
directly linking large and small scale wave statistics, all statistical models related 3-hourly
wave data from the HF and the K-model hindcast. Small-scale wave statistics is derived
subsequently from the instantaneous data. The most required wave parameter is the sig-
nificant wave height (SWH), so, for simplicity of the models comparison and as a first step,
all experiments in this section are limited to SWH downscaling. Having in mind an almost
linear relation between the HF and KMH significant wave heights (see section 2.3) two
regression-like statistical models have been chosen for the downscaling purposes, namely,
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linear regression and CCA (von Storch and Zwiers [1999]). In addition, the analogs classi-
fication method (Zorita et al. [1995]) is also applied. The weather generator methodology
seems not to be adequate for the problem as it does not provide tools for instantaneous
hindcasts. The chosen methods are commonly used, therefore, only the specific features of
the application are pointed out and detailed descriptions of the methods can be found in
given references.

3.2.1 Linear regression

In order to fit and test the statistical models the K-model hindcast period was split
into a five year training period (1990-1994) and a seven year validation period (1995-2001).
For linear regression (LR) 3-hourly SWH and wind directions from a single grid point in
the HF simulation located near the southwestern boundary of the K-model domain have
been chosen as predictors. High correlation between instantaneous SWH for different HF
locations around Helgoland (about 0.996) allows the use of a single HF point to represent
the external wave situation for the entire K-model domain. The regression model is condi-
tioned upon the wind directions in such way, that in fact eight regression models were built
separately for each of eight wind direction sectors starting from [-22.5, 22.5]. For each grid
point i in the K-model domain and each of the eight wind direction sectors j a regression
model

yi,t = ai,jxt + bi,j

was built, where yi,t represents downscaled wave height, and xt represents the predictor
(HF wave height). The coefficients ai,j and bi,j were fit using a least square method.

Figure 3.1: a) Annual wind direction distribution (grey lines) for 1990-2001 and the mean over
this period (black), y-axis represents the number of cases occurred for each wind direction sector
b) Similar distribution for the winds associated with the waves higher than 99%-tile value c)
Regression coefficients for significant wave heights from LR model for westerly and d) easterly
winds
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In Figure 3.1c,d the obtained regression coefficients of the LR models associated with
westerly and easterly wind situations are shown as an example. The coefficients demon-
strate the averaged relation between medium-scale and small-scale wave heights for the
Helgoland area. At the same time, the spatial patterns of coefficients display the general-
ized spatial distributions of local SWH for westerly and easterly wind cases independently
on the SWH magnitude. The SWH pattern related to westerly winds is characterized by the
local wave heights similar to the magnitude of the medium-scale HF SWH in the western
part of the model area and steadily decreasing waves farther to the east with the minimum
between and just to the east from the islands. For the easterly winds the pattern differs.
Here the coefficients are less than 1 everywhere, this means the local waves under easterly
wind conditions are lower than the waves for the western boundary in the medium-scale
representation. The coefficients are quite similar for the eastern, southern and northern
parts of the model domain, then they decrease gradually and almost concentrically towards
the area of the lowest local waves, which is situated to the west from the islands. The
spatial patterns of the regression coefficients generally follow the bathymetry features for
the windward part of the domain. For the leeward part of the area the coefficients mostly
display the shadow effect of the islands. Such behaviour was revealed for the coefficients of
all direction sector models considered. This demonstrates how the linear regression model
can consider and capture the local effects originally simulated by the dynamical model.

Before coming to the description of other models and comparisons of the statistical
methods, some comments about the wind and wave climate around Helgoland for the con-
sidered in downscaling twelve-year period (1990-2001) should be given. This makes the
later discussion of the properties and the skills of the models easier, and the explanation of
behaviour of different models becomes more clear. In order to detect the prevailing wind di-
rections for each year and yearly distribution eight wind direction sectors have been chosen
in the same way as for the linear regression models. The number of cases for which the wind
directions are found in each sector is calculated for each year. These yearly distributions
and the mean over the twelve-year period are shown in Figure 3.1a. As it can be seen,
the winds from the west, south-west and north-west directions, i.e. the winds coming from
the open North Sea, occur almost twice more often than northerly and easterly winds. To
obtain the wind statistics corresponding to the wave extreme events, the same procedure
was performed for the winds associated with the waves higher than 99-percentiles. It ap-
pears that high wave events occurred under the westerly or north-westerly wind conditions
(Fig. 3.1b). Looking at the LR coefficient for the westerly winds (Fig. 3.1c), it appears
that it’s spatial pattern is similar to the spatial pattern of the 99-percentiles of KMH SWH
shown in Fig. 2.7. This confirms the prevalence of the westerly wind situations responsible
for the wave extreme events.

3.2.2 Canonical Correlation Analysis and Analog method

Canonical Correlation Analysis is a method for analysis of the joint variability of two
multidimensional variables. In this method such pairs of patterns are found that for each
pair the correlation between the corresponding pattern coefficients is maximized. At the
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same time, the corresponding correlations are found. Usually, the major part of the joint
variability is explained by first few patterns. As soon as these patterns are constructed, one
variable can be reconstructed from another one with a certain error level. The magnitude
of the error depends, in particular, on how much variability of each field is explained by
the used patterns. The higher the explained variance and the correlation between the cor-
responding coefficients, the lower the rate of the error. For more details see Appendix A.2.
In the Analog method one variable is reconstructed from another using a pool of typical
situations.

For both CCA and Analog methods the medium-scale HF 3-hourly significant wave
heights at the locations around the islands were used as predictors. The local KMH 3-
hourly significant wave heights were used as predictand. Again, the available data was split
into training (1990-1994) and validation (1995-2001) periods. For the CCA the number
of degrees of freedom was reduced by applying the empirical orthogonal functions (EOF)
(e.g. von Storch and Zwiers [1999]) (for the basic concept see Appendix A.1), which have
been computed for the HF and the KMH SWH anomaly fields. For the HF dataset the
leading two EOFs explain about 99.1% of the total SWH anomaly variance, for the K-
model dataset the explained variance is about 98.3%. Canonical correlation patterns were
subsequently computed based on the leading two EOFs. In Figure 3.2 the first two CCA
patterns for KMH and HF are shown. The first set of patterns explains 97.4% of the total
variance for the KMH dataset and 98% of the variance for HF, the correlation between the
amplitude time-series of these patters is 0.997. So, it appears that the first CCA patterns
explain most of the variance and corresponding time-series are highly correlated, showing
the strong dependency between regional and local SWH patterns. For both KMH and HF
the coefficients of the first pattern are of the same sign, larger values appear in the western
part of the area and smaller values appear to the east from the islands. Physically this
means, that the changes in SWH occur simultaneously and are more intensive in the western
part of the model domain, which is consistent with the wave height spatial distribution for
westerly winds (Fig. 3.1c). The second set of CCA patterns is bipolar and, probably, has
this structure because of the request of orthogonality for the patterns prescribed by the CCA
procedure. The correlation of the time-series is 0.65, it explains 0.6% of the KMH fields
variance and 1.1% of HF SWH variance. For the CCA reconstruction both patterns were
used, which totally explain about 99% of variability for both datasets. Finally, the 3-hourly
SWH fields for the validation period have been derived on the basis of these patterns.

For the analog method a pool of analogs was constructed from the 3-hourly SWH fields
1990-1994 of the KMH hindcast and the corresponding principal components of the leading
two EOFs of the 3-hourly HF SWH anomaly field. Subsequently an analog for each date of
the validation period was determined. For this, the HF SWH data of the validation period
was projected onto the first two EOFs for the fitting period and for each pair of principal
components obtained the nearest pair (analog) from the training period was determined.
The KMH wave height field belonging to this pair was then selected as the analog wave
height field for the corresponding date in the validation period.
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Figure 3.2: First two canonical correlation patterns of the significant wave height anomalies for
KMH and HF.

3.2.3 Validation experiments for instantaneous significant wave
heights

To test the skill of different downscaling methods in representing near-shore wave cli-
mate and, in particular, the instantaneous significant wave heights, results obtained using
different techniques have been compared with those from the KMH simulation. Table 3.1
shows the bias and the standard deviation of the SWH difference at the various locations
specified in Figure 2.1 for the different downscaling models. It can be seen that the bias is
largest when coarse grid data from the HF simulation are used directly to estimate the wave
conditions at the near-shore locations. The largest standard deviations of SWH differences
occur for the HF and analog data depending on the location. So, it appears that the SWH
data produced with the analog method differs from KMH with the variance rate similar to
HF but with much less bias than the medium-scale data. For linear regression and CCA
the results are comparable. LR provides slightly smaller error with standard deviation up
to 0.17 m and bias less that 0.02 m depending on the location.

The degree of difference between KMH and statistically obtained instantaneous SWH
fields for the entire model area is assessed by the root mean square error (rms). The
spatial patterns of the differences between KMH and each of three models are shown in
Figure 3.3. The rms values vary between 0.05 and 0.2 meters for linear methods (LR
and CCA) and reach up to 0.4 meters for the analogs. Although the spatial patterns and
magnitudes differ, there are several regularities valid for all methods. So, for the western
and south-western parts of the modeled area the minimum errors over the entire domain
can be seen, which means that the skill of the constructed models in representation of the
wave heights at these locations is the best. The shape of this better represented area is
similar to the contour-lines of the bathymetry and corresponds to the relatively deep water
area. Further to the east the depth becomes less than 20-25 meters and the increasing
error values can be observed. For all methods the maximum differences with respect to the
dynamically obtained wave heights occur along the north-western Helgoland coast. Here
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STDEV [m] DWP LNA HH1 HH2 DE1 DE2
HF - KMH 0.159 0.302 0.191 0.286 0.272 0.289
LR - KMH 0.097 0.163 0.104 0.159 0.128 0.085

CCA - KMH 0.108 0.255 0.179 0.19 0.163 0.1
Analog - KMH 0.224 0.364 0.234 0.385 0.218 0.184

MR (dir) - KMH 0.089 0.183 0.181 0.154 0.131 0.114
MR (tp) - KMH 0.095 0.133 0.099 0.153 0.119 0.082

BIAS [m]
HF - KMH 0.04 -0.045 0.17 0.257 0.228 0.39
LR - KMH 0.004 0.011 -0.0002 0.0008 0.019 -0.0006

CCA - KMH 0.005 0.023 -0.015 0.004 0.025 -0.009
Analog - KMH 0.012 0.022 -0.007 0.012 0.2 -0.004

MR (dir) - KMH -0.006 -0.012 -0.046 -0.003 0.01 -0.008
MR (tp) - KMH 0.003 0.007 0.001 -0.002 0.017 -0.0007

Table 3.1: Bias and standard deviation of differences in meters between significant wave heights
obtained from different downscaling techniques and KMH for the points near coastal facilities for
the 1995-2001. In bold face the minimum values within first four methods are marked. The last
two lines concern SWH comparison for the multiple regression experiments.

the steep depth gradient causes intensive bottom dissipation and shoaling. These processes
are sensitive to the variable water depth and the SWHs here are only partially dependent on
the boundary conditions and approaching external waves. Therefore, the statistical models
are not able to provide equally accurate wave reconstruction as for the deep water areas.
Similar considerations apply to the area to the north from the island where the oblong shoal
activates the shallow water processes, which makes the accurate SWH representation not
completely feasible for the statistical methods.

The next experiment addresses the problem which often arises for the regression-like
downscaling methods, namely, the underestimation of the temporal variability of the recon-
structed fields. This property was revealed and discussed in a number of studies dedicated
to the downscaling methods and procedures (e.g. Katz and Parlange [1996], Zorita and von
Storch [1999]). To test how the SWH fields reconstructed by LR, CCA and analog methods
are subject to the underestimated variability, the variances of the SWH from statistical
models and KMH at each grid point are compared. The corresponding relations are shown
in Figure 3.4. For the fields obtained with linear regression the variances are slightly over-
estimated for the south-western part and underestimated to the east from the island, here
the ratio goes down to 0.9. For the CCA the underestimated variability is more pronounced
but too much variability in the western part of the model domain can still be observed.
For the analogs the area of too low variability is shifted to the north with respect to LR
but remains approximately the same by magnitude, whereas the overestimation of the vari-
ance on the west becomes stronger and the ratio of the variances reaches 1.05. A plausible
explanation of the low-variance behaviour is that the local wave heights variability only
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Figure 3.3: Root mean square errors between instantaneous SHW obtained from statistical meth-
ods a) LR, b) CCA, c) analog and KMH in meters.

partially depends on the larger-scale variations. Thus, the inter-scale relations reflected in
the downscaling models do not capture all processes which influence the small-scale envi-
ronment. This appears to be the case for the area located easterly from the island where
all three models show underestimated variability. The slightly overestimated variability
of the LR data detected for south-western area can be explained by very high correlation
between HF and KMH SHW at these locations (about 0.996). For the training period the
variability of constructed LR data is only slightly lower than the KMH variability, which is
determined by the definition of the LR model. For the validation period and for the areas
of high HF/KMH correlation the variability of LR becomes as high as variability of KMH.
No theoretical limitations of the LR variability are supposed for this period, therefore, it
varies around the KMH variability, deviating to both higher and lower values.

In reference to the properties and limitations of the methods revealed for the representa-
tion of instantaneous detailed SWH fields, possible reasons for the modeled SWH behaviour
are discussed. Figure 3.5 illustrates the SWH instantaneous features. Here the 3-hourly
SWH at LNA location obtained from the statistical models as well as the driving HF wave
heights and KMH wave heights are shown for October 1998. This period is characterized
by the presence of two classical wind situations (see Fig. 2.2). Easterly winds at first eight
days and westerly winds for the rest of the month form two different wave field patterns
(Fig. 3.1c,d) and influence the performance of statistical models. While the SWH obtained
with linear regression follow the wave heights from the dynamical model for the first part
of the month, the CCA and analog results are closer to the HF wave heights. For the
westerly wind period (from 9 October) all statistical models are closer to the KMH. This is
consistent with the larger errors (Fig. 3.3) and smaller variability (Fig. 3.4) shown by CCA
with respect to LR and can be partly attributed to the EOF patterns used for the CCA
model construction and the CCA patterns used for the field reconstruction. The first EOF
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Figure 3.4: Explained variance of a) LR, b) CCA, c) Analog with respect to KMH.

pattern is very similar to the first CCA pattern (Fig. 3.2) and explains 97% of total KMH
wave height variance. This EOF pattern can be associated with the most frequent for the
area westerly wind conditions, the same concerns the first EOF of the HF SWH dataset.
The first EOF pattern has a major impact on subsequent CCA model construction and the
SWH fields reconstruction. This is followed by the limited ability of the CCA to downscale
adequately the wave heights for other than westerly wind situations.

Similar behaviour of the SWH from the analog method is accompanied by the additional
variability as illustrated by Figure 3.5. This is consistent with the overestimated variability
for the western part of the model domain (Fig. 3.4c). As it can be seen from Table 3.1
and Figure 3.3, the analog method shows the worst performance among the tested methods
not only for variability but also in terms of errors (bias or rms). Besides the use of EOF
patterns which do not explain all wave situations adequately (similar to CCA), the uncer-
tainty and especially overestimated variability of the analog results can be attributed to
the incompleteness of the analog pool. For this method that means a fitting period longer
than 5 years is required to accumulate the sufficient set of significant wave height patterns.
This problem could be a strong limitation in the case of applications to scenario studies, as
wave situations which did not occur during the fitting period or which were not included
in the analog pool can not be detected and reproduced by this method.

The linear regression shows stable performance independently on the external forces
and wind directions. The dominant westerly wave pattern and less frequent easterly wave
situations are represented adequately because they were initially separated and equally
treated during the model training procedure. This gives the LR a superior quality relative
to CCA and analog. The uncertainties observed in LR SWH representation are related to
the incapability of the model to capture the small-scale time-variable fields like water depth
variations, currents and correspondent shallow water processes in full. In general, the SWH
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Figure 3.5: Significant wave heights in meters obtained from two dynamical (KMH, HF) and
three statistical (LR, CCA, Analog) models at LNA point for the October 1998.

representation given by all three methods is closer to KMH than the medium-scale HF wave
heights and the instantaneous wave height fields are reasonably reproduced in most of the
cases.

3.2.4 Validation experiments and assessment of the added value
for wave statistics

Next, the extent to which the properties of the described statistical models for the
instantaneous SWH influence the representation of wave statistics is explored. Figure 3.6
shows a comparison of wave frequency distributions obtained from the different statistical
models and dynamical HF with KMH simulation. It can be seen that, despite the differences
in representing instantaneous values, the capability of the statistical models in reproducing
the wave statistics of KMH run appears reasonable. The degree of agreement slightly
differs depending on location. For the comparison the quantile-quantile plot of the KMH
with the HF reference run is also shown. For the deep water points the agreement between
statistically downscaled, dynamically downscaled (KMH) and derived from HF frequency
distributions is comparable. For the areas where the influence of topography (LNA) and
other external forces such as island sheltering (e.g. DE1) is larger, the distributions obtained
from downscaled data are closer to that derived from the K-model for all the methods, while
that derived from HF provides stronger systematic deviations.

In order to assess the ability of different downscaling techniques in representation of
extreme wave statistics for the entire model domain, the annual 99-percentiles of SWH at
each grid point for the validation period 1995-2001 are compared. The skill of the methods
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Figure 3.6: Quantile-quantile plots of simulated significant wave height with different techniques
in meters for the period 1995-2001 at points a) DWP b) LNA c) DE1. HF (crosses), LR (black
squares), CCA (triangles) and Analog (circles) at y-axis against KMH (x-axis). Quantiles from
0.05 to 0.99 are shown with interval 0.01.

to improve the coarse-grid SWH representation was measured using the Brier skill score
(B) (von Storch and Zwiers [1999]).

B = 1− S2
for

S2
ref

Here S2
for and S2

ref represent the mean squared errors of the ”forecast” (in this case pro-
vided by different downscaled data sets LR, CCA and Analog) and ”reference forecast”
(here HF hindcast) with respect to observed data. In face of missing observations the K-
model simulation represents the substitute reality. Any positive value of B indicates that
the downscaling method achieves an improvement relative to the HF data. The best per-
formance corresponds with B=1, which means that the downscaled data is as good as the
”observations”. A negative value of B indicates that the method performs worse than the
HF reference. The result is shown in Figure 3.7. As it can be seen, all statistical methods
introduce enormous additional skill in representation of the spatial distribution of the SWH
yearly 99-percentile relative to using data from the HF hindcast directly. Depending on
the method the skill varies from 0.9 to 0.99 except for the analog method in the year 2001,
where the skill score fell down to the 0.81. The linear regression shows the best and the
least variable skill score values higher than 0.95 independently of a year. The analogs shows
the worst performance in wave extremes representation which is consistent with the results
for the instantaneous values comparisons. Nevertheless, the improvement obtained with all
techniques is significant.

In addition to testing the statistical method’s ability to improve the coarse grid SWH
field representation, the errors for the upper percentiles of the statistically downscaled SWH
fields were calculated with respect to KMH upper percentiles. In previous section the errors
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Figure 3.7: Brier scores for the 99%-tile of yearly SWH from 3 statistical methods: LR (dashed
line), CCA (solid line) and Analogs (dotted line).

of instantaneous SWH values from statistically and dynamically obtained datasets were
considered. However, this analysis does not reveal in which part of the SWH distribution
the major differences occur. Thus, it can appear that major part of uncertainty falls at the
high wave part of the distribution, or vice versa, the wave extremes are reproduced most
accurate. To answer this question, the differences between means over annual 99-percentiles
from statistical methods and KMH were calculated and shown in Figure 3.8. As in the case
of instantaneous values, some differences in models extreme wave representation are found.
For three models the spatial patterns of slightly positive and negative deviations of extremes
differ. The area of less accurate SWH representation around the islands looks similar for
LR and CCA with underestimated extremes to the west and overestimated extremes to the
north from the islands. The maximum rms errors of instantaneous values were also detected
for these areas (Fig. 3.3a,b). The proximity of the coastline and shallow water in these
zones presume the increased importance of the local time-variable and non-linear processes
(current influence, shoaling, bottom dissipation). The processes are not considered by
the statistical models and this is reflected by the higher uncertainty of the reconstructed
data. For the analog the errors of the reconstructed SWH upper percentiles (Fig. 3.8c)
are also spatially correlated with the differences in temporal variability for instantaneous
SWH (Fig. 3.4c). The overestimation of wave extremes occurs for the areas showing too
much temporal variability and too small extremes correspond to the area of underestimated
variability. In these cases the wave extreme events are artificially over- or under- estimated
due to model uncertainty. Summarizing, for all statistical methods and for the major
part of the model domain the wave extremes are represented with rather good accuracy
and differences with the KMH lie within 0.1 meters, the exceptions being the distinctive
shallow water area north of the island which was poorly resolved by each method, and the
area of increased variability for the analog in south-western part of the domain.

Until now the statistical models were constructed and tested for the Helgoland area.
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Figure 3.8: Difference in meters between the means of yearly 99%-tiles of SWH obtained from a)
LR, b)CCA, c)analog and KMH for the period 1995-2001

The potential applicability of the statistical-dynamical approach to other coastal areas and
the level of generality of the conclusions made in this section are interesting. First, the basis
of the described approach is the dynamical wave model. The abilities and limitations of the
K-model in implementation to different coastal areas are partially discussed in Schneggen-
burger [1998] and a principal universality of the model, using the tunable parameters, was
supposed. Concerning the applicability of the statistical model to the arbitrary area, first
of all rather strong dependency of the local waves from the boundary (medium-scale) wave
fields is required. For example, weak connection with the open sea (such as in case of
harbors), strong dependency on the local, not connected with the sea-waves processes (e.g.
area with the depth of several meters, mouth of the river) makes the use of the statistical
downscaling in proposed form hardly applicable. The presence of the mainland as one of
the boundaries for the model domain could also be an obstacle to the statistical models.
In such environments the local wave fields induced by the winds from the dry-land are not
dependent on the regional wave conditions but only on the local wave processes and the
wind. On the other hand, the wave extreme events for such areas are coming from the open
sea and are normally connected with the landward winds. So, the wave extreme events
could still be adequately represented by the proposed statistical-dynamical approach.

3.3 Multiple regression

So far, the methods have been applied to SWH only and most of the study is founded
on SWH statistics. Although the significant wave height represents one of the most fre-
quently analyzed and most crucial wave parameter, other parameters are also important for
particular applications. For instance, the wave steepness can be inferred from wave periods
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and wave heights, which is an important issue for the design of vessels. Another example
of the quantity dependent on the wave period is the wave induced bottom stress which is
important for the sediment transport and coastal erosion evaluations. Other parameters,
such as the wave direction, are crucial, especially for extreme wave analysis within the
coastal protection problem where it is important to know which direction the severe waves
are coming from. Considering the high demand for other than SWH wave parameters, this
section is dedicated to the downscaling experiments for the wave direction and peak period
fields simulation together with the significant wave heights.

The multiple regression (MR) technique accommodates the construction of the relations
between several predictor variables and several dependent predictands simultaneously. As
it has already been mentioned, the choice of the predictor’s set is crucial but subjective
and depends on application and reconstructed field. For an adequate reconstruction of
the small-scale variable it is important to consider the main processes or fields which it is
influenced by. The consideration of several medium-scale processes or fields in the small-
scale field construction adds a more realistic variability to the predicted field in case it
is dependent on this added predictor. Along with the improvement of small-scale field
representation this gives the insight into the sensitivity of the small-scale variable to the
medium-scale fields included in the downscaling and a better understanding of inter-scale
dependencies. The reconstruction of several predictands simultaneously gives a more com-
prehensive picture of the small-scale system. In case of wave fields, this approach is a
compromise between the single wave parameter (SWH, wave direction, etc) and the full
wave spectrum reconstruction.

The general form of the multiple regression model, which is the modification of linear
regression model, can be written as:

Y k
t = A0 +

l∑
i=1

Ak
i X

i
t

where Y k
t represent the k-th predicted variable at time t, X i

t represent the i-th predictor
variable at time t and regression coefficients Ak

0, Ak
i are fit by least square method.

3.3.1 Significant wave heights and mean wave directions

The first multi-downscaling experiment was performed for the mean wave direction and
SWH fields. The datasets were split into training (1990-1994) and validation (1995-2001)
periods as in the case of simple linear regression. The HF SWH and wave direction at
single HF grid point were taken as the predictors. For the computational convenience these
time-series were transformed to the meridional (u) and zonal (v) components represented
in the model by X1

t and X2
t variables. The u- and v- components of the KMH SWH and

wave direction at each KMH grid point were used as the predicted variables Y 1
t and Y 2

t .
The regression models (sets of regression coefficients) were built for each KMH grid point
and eight wind direction sectors (same as for simple linear regression).
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STDEV(error) [deg] DWP LNA HH1 HH2 DE1 DE2
HF - KMH 16.829 42.017 66.844 48.44 68.764 73.711

MR(dir) - KMH 16.313 22.904 36.593 19.111 11.538 26.285
BIAS [deg]
HF - KMH 2.558 7.529 14.032 22.267 44.61 44.61

MR (dir) - KMH 1.064 1.072 2.783 1.416 -0.069 1.135

Table 3.2: Bias and standard deviation of differences in degrees between wave directions obtained
from HF, multiple regression and KMH for the points near coastal facilities for the 1995-2001.

The comparison of the downscaled instantaneous SWH values with the KMH results at
the points near coastal facilities is shown in Table 3.1. The results of multiple downscaling
for the SWH are close to the results from the simple linear regression. This suggests weak
or no dependency between the small-scale wave heights and medium-scale wave direction
variations within the framework of each constructed model. More precisely, the SWH/wave
direction dependency is partially taken into account by using separate regression models for
different wind direction sectors. For the medium-scale wave data near Helgoland the wave
directions are strongly correlated with the local wind directions. Thus, the large-scale wave
directions are considered in the small-scale SWH spatial patterns defined by each of eight
models (see 3.2.2). The variations of the medium-scale wave direction within 45-degree
sectors seem to be of small importance for the local wave heights.

Figure 3.9: Differences in degrees between the mean wave directions correspondent to the upper
yearly 1% of highest waves obtained with MR and KMH at selected locations.

The ability of the constructed downscaling model to reproduce the small-scale wave
directions at single points of the investigated area is assessed for instantaneous values and
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annual statistics. The comparison of reconstructed 3-hourly wave direction values with the
KMH results together with the comparison of KMH and HF results for wave directions is
shown in Table 3.2 in the form of standard deviation of the difference and bias for selected
points. The biases of downscaled wave directions are small and do not exceed 3 degrees for
all tested locations. The accuracy described by standard deviation is everywhere less than
37 degrees in all cases, with the worst cases at the HH1 point near the harbor entrance
and DE2 point located south to Düne island. For the most common synoptic situation,
with westerly wind and waves coming from the open North Sea, these locations are blocked
from the direct wave propagation by the Helgoland island. Thus, refraction plays the
major role in the wave transformation. Together with the small depth at the locations
(about 10 meters) this increases the importance of the water depth variations and current
fields participating the refraction process. Consequently, these local processes influence the
small-scale wave directions rather than the boundary conditions. As soon as the local time-
variable fields are not considered in the downscaling model, the results for these locations
are less predictable with the model used.

Looking at the results of the HF/KMH comparison (Table 3.2) it can be seen that the
coarse-grid (HF) representation of wave directions suffer from a strong bias and higher
variability of the error with respect to the downscaled (MR) results. Only in the case of
DWP the HF wave direction representation is close to the small-scale data. A considerable
bias in wave directions for all other points is expected and can be explained by the poor
resolution of shallow-water areas in HF simulation and by the absence of an adequate
topography for the modeling of correct refraction process. It appears that the wave direction
field is more sensitive to the adequate topography as well as to the shallow water processes
than the significant wave height field and that the downscaling procedure brings significant
and qualitative improvement to the instantaneous near-shore wave direction representation.

Besides the instantaneous wave direction values, for the evaluation of wave statistics
the directions of the highest waves should be known. The next test was made to assess the
quality of the wave directions for the highest waves reconstructed by MR model. For each
year of the validation period (1995-2001) and each grid point from the KMH and MR SWH
datasets the records with the wave heights larger than annual 99-percentile were extracted.
The 3-hourly data was used, consequently, about 30 SWH values per year are higher than
99-percentile and fall into the selected set. The wave directions for the same dates were
chosen and formed the yearly sets of ”high wave” directions. Then the mean wave directions
were computed from the each year set and the difference between MR and KMH means was
taken. The results for selected points are shown in Figure 3.9. The errors of the mean wave
directions for all years lie within a 9-degree band. Even for those locations (HH1, DE2)
where the instantaneous MR wave directions deviated strongly from the KMH results, the
agreement of the mean wave directions of highest waves is good.

To get an impression of the high wave directions distribution, the KMH and MR ”high
wave” directions from the yearly sets were grouped in 10 degree sectors starting from [-
5,5] for each location. The number of records fallen into each sector was associated with
the sector and in Figure 3.10 the results for the period 1995-2001 are shown. In addition,
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Figure 3.10: Distribution of wave directions (going to) correspondent with the 1% of highest
waves obtained from KMH (red) and MR (blue) for the years 1995-2001 at the locations a) DWP
b) LNA c) HH1 d) HH2 e) DE1 f) DE2. In addition, a) distribution of wave directions for the 1%
of highest waves obtained from HF (pink) and corresponding wind directions (green). The length
shows the number of the records.

the directions for highest 1% of the waves for the HF used as predictor for the regression
model and corresponding wind directions are shown in Figure 3.10a. All small-scale wave
directions corresponding to high wave events are grouped within a 20-30 degree wide sector
depending on the location. The wind directions are concentrated in eastern sectors which
corresponds to the westerly and north-westerly winds and is consistent with the extreme
wind direction distribution (Fig. 3.1b). This means the high wave events within the K-
model domain happened under similar external wind/wave conditions belonging to the
north-westerly storm situation. For the locations situated to the west from the island
(DWP, LNA, HH2) the wave directions remained considerably unchanged with respect to
boundary conditions with slight turn to the north due to refraction caused by the bottom
slope in the relatively shallow water area. For the southern locations behind the islands
(with respect to westerly waves) (HH1, DE2) the northward wave directions prevail, which
is mainly explained by the presence of the main island and consequent wave refraction.
The almost southward wave directions at DE1 have the same reasons. The spread of the
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HF wave directions as well as wind directions on the boundary is larger than the spread
of the wave directions obtained with both KMH and MR at the locations inside small-
scale model domain. This can be explained by the influence of the internal small-scale
processes and the seabed profile defining the wave directions side by side with the external
wind/wave forcing. The results for the MR wave directions data demonstrates the ability
of the model to keep this influence and to consider the small-scale features although they
are not resolved explicitly in the model. The slight shift in the MR obtained directions at
HH1 with respect to KMH can be attributed to the part of the refraction caused by local
time variable fields (water depth, currents) which are not represented in the MR model.
In general, the downscaled wave direction fields capture dynamically obtained high wave
directions and reflect the main features and configuration of the extreme wave situations.

3.3.2 Significant wave heights and peak periods

The second multiple-regression experiment deals with the construction of SWH and
peak period fields. The SWH and peak period for the single point from HF simulation were
taken as the predictors X1

t and X2
t . The small-scale SWH and peak period fields from KMH

were chosen as the model predictands Y 1
t and Y 2

t . The rest of the procedure is similar to
the first multiple regression experiment (3.3.1).

Figure 3.11: Peak periods in seconds for October 1998 obtained from KMH (blue), HF (green)
and MR-tp (red) at points a)DWP, b)DE1

The comparison of the results for instantaneous SWH showed (Table 3.1) that the
consideration of the peak period as the second predictor makes a slight improvement in
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Figure 3.12: Current directions (dashed) in degrees used as an input for the K-model and peak
periods (solid) in seconds simulated by the K-model for the 1.10-8.10.1998

STDEV(error) [s] DWP LNA HH1 HH2 DE1 DE2
HF - KMH 1.08 1.27 1.63 1.26 2.17 1.97

MR(tp) - KMH 0.976 0.876 1.002 0.86 0.647 0.902
BIAS [s]

HF - KMH -0.13 0.06 -0.17 0.278 1.064 0.419
MR(tp) -KMH 0.018 0.04 0.038 0.037 0.067 0.065

Table 3.3: Bias and standard deviation of differences in seconds between peak periods obtained
from HF, MR and KMH for the points near coastal facilities for 1995-2001.

the representation of downscaled wave heights with respect to simple linear regression. The
standard deviations of the differences between MR and KMH wave heights are lower than for
the LR data, biases are comparable and sometimes lower, depending on the location. This
suggest the favoring of the idea that the medium-scale peak period data brings additional
information into the local wave system with respect to the medium-scale SWH. This is also
supported by the appearance of the regression coefficient matrix which has a non-diagonal
form with all elements nonzero.

To investigate the relations between HF and downscaled with KMH and MR peak
periods the instantaneous values from three datasets at the selected locations are compared
and the results are shown in Table 3.3. In addition, the peak periods at the locations
DWP and DE1 are plotted for October 1998 (Fig. 3.11). The first peculiarity visible on the
plots is the pronounced cyclic structure of the KMH time-series for both points especially
noticeable for the first 10 days of the period. The strong correlation between the tidal
cycle and the local maximum and minimum of peak period can be detected (Fig. 3.12).
Here the peak period and current directions were compared at the DWP location for eight
days in October 1998. During that period the waves were steadily directed to 290◦ and
current directions switched between 115◦ during flood and 305◦ during ebb tides. Thus, the
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currents were almost following and opposing to the wave direction. The difference between
the neighboring peaks up to 1 second can be detected. This corresponds to the results of
Moghimi et al. [2005] who showed that for the shallow water environment the wave periods
are sensitive to the tidal currents and water depth variations and that for significant wave
heights this effect is less pronounced. Both HF and MR datasets underestimate the peak
period variability connected to the tides.

Figure 3.13: a) Rms error in seconds between instantaneous peak periods obtained with MR and
KMH b) Explained variance by the peak periods obtained with MR with respect to KMH peak
periods c) Difference in seconds between the means of annual 99%-tiles of peak periods obtained
from MR and KMH

For the second part of the period considered the situation changes. Under the westerly
wind and storm conditions the HF peak periods differ significantly from the downscaled
data, especially for the DE1 point. As in the case of significant wave heights, the represen-
tation of the peak periods given by the medium-scale model for the area just behind the
island with respect to westerly wind is rather poor (see Table 3.3) with strongly overesti-
mated peak periods. For the DWP the discrepancy between HF and KMH is not so large
but the MR model still improves the coarse grid peak periods.

As for the quality of the MR modeled peak period data with respect to KMH and
for the entire model domain, the rms errors of instantaneous values vary from 0.4 to 1.2
seconds (Fig. 3.13a) with the minimum rms in the shoal part north to the island, the same
area has the best explained variance larger than 0.8 (Fig. 3.13b). In general, the MR
data underestimate the variance of dynamically obtained peak periods and the explained
variance of the MR data with respect to KMH does not exceed 0.9. In comparison with
the SWH, where statistically obtained fields represent more than 90% of the KMH SWH
variability for the major part of the modeled area (not shown), the multiple regression
shows less skill in representation of the peak period variability. The extreme peak periods
modeled by MR differ from the KMH 99-percentiles within 0.5 seconds for the major part
of the area. Only in the northern part of the model domain the underestimation up to
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1.5 seconds is detected. The worst representation of instantaneous as well as extreme peak
periods by the MR model occur in the north-eastern part of the model area. These locations
are mostly remote from the south-western corner of the model area where the HF point
used as the basis for the regression is situated. When the statistical model was constructed
for the SWH fields using only one point from the HF simulation, it was assumed that the
SWH time-series at all HF grid points associated with the KMH model domain were highly
correlated (with the correlation about 0.996). Therefore, the use of all these time-series for
the regression would not bring additional information with respect to the use of one of them.
For the peak period the correlation between the time-series from south-western and north-
eastern HF points is lower (about 0.86). In this situation the use of one time-series for the
downscaling procedure limits the skill of regression model in representation of peak periods
in the locations remote from the south-western part of the model domain. Nevertheless, the
multiple regression model adequately reproduces peak periods and improves the HF data.
This is especially important for the locations in close proximity to the island where the HF
data suffers from major deviations with respect to KMH and the MR has a good skills.

3.4 Summary

The empirical downscaling was proposed as a complementary tool to the time-consuming
dynamical wave modeling to obtain detailed near-shore wave statistics. Three statistical
methods, namely, linear regression, Canonical Correlation Analysis and analog were applied
to the downscaling of the HF SWH and trained on the dynamically obtained KMH high-
resolution SWH fields.

Compared to the KMH wave data, the statistically obtained SWH fields showed a dif-
ferent range of uncertainty. In general, the methods successfully reproduce the temporal
and spatial variability of SWH and details corresponding to the high-resolution topographic
features. Some discrepancies occur because of unconsidered time-variable small-scale fields
such as currents and water level change, which influence the wave parameters in the shallow
water environment. The temporal variability is adequately captured by linear regression
with slight underestimation for a part of the area, the underestimation appears to be larger
for the CCA and the analog showed overestimated variability for most of the modeled
area. The statistically obtained wave extreme events showed a good agreement with KMH
extremes.

It was found that all three methods considerably improve the representation of the
instantaneous wave parameters and estimation of extreme wave statistics compared to the
driving medium-scale hindcast. It is therefore suggested that in the face of limited computer
resources and compared to the direct use of less well resolved data, high-resolution wave
model simulations in combination with coarse grid boundaries and statistical downscaling
approaches can yield an improved representation of extreme wave statistics for near-coastal
areas.

The linear regression model shows the best results in comparison with the dynamically
downscaled data and gives the opportunity for the construction of more than one integrated
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wave parameter. The skill of the multiple regression model in simulation of two wave pa-
rameters simultaneously was examined for the pairs SWH/wave direction and SWH/peak
period. The representation of SWH fields for MR was found to be similar to the results
obtained with LR. The instantaneous wave directions as well as the wave direction distri-
bution for high waves are represented reasonably well with respect to KMH and capture
the main specific details for the area. The representation of MR peak periods is signifi-
cantly improved with respect to HF data but suffer from underestimated variability. The
uncertainties in the peak period representation around the island are partially attributed
to high sensitivity of peak periods to small-scale variable fields such as tidal currents and
water depth variations.

Based on a balance between the quality of simulated data and required computational
resources, LR (or MR in case of several parameters) statistical method in combination with
the dynamical K-model appeared to be the most acceptable tool for downscaling long-term
wave data and obtaining small scale wave statistics. It solves both the problem of insuffi-
cient time and space resolution presented in medium-scale multi-decade wave hindcasts and
extremely high computational costs for long-term high resolution dynamical wave hindcasts.



Chapter 4

Wave climate assessments for past
and future

This chapter is dedicated to the evaluation and description of the wind/wave climate
for German Bight and Helgoland. The data used for the analysis of the wave climatology of
the last four decades is obtained from HIPOCAS and the linear regression model described
in the previous chapter. These wave statistics are used for the revealing of the past changes
in wave extremes as well as for the extreme value analysis and consequent assessment of the
expected frequency and magnitude of the wave extremes. In the second part of the chapter
the earlier experiments concerning scenario studies for the future wind, wave and surge
climate of the North Sea region are surveyed. As an example, two scenarios for Helgoland
are constructed based on the results of two IPCC scenarios elaborated on regional scale by
PRUDENCE project and the issue of local scenario studies are discussed.

4.1 Hindcast

During the last two decades there were numerous attempts to reconstruct the past
wave climate on global and regional scales. The recent efforts (i.e. Kushnir et al. [1997],
Günther et al. [1998], Cox and Swail [2001] or Soares et al. [2002]) provide wave datasets
of different qualities for the last 40-50 years. The main objectives of such studies were to
bring together and investigate consistency different historical data, to provide homogeneous
long-term wave hindcast and to analyze the rate and reasons of changes happening in wave
climate during past decades based on obtained datasets.

In the mid nineties the regional study of the North Atlantic wave climatology was
carried out within the WASA project (WASA Group [1998]) with the main goal to prove or
reject the hypothesis of the worsening of wave and storm climate in the North Atlantic. The
main motive for this work was the substantial worsening of the North Atlantic wave climate
during past four decades evidenced by different analysis of observed data (i.e. Bacon and
Carter [1991], Hogben [1994], etc.), but due to various kinds of inhomogeneities most of
the analysis gave only bounded and rough impression about wave climate changes. For the
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WASA project the pressure observational records for about the last 100 years for different
parts of North Atlantic and in particular southern and eastern North Sea were analyzed.
The increase of geostrophic wind speeds (and consequently storm index) for the past decades
was confirmed but the absolute values for the end of the 20th century appeared to be
comparable with that from the beginning of the century. The past increase of geostrophic
wind speeds seemed to be explained in a major part by inter-decadal internal variability
(Alexandersson et al. [1998]). It was also pointed out that the consideration of the data
only from 1960 onward may lead to artificial dramatizing of the increasing trends.

To avoid the inhomogeneities in observed wave data, the reconstruction of past wave
climate within the WASA project has been made with a dynamical wave model driven by
operational wind analysis for the period 1955-1994 (Günther et al. [1998]). The analysis
of the model output showed a slightly increasing trend for high wind speeds and large
wave heights (3-4 cm yr−1 for annual 99-th SWH percentiles) for the North Sea and the
Norwegian Sea. The average SWH showed for the 40-year period increase with the rate of
approximately 0.2% per annum and thus, the model results did not support the observed
and reported earlier 1-2% upward trend. On the other hand, it has been found that the
atmospheric forcing for the wave model still suffered from the lack of homogeneity, which
makes more difficult to determine the distinction between the trends and climate variability.

Because of the development and significant improvement of wave models used for wave
reanalysis and hindcasts during past decade, the quality of simulated medium scale wave
fields is considerably dependent on the homogeneity and time resolution of the driving wind
data and partially on the wave model resolution (i.e. Brauer and Weisse [2000], Sterl et al.
[1998]). The skills of state of the art wave models in representation of ocean wave fields
and high dependency of the simulated wave accuracy on driving forcing allow for the use of
modeled wave data as a quality control of the driving wind fields (i.e. Sterl et al. [1998] or
Swail and Cox [2000]). As the consequence, the availability of homogeneous and long-term
wind data becomes crucial for adequate wave hindcasts and most of the wave and storm
related studies focus at first on wind data reanalysis and quality evaluation. Among recent
studies two global 40-year wave reanalysis have been made, first one by Cox and Swail [2001]
was based on NCEP/NCAR Reanalysis (National Center for Environmental Prediction and
National Center for Atmospheric Research) surface wind (Kalnay et al. [1996]), and the
other one used ERA40 ECMWF (European Center for Medium-range weather Forecasts)
Reanalysis wind fields (Simmons and Gibson [2000]). The results of both reanalysis for
wind and waves were compared by Caires et al. [2002] and it was found that in spite of day-
to-day and monthly mean differences, the long-term behaviour of both winds and waves in
various datasets was quite similar. In general, global wave variability during last 40 years
was characterized by a slightly positive trend for significant wave heights at North Atlantic
and negative trends in central Atlantic and equatorial Pacific. This corresponds with the
WASA results and the results from Kushnir et al. [1997] and Wang and Swail [2001] for
Atlantic region. There the changes in SWH fields were related to the changes in sea level
pressure (SLP) fields. The revealed bipole SWH trend (increasing in Northeast Atlantic
and decreasing south to 40◦N) was supposed to be associated with enhanced positive phase
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of the North Atlantic Oscillation (NAO) index, defined from the pressure difference between
Island and Azores.

The next improved wind and wave hindcast for the sea areas around Europe was pro-
vided by HIPOCAS project described in section 2.1.2 with one of the goals to assess the
changes in past winds, storm surge and wave climate. The obtained data is presently an-
alyzed by our colleagues with respect to past changes in climatology for the entire North
Sea. It is beyond the scope of this study to evaluate the wind and wave climate for the
entire North Sea region. Instead, the tendencies and regularities relevant for the German
Bight are explored more intently based on the HIPOCAS wind and wave data.

4.1.1 Analysis of the past regional wind and wave climate

Before coming to the analysis of local wave climate for Helgoland area, some attention
has to be payed to the regional wind and wave conditions dominating in the area during last
decades. The strong dependency of the local wave statistics on the regional one was shown
in the previous chapter. Basically, it is assumed that the long-term changes in medium-scale
wave statistics are reflected in local statistics as well. The wind statistics can be useful to
understand better the regional wave climate. It has been shown in several studies (e.g.
Kushnir et al. [1997], Wang and Swail [2001]) that the long-term changes in wave statistics
are strongly linked to the changes in sea level pressure and wind climatology. That is why for
the revealing of potential reasons of changes in local wave statistics the regional wind fields
are considered. For this purpose the 10 meter height wind speeds and directions from the
REMO simulation were extracted for the location near Helgoland. Instantaneous 3-hourly
wind data for 1958-2001, annual percentiles of wind speeds and extreme wind statistics for
this period were used for the analysis. As regional wave statistics, the 3-hourly SWH values
from HIPOCAS hindcast have been extracted for the location near Helgoland.

Figure 4.1: 50, 75, 90, 95, 99, 99.9 annual percentiles of the a) wind speed (solid) in m/s and
linear trends (dashed) in m/s per annum b) SWH from HF in meters and linear trends.

First, annual percentiles of the reginal wind speeds and significant wave heights are
considered independently of the wind directions. Figure 4.1 shows 50, 75, 90, 95, 99 and
99.9 annual percentiles for wind speeds (a) and SWH (b) together with fitted for each
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Percentiles 50% 75% 90% 95% 99% 99.9%

Total 0.012 0.022 0.028 0.034 0.032 0.033

SW, W, NW 0.019 0.026 0.034 0.037 0.036 0.038
(sig. 95%)

N, NE, E, SE, S N/S N/S 0.015 0.014 N/S N/S
(sig. 90%) (sig. 90%)

Table 4.1: Magnitude of linear trends for wind speed annual percentiles in m/s per annum. The
first line shows the trends for the percentiles obtained independently on wind direction. In second
line only three westerly wind direction sectors are considered for percentile construction, the last
line represents the trends for percentiles of the remaining five directional sectors. Significance
level of the non-zero trend is 99% unless another is explicitly shown.

percentile linear trends. The increase of wind speeds during the analyzed period can be
revealed for both extreme events (99, 99.9 percentiles) and medium wind speeds (50, 75
percentile). The linear trends were estimated and the hypothesis that they do not differ
from zero was tested with the standard two-sided T-test. The low rate of auto-correlation
for the annual wind speed percentiles allowed to use this method directly. The trends have
been found to be significantly different from zero with 1% error level and their magnitudes
vary from 0.012 to 0.034 m/s per annum (Table 4.1). The detected intensification of the
winds during past 40 years is consistent with the conclusions of Alexandersson et al. [1998]
for observational data from the North Sea region. In that study the U-shape behaviour
of extreme winds during the past century (the magnitudes are similar for the begin and
the end of the twentieth century with minimum magnitudes around 1960th) was revealed.
This behaviour can not be tested with modeled data available at the moment for German
Bight, longer wind hindcasts are required to be able to make the final statement about
the nature of the detected increase in the wind speeds. For the present state, it should be
taken into account that for the past decades the determined wind speed increase is probably
part of natural variability. For the significant wave height percentiles in German Bight the
situation is similar to the wind speeds, positive linear trends significantly different form
zero were found for all considered percentiles. The considerations about the reasons for
such behaviour are also similar to that for the winds.

Because the wave extreme events are of special interest for coastal applications, we in-
vestigate in more detail the wind conditions for such events and corresponding changes in
wind and wave statistics. At first part of experiment, the SHW and wind speed annual max-
imums were obtained separately for eight wind direction sectors starting from [-22.5,22.5].
The mean values of 44 annual maximums associated with each direction sector are shown
in Figures 4.2a,b for wave heights and wind speeds accordingly. For the wave heights the
mean maximum magnitudes associated with three westerly wind sectors are significantly
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Figure 4.2: a) Mean of annual maximums of SWH for each direction sector for the period 1958-
2001 b) Mean of annual maximums of wind speeds c) Frequencies of westerly winds associated
with upper 1% of wind speeds (black) and upper 1% of the wave heights (red) in percentage.

larger than the values for other wind directions. Thus, for westerly winds the highest de-
tected waves are about 7 m, while for easterly winds they reach only 3 m, which is twice
less. For the wind speeds the discrepancy between westerly and easterly strongest winds is
much smaller and amounts to about 25% of maximum (western) strongest winds.

Looking at the data from the other side, the annual 99-percentiles of SWH and wind
speeds without directional separation were calculated, then the wind and wave events larger
than 99-percentiles were selected and corresponding to this events wind directions were
identified. For more convenience, the wind direction sectors were grouped in two parts,
namely south-westerly (SW), westerly (W) and north-westerly (NW) directions referred to
later as ”westerly” winds and the remainder group as ”easterly” winds. Finally, for each year
the percentage of extreme wave and wind events associated with westerly winds was plotted
(Fig. 4.2c). In average, about 83% of all wind extreme events are related to the westerly
wind conditions with some exceptional years where this value goes down to 40% or rises
up to 100%. For the waves the situation differs, here about 96% of annual strongest 1% of
storm events occur under westerly winds. On the whole, the results presented in Figure 4.2
suggest the prevalence of the westerly wind conditions for the highest wave events, while the
strongest winds can be more often associated with easterly wind directions. This means
the storm events near Helgoland do not always occur simultaneously with the strongest
winds and sometimes are rather associated with the slower but westerly, i.e. coming from
the open sea, winds. This can be explained by the presence of the mainland about 70 km
southward and eastward from the island, which prevents the full development of the waves
coming from that directions even under strongest wind conditions. The westerly winds
bring to the islands swell generated across the North Sea and wind waves developed over
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long distances, resulting in higher waves in the German Bight and near Helgoland.

Figure 4.3: a) Number of cases per annum of NW, W, SW wind directions (black) and NE, E,
SE wind directions (grey) and linear trends (dashed lines). b) Percentage of the winds from each
direction sector for the period 1958-2001.

If the most of wave extreme events occur under westerly wind conditions, then first
of all the changes in westerly wind frequency and magnitude can cause the changes in
wave extreme statistics. Now the entire distribution of the wind speeds are considered
again. The wind speed distribution percentiles were calculated for westerly (SW, W, NW)
and all the other winds separately and the corresponding linear trends were estimated
(Table 4.1). It appears that for westerly winds the increase in magnitude of all considered
percentiles during past 40 years is more intensive than for the winds from all directions
together. The winds from the easterly directions become only slightly more intensive for
90, 95 percentiles and for the extreme winds no significant increase in wind speeds have
been found. Turning to the frequencies of the winds coming from different directions, at
first the general distribution of the wind directions for the period 1958-2001 is presented
(Fig. 4.3b). It appears, that more than 50% of all winds in the German Bight are coming
from three western direction sectors, the most rare for the area are north-eastern, northern
and southern winds. Annual number of cases for westerly and easterly (here NE, E, SE)
winds is shown (Fig. 4.3a) to demonstrate the inter-annual changes in the wind direction
distribution. One case here represents the 3-hourly wind. Despite rather high inter-annual
variability, the clear long-term trends can be detected for both directional groups. The
increase of the number of westerlies about 3.5 cases per annum with 95% level of significance
was detected. At the same time the downward trend for the frequency of easterly winds
is about 4 cases per annum. Together with the fact that the upper annual percentiles of
wind speed also increased for westerly winds it can be concluded that the additional cases
of westerly winds were, at least partially, corresponding to the wind extreme events.

Summarizing, significant positive inter-annual trends for the extreme and intermediate
wind speeds and regional SWH were found for the past four decades. The increasing number
of westerly winds was detected for this period. The magnitude of westerly extreme wind
speeds was found to be increased as well. Consequently, the upward tendency for the
frequency and intensity of the westerly wind extremes for the Helgoland area was revealed
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for the past 44 years. This caused the increase of the extreme wave heights on regional scale
detected for the German Bight. The impact of these changes on the local wave climate is
investigated further.

4.1.2 Analysis of past local wave climate

In order to assess the past local wave climate, the 3-hourly significant wave height fields
for the Helgoland area were simulated with the linear regression model (3.2.1) for the period
1958-2001. The annual 50, 75, 90, 95, 99 and 99.9 percentiles of the wave height distribution
at each location were computed. To get an impression of the wave height spatial distribution
dominating during past four decades, the means of these percentiles were derived and shown
in Figure 4.4. In general, the SWH spatial distribution is characterized by the maximum
wave heights in the western part of the model domain, gradual decrease of the wave heights
further to the east and pronounced low wave area east to the islands. From the small-scale
features the higher waves for the shoal north to the island and the higher waves directly
to the south and south-east from the main island can be detected as well as constantly
low wave region between the islands. This pattern is valid for all considered parts of SWH
distribution and corresponds to the wave height spatial pattern associated with westerly
wind conditions (Fig. 3.1). This is consistent with the findings about the prevailing wind
directions for the region. Most of the storm situations occur under the westerly winds
(Fig. 4.2), which explains the spatial patterns for the upper percentiles of wave height
distribution. Considering the entire wave height distribution, the priority of NW, W and
SW winds is not so pronounced but can still be detected (Fig. 4.3b). Here the proportion
of westerly winds (here means only W and not NW or SW) is greater than the proportion
of the winds from each of the other seven direction sectors. It is further supposed that
the spatial patterns for the intermediate wave heights (50 or 75 percentiles) (Fig. 4.4a,b)
demonstrate the wave distribution for this most frequent wind situation.

Together with the mean wave statistics, the changes in wave climatology occurring in
the last decades are important. From the previous studies (e.g. WASA Group [1998]) and
the conclusions about the wind climatology the existence of the inter-annual trend for the
SWH percentiles is hypothesized for the North Sea area and German Bight in particular.
On the regional scale, this hypothesis was tested within the HIPOCAS project using the
SWH data from HF hindcast. Here the example from this analysis is shown, namely, the
trends revealed for the annual 99-percentiles for the North Sea (Fig. 4.5). According to the
HF hindcast the positive trends can be detected for the major part of the North Sea with
the maximum in south-eastern part about 2.1 cm per annum. The area along northern part
of the British coast is characterized by slightly decreasing wave extreme events. For the
Helgoland surroundings a rather rough picture of the wave heights and, consequently, the
changes in extremes is given by the HF simulation. Nevertheless, looking at the coastlines
it can be seen that the increase of the magnitudes of high waves is more pronounced for
the Helgoland and the main part of Netherland’s coastal zone reaching 1.5 cm per annum,
while the estimated increase for the most of German Bight coastlines is only about 0.3 cm
per annum. To obtain more confident information about the tendencies of the extreme
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Figure 4.4: Mean of the SWH annual percentiles in meters for the period 1958-2001. Interval for
contours is 0.25 m for top panels and 0.5 m for bottom panels.

wave heights in near-shore areas a more detailed wave representation is required.
For this purpose the LR hindcast was used. The linear trends for the selected six

percentiles (similar to Fig. 4.4) of the wave height distribution at each location of the
model domain were estimated and the results are presented in Figure 4.6. The significance
of the obtained trends was tested with the two-sided T-test similar to the case of the
wind speeds and it was found that the trends for 50-99 percentiles are significant with 1%
error probability and for the 99.9 percentile with 5% error probability. The significance
was detected for all locations of the model domain with the exception of the harbor area.
Within the harbor the modeled wave heights do not show magnitudes higher than 1 m and
are not affected by the intensification of the external wave extremes, which is the direct
effect of the presence of the harbor with coastal protection constructions. On the other
hand, the representation of the waves by the dynamical and statistical models within the
harbor could not be completely adequate as the K-model and the linear regression method
do not consider diffraction and were not designed for applications in such areas.
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Figure 4.5: Linear trend in cm/yr for the SWH annual 99-percentiles obtained from the HF
hindcast for the North Sea 1958-2001 period (from Ralf Weisse, perc. comm.

Comparing the trends estimated from two hindcasts, it can be seen that the magnitude
of the LR trends along the western boundary of the small-scale model area is similar to the
values of HF trends for the location west to the island and is about 1.6 cm yr−1. There is
also a good agreement between LR and HF for the area of lower trends east of the island, in
both cases the trends are between 0.6 and 0.9 cm yr−1. This is consistent with the nature
of the LR hindcast obtained by downscaling of HF data. Any details and local tendencies,
however, are available only from the high-resolution dataset. Coming to the discussion of
the local changes in wave climatology, the first regularity to be mentioned is the pattern
with the high values on the west and decreasing to the east with a minimum just east
of the island, which is similar to the wave height spatial distribution for westerly winds.
The percentiles of the wave heights are also distributed similarly and it can be seen from
Figures 4.4, 4.6 that higher trends correspond to larger wave heights. The areas of the
highest trends correspond to the areas for which the highest wave events were detected,
such as along the western coast of the main island and the shoal north to the islands.

4.1.3 Wave directions for wave extreme events

In the Section 4.1.1 the statistics for wind and wave directions were assessed for one
location on a coarse grid near Helgoland relevant for the description of the general situation
in the region. The additional data analysis was carried out for the assessment of the local
wave direction statistics and the prevailing wind directions for the local wave extremes in
different locations of the high-resolution KMH model domain. For this experiment the
dynamically obtained wave direction fields have been chosen as most accurate and having
physical basis, which helps in the interpretation of the results. The time-slice experiments
have been made for the comparison of dynamically estimated statistics at the beginning and
at the end of the period considered. From the KMH experiment (2.1.3) the instantaneous
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Figure 4.6: Trends for the annual percentiles of SWH estimated for 1958-2001 period in cm yr−1.
The contour interval is 0.1 cm yr−1.

wave parameters were available for the period 1990-2001. In addition, wave parameters were
simulated for the beginning of the 44-year period of the study, namely 1958-1965. From
the 3-hourly modeled wave directions the records corresponding to the wave heights larger
than annual SWH 99-percentiles were extracted for each location and each year for these
two periods. In addition, for each location the wind directions corresponding to the upper
1% of the wave heights were derived from the dataset described in 4.1.1. From this data the
mean wave and wind directions at each location were calculated for 1958-1965 and 1990-
2001 periods. Standard deviations of the yearly samples of wind and wave direction were
also calculated and the mean standard deviations for two periods were obtained. During
the comparison of the mean and standard deviations for the beginning and the end of the
considered 44-year period, no significant differences were detected for both wave and wind
directions. Further on, the description of the directions for extreme events is limited to the
1990-2001 period.

As it could be expected based on the results of 4.1.1, most of the high wave events for
the Helgoland surroundings occurred under westerly wind conditions (Fig. 4.7b) with the
exception of the harbor. Here the waves penetrate the harbor directly only with easterly
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Figure 4.7: Mean wave (a) and wind (b) directions (going to) in degrees corresponding with the
upper 1% of the wave heights for the 1990-2001 period. Mean of yearly standard deviations of the
wave (c) and wind (d) directions for 1% of highest waves.

winds and in the other cases this is possible only for refracted waves which have already
lost most of their energy and are not so high. So, the extreme wave events in the harbor
are rather related to easterly winds and this is the direct consequence of the breakwater
presence. The K-model considers this topographic feature and represent the consequences
adequately. To asses the spread of the wind directions responsible for the high waves on
the entire area, the standard deviations are shown in Figure 4.7d. For the major part of
the model domain the deviation smaller than 30 degrees can be detected, which means
all or almost all winds corresponding to high wave events are coming from the NW, W
or SW directions. For the north-eastern part of the domain northerly wind conditions are
also possible for the extreme wave occurrence. For the area of larger deviations located
east of the island the opportunity of the high wave events under easterly winds can not
be excluded. It appears that within this region the easterly winds caused the wave events
with SWH larger than 99-percentile. For example, it was the case for the year 1996 (not
shown) characterized by the largest number of easterly winds (Fig. 4.3a) and lowest upper
percentiles for wave heights (Fig. 4.1b) for the entire 12-year period. The high waves
under easterly winds do not occur often and do not influence the wind direction statistics
significantly, but their existence should be taken into account.

Concerning the wave directions (Fig. 4.7a,c), for the deep water areas on the south, west
and north of the model domain the wave directions for the high waves agree well to the
wind directions and demonstrate the prevail of westerlies. For the shallow water locations
around the island the wave directions are transformed due to refraction and high waves
turn towards the island. Standard deviations here become smaller as soon as the wave
directions are more influenced by the shallow water processes superimposed on the exter-
nal wind/wave directions. The area eastward of the islands is most unsteady in terms of
direction variability. In some locations the deviation is up to 80 degrees, which means that
basically no prevailing direction can be detected. On the one hand, the high waves corre-
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sponding to the westerly winds here become lower due to refraction and energy dissipation
and their magnitudes can be comparable to the waves coming from the east. Some high
wave events happened under easterly wind conditions and this is reflected by the increased
wind direction variability (Fig. 4.7d). On the other hand, most of the high wave events can
still be attributed to the westerly winds. In this case the wave spectra to the east of the
island are developed by the influence of the two wave trains coming from the north and
south of the island. These wave systems round the island enduring the strong changes by
the shallow water processes, therefore, the specific shape of the resulting wave spectrum is
dependent on the number of local processes and time-variable fields such as water depth
and currents and to a minor extent on the external wind/wave directions. However, this
highly uncertain area is small; for the locations directly east and south of the islands the
wave direction patterns are defined quite clear with the prevailing westward and northward
high waves. Further to the east from the uncertain area quite stable westerly high waves
prevail again.

4.1.4 Extreme value analysis for significant wave heights

Normally, the information about the past wave climate is used as the basis for the
estimation of the future wave extreme statistics required for the planning of the coastal and
off-shore constructions. One of the methods of future climate assessment is the extension
of the climate trends and dependencies detected for the past into the future. But for the
successful application of this methodology, with reduced uncertainty, the existence of the
data for very long period in the past (hundreds of the years in case of wave climate) is
required. For shorter periods of time, for example several decades, the artificial trends in
the data can be revealed, although, in reality they are attributed to the natural system
variability on the timescales beyond those considered. In present study this is the case
because it is not completely clear whether the increase of the extreme wave heights detected
for the last four decades will take place in the near future or if it is just the property of the
chosen time slice.

Another possibility to obtain the information about the most severe wave conditions
expected during the lifetime of the coastal constructions is the use of the existing wave
statistics for the estimation of wave height return values and return periods. Return value
is by definition the value which is exceeded on average once during the considered period.
Accordingly, this period is the return period for that value. In this study the SWH return
value estimates were computed with the annual maxima method in which the Generalized
Extreme Value Distribution (GEV) was fit to the sample of annual SWH maxima (for
method description see e.g. Coles [2001]). The GEV family of distributions has the form:

G(z) = exp

{
−

[
1 + ξ

z − µ

σ

]−1/ξ
}

defined for {z : 1 + ξ(z−µ)/σ > 0)}, with a location parameter µ, a scale parameter σ > 0
and a shape parameter ξ estimated by maximum likelihood method. The LR SWH dataset
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for the period 1958-2001 was used for this analysis. For each location of the model domain
and each year the SWH records were selected according to the corresponding wind directions
and were grouped into eight SWH subsets according to the 45-degree wind direction sectors
(similar as for LR model construction). The annual maxima at each group were then
selected and the GEV distribution was fit for each location and each direction group based
on the 44 SWH annual maxima. Finally, 20, 50 and 100-year return values were estimated
from fitted distributions.

Figure 4.8: 20 and 50-year return values of SWH in meters estimated for the winds coming from
southern, western, northern and eastern 45-degree sectors.

In Figure 4.8 the examples of the SWH 20 and 50 year return values for four wind direc-
tion sectors are shown. Here the spatial structure of the 20-year and 50-year return value
fields is similar for the same wind directions and, as expected, the magnitudes of the esti-
mated 50-year return values are slightly higher than 20-year values. Significant differences
between the return values associated with different wind directions were revealed. While
for easterly and southerly winds the 50-year return values appears to be not larger than
5 meters, for westerly winds the estimated return values amount to 10 meter magnitude.
The presence of the largest return values for westerly winds corresponds with the findings
of the previous section concerning the prevailing westerly storms and the occurrence of the
highest waves under westerly wind conditions. The spatial pattern of return values for
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westerly winds is close to that for the SWH 99.9-percentiles (Fig. 4.4) with both 20 and 50
year return values demonstrating larger magnitudes than the SWH 99.9-percentiles. This
is consistent with the definition of the return value as an event happening once within a
certain period (here 20 or 50 years) and the definition of the percentiles from which follows
that for the LR wave data the events with wave heights equal or larger than annual 99.9
percentiles occur 3-4 times a year.

Figure 4.9: 20 (blue), 50 (red) and 100 (green) year return values for SWH in meters for selected
locations and 8 wind direction sectors (winds are coming from). For the exact locations see Fig.2.1

The estimation of return values for different wind directions can be useful for engineering
applications because it defines the magnitude of the waves developed under certain wind
conditions and the direction of its approach. As an example of the directional return value
distribution, the 20, 50 and 100 year return values for the selected locations near Helgoland
are shown in Figure 4.9. Some peculiarities related to the situation of the locations (see
Fig. 2.1) and revealed earlier in this work for the extreme wave directions (3.3.1, 4.1.3) and
wave height extremes (4.1.2) can be detected for the return values as well. For LNA and
DE1 the southeasterly winds produce minimum waves because of the island and breakwater
presence; for the locations situated behind the island with respect to westerly winds, such
as HH1, DE1, DE2, the return values are smaller than for the other locations. For each
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location the conditions and the approaching directions of the extreme events are detected.
Similar information for any place of interest can be obtained with GEV models.

The attempts to estimate wave extremes for the Helgoland surroundings were under-
taken in earlier works dedicated to the Helgoland wave climatology (e.g. Vierfuss [2002]).
But for several reasons previous results can hardly be compared quantitatively with the re-
sults obtained within this study. At first, the wind forcing used in Vierfuss [2002] originated
from the pressure fields of the weather analysis produced by Norwegian Meteorological In-
stitute (DNMI), some deficiencies of this wind data with respect to REMO winds used in
present study were investigated and discussed in Weisse and Plüss [2005]. Further differ-
ences between present and earlier small-scale extreme wave estimations comprise the use
of different wave models for medium-scale wave simulations serving as the basis for the
local wave estimations (WAM (WAMDI Group [1988])for present and HYPAS (Günther
and Rosenthal [1985]) for earlier work), and the use of different methodology for obtaining
the local wave statistics. For this study the small-scale instantaneous wave data were ob-
tained with the statistical-dynamical approach and then the extreme wave statistics were
estimated from the datasets. For the previous study only selected high-wave situations
were dynamically simulated with the SWAN model and then the wave statistics obtained
from the medium-scale hindcast were extended to the local wave statistics. As a result of
the described differences, it is difficult to attribute the discrepancies in two works. This
study seems to be the qualitatively new update of the extreme wave analysis presented in
Vierfuss [2002] due to the use of the improved forcing fields and wave models as well as the
ability to produce long-term local wave simulations used for the final statistical analysis.

4.2 Future wave climate and scenario study

Currently, the quality of long-term wave hindcasts make them an appropriate tool for
obtaining past wave statistics if the adequate atmospheric data are available. But for
the evaluation of future wave climate the knowledge of the previous statistics may be not
enough if climate undergoes changes unexplained by the internal system variability. From
the past wave climate analysis for Helgoland it was not completely clear if the changes in
wave statistics were caused by natural variability or were the results of the anthropogenic
influences. It was shown that storminess and wave characteristics are strongly dependent
on the atmospheric situation and that, additionally, in the face of global climate change the
response of the wave climate has to be studied. Anthropogenic emission of green house gases
and aerosols is named as one of the main sources of global climate change and the problem
of anthropogenic influence on different natural systems in the past and future has been
intensively investigated during last couple of decades. The overview of the main problems
and areas of investigation as well as achieved results can be found, for example, in the
IPCC Reports (e.g. McCarthy et al. [2001]). From the whole range of the climate change
impacts on the coastal zones, attention was mainly payed to the sea level change. This can
be attributed to strong sensitivity of low-lying coastal areas to even small changes of sea
level and to the fact that during past 100yr the average sea level rose by 1-2 mm/yr and
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further acceleration of this rate is anticipated (IPCC TAR 2001). In addition, the response
of the sea level on climate change is one of the most definitive results of investigated climate
change impacts, unlike other parameters, whose responses are often not so clear either for
the past observations or for the future projections, and vary for different parts of the globe.

Recently, more attention was paid to changes of regional wave and surge climate and
several scenario studies were carried out. They adhered to the generally accepted structure
where a global climate model first simulates the response of the climate system to a certain
future scenario and then the obtained data are fed into the regional atmospheric, wave or
surge models. Finally, the obtained projections are compared with the results of the same
regional model for control or present day conditions to evaluate the rate of differences which
could occur for the altered climate. Within WASA project (WASA Group [1998]) two 5-year
time-slice experiments for present climate and double CO2 conditions were carried out for
winds and waves in North Atlantic based on the results of atmospheric GCM experiments.
The extended study was made within STOWASUS-2100 (regional STOrm, WAve and SUrge
Scenarios for the 2100 century) project (Kaas and STOWASUS-Group [2001]), here two
30-year time-slice experiments were made for North Atlantic with the dynamical wave and
surge models. The control run for the period of 1970-1999 and a double carbon dioxide
run for the period of 2060-2089 were carried out. The results for wind conditions showed
increase up to 10% for the extreme wind speeds in the North Sea and the Norwegian Sea
under enhanced carbon dioxide conditions. The changes in wave climate followed from
the difference between two experiments were characterized by the increasing of average
significant wave heights by 5% at the North sea and 10% at Norwegian sea, and for extreme
waves by the increase of about 10% for the Norwegian Sea and decreasing in southwest North
Atlantic. In the study carried out by Wang et al. [2004] the scenario assessment experiments
were made with a statistical model which connected seasonal wave height fields with sea
level pressure fields for the North Atlantic. The sea level pressure fields were obtained for
three different anthropogenic emission scenarios. For all three, the projected wave heights
showed increase for northeast and decrease for southwest Atlantic for winter and fall seasons,
which corresponds to the WASA and STOWASUS findings, disregarding differences in time-
slices, projected scenarios and models. In these studies the strong dependency of the wave
statistics on the atmospheric forcing has been detected. It was also pointed out that the
uncertainties in the realizations of atmospheric fields obtained with different GCM or RCM
may cause significant quantitative differences in the projected wave statistics.

4.2.1 PRUDENCE project as the basis for the small-scale future
wave climate assessment.

Recent study of the assessment of the changes in regional atmospheric and ocean fields
due to anthropogenic climate change was carried out within the PRUDENCE (Prediction
of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and
Effects) project (Christensen et al. [2002]). The main goal of the project was the evaluation
of uncertainties for the projected atmospheric climate that occurred due to the use of
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different global (GCM) and regional (RCM) climate models. Further, the influence of the
differences in atmospheric data representation on the uncertainties for the projected regional
ocean climatology obtained with these atmospheric data was also partly investigated. A
number of experiments were performed for the project. Here the part of them related to the
atmosphere/ocean climate of the North Sea region is briefly described following the work
of Woth et al. [2005]. The set of ensemble simulations were performed with the different
RCM forced by the same General Circulation Model (HadAM3H) for ”control” (1961-1990)
and ”climate change” (2071-2100) time slices. The climate change scenario was the IPCC
A2 SRES scenario (Houghton et al. [2001]). It was revealed that 10-meter height wind
fields simulated with different RCM for the North Sea showed the general underestimation
of the upper wind speed percentiles for the control run with respect to the hindcast for
the same period. The differences between the upper percentiles of the wind speeds from
A2 SRES scenario and control run were found to be similar for different RCM simulation.
They were characterized by a slight increase of the wind speeds with respect to control
run. The maximum increase was detected for the westerly winds, for 99-th percentiles of
6-hourly wind speeds the differences vary from 1.4 to 2 m/s depending on the RCM.

The use of the regional atmospheric fields from different RCM models as the driving
forcing for the regional ocean and wave models allows for the investigation of the differences
in the response of the ocean fields to climate change in the interpretation of different
models. The study concerning the storm surges for the North Sea was carried out and
the main results can be found in Woth et al. [2005], Woth [2005]. Similar investigation of
uncertainties and changes of the wave climatology for the altered climate using different
driving atmospheric forcings is being carried out at the present time for the North Sea
region. The study is not completed yet, but some available data is used in present study to
provide the example of a local scenario study. Here, the obtained medium-scale wave data is
used for further downscaling and assessment of the changes in local near-shore wave climate
around Helgoland for the future development scenarios. The instantaneous wave fields in
5x5 km resolution (similar to the HIPOCAS fine grid data (2.1.2)) are available for the
control run (1961-1990) with present day green house gas concentrations and for A2 and B2
SRES emission scenarios for the end of the century (2071-2100) Ralf Weisse, pers. comm.).
The scenarios are described in the IPCC Special Report on Emission Scenarios (SRES;
http://www.grida.no/climate/ipcc/emission). The A2 scenario is focussed on self-reliance
and preservation of local identities, while the B2 is oriented toward more environmental
protection and social equity. The medium-scale wave datasets were obtained with the WAM
wave model driven by the results from regional atmospheric model RCAO from Swedish
Meteorological and Hydrological Institute (Döscher et al. [2002]). For the convenience
these datasets are referred later as HFC, HFA and HFB or just HF. For the assessment
of potential wave climate change for the Helgoland area this data is used together with
the linear regression downscaling technique described in 3.2.1. Three 30-year time slices
of the 6-hourly high-resolution significant wave heights were simulated with the spatial
characteristics similar to that described in 2.1.3 and referred later as LRC, LRA and LRB
datasets (linear regression control, A2 and B2). As soon as the changes in wave extremes
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are of the most importance for the coastal planning, the investigation of the wave climate
scenarios is limited to the assessment of changes for extreme wave statistics. For that the
annual 99-percentiles of SWH were extracted from the small-scale datasets and used for
further analysis.

4.2.2 Downscaling of the wave extremes vs. instantaneous wave
height downscaling.

In many studies dedicated to the investigation of regional climatology that use the
concept of statistical downscaling for obtaining the regional/local data, the seasonal or
annual statistics of the field in question is downscaled instead of the instantaneous fields
(e.g. Kushnir et al. [1997], WASA Group [1998], Wang et al. [2004] etc.). In this study
the instantaneous downscaling approach has been applied and explored following the needs
of the coastal applications and the fact that the time-series of instantaneous small-scale
and medium-scale SWH are highly correlated. In the case of the construction of long-term
scenario projections and subsequent assessment of the climate change, only statistical char-
acteristics are normally considered for the analysis. It is proposed, therefore, to apply the
downscaling procedure to the percentiles of SWH fields directly. In this section the results
of this experiment are compared to the results of instantaneous downscaling procedure.
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Figure 4.10: a) Correlation between annual 99%-tiles of SWH obtained from KMH and LP (for
details see 4.2.2). Differences in meters between mean annual 99%-tiles from b) LPH and LR for
hindcast 1958-2001, c) LPC and LRC for control run 1961-1990.

The linear regression model which connects the annual 99-percentiles of medium-scale
SWH at the location near Helgoland (the same as for simple linear regression) and the
high-resolution SWH annual 99-percentiles was constructed. The SWH fields simulated
with HF and KMH for 1958-1965 and 1990-2001 periods were used to train the model.
Due to the limited amount of data there is no possibility to separate the dataset into inde-
pendent parts for training and validation of the regression model and the cross-validation
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Figure 4.11: Statistical models and local wave datasets obtained by downscaling of different
medium-scale wave data with these models.

procedure is used instead (e.g. von Storch and Zwiers [1999]). To do so, each year was
successively excluded from the sample, for the remaining pairs of the SWH 99-percentiles
the model coefficients were fit for each location with the least squares method. Using these
coefficients high-resolution 99-percentiles of SWH for the excluded year were reconstructed
at each location. To test the skill of the fitted models, a sequence of 22 SWH 99-percentile
fields reconstructed with 22 different statistical models was obtained and correlation be-
tween reconstructed and KMH-modeled SWH percentiles at each location was calculated
(Fig. 4.10a). The coefficients of the statistical models, constructed using different subsets
of the sample, are close to each other, with the variance of the sequence of coefficients for
each location less than 0.5% of the coefficient magnitude, which means that each subset
captures the properties of the empirical distribution function of the whole sample. Finally,
the model based on the whole sample (22 years) and referred later as LP (linear regression
of percentiles) is fit and used for further SWH percentiles reconstruction. The correlation
skill score demonstrates the ability of the models built for different subsets, and to some ex-
tent the ability of the LP model to reconstruct the inter-annual SWH percentile behaviour.
For the major part of the model domain a correlation higher than 0.9 was detected. For the
area north-east of the islands the correlation between KMH and downscaled SWH annual
percentiles is higher than 0.7. This area is characterized by a weaker dependency between
used medium-scale wave parameters from HF at the location west to Helgoland and local
wave parameters. This was revealed for the peak period instantaneous values (3.3.2) and
was not so pronounced for SWH instantaneous values, for which the correlations between
HF (west location with respect to island) and KMH local values as well as between HF
west location and HF east location are higher than 0.92 (not shown). The annual SWH 99-
percentiles appear to be less dependent and correlation between HF west and east locations
is about 0.79.

The LP regression model was applied to the HF hindcast SWH data (1958-2001) and
HFC data for scenario control run (1961-1990), and obtained high-resolution 99-percentiles
are referred later as LPH (Linear regression Percentile Hindcast) and LPC (Linear regres-
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Figure 4.12: Scatter plots for annual 99%-tiles for locations P1 (a) and P2 (b): HF hindcast
vs. KMH (blue) and corresponding fit, HF hindcast vs. LR (green) and HFC control run vs.
LRC (red). c) Empirical probability density for HF instantaneous SWH from hindcast (blue) and
control run (red). d) Histograms for HF annual SWH 99%-tiles from hindcast (blue) and control
run (red).

sion Percentile Control run). In Figure 4.11 the main datasets used in this experiment are
presented. To asses the differences in representation of extreme wave statistics by instan-
taneous and direct percentile downscaling, the mean annual 99-percentiles from LPH and
LPC were compared with the mean 99-percentile values obtained from the LR and LRC
instantaneous SWH datasets for two periods (hindcast and control run). The results of the
comparison are shown in Figure 4.10b,c. For the hindcast the models demonstrate rather
similar results with differences less than 0.05 m for the most of the area. No systematic
bias between LR and LPH percentile representation attributed to the methods and inde-
pendent on the location were detected. For the control run, the differences become more
pronounced and the distinct areas of positive and negative relations can be detected. For
the north-eastern part of the model domain the direct downscaled percentiles are higher
than the percentiles obtained from instantaneous SWH fields, with maximum difference
about 0.4 m, and for the south-eastern part the direct percentiles are underestimated with
maximum differences less than 0.2 m. The spatial patterns of the differences for the hindcast
and control run are different.

The changes in percentile distribution for the control run climate with respect to the
hindcast are considered as one of the reasons for the increased discrepancy between LR and
LP model results. To investigate this problem closer the normalized empirical distribution
densities of the instantaneous HF SWH were built for the hindcast (1958-2001) and the
control run (1961-1990) (Fig. 4.12c). The shape of the SWH probability density is similar
for both periods, with the tendency towards the smaller wave heights for the control run.
This corresponds with the findings of Woth et al. [2005] concerning the underestimated
representation of the wind speeds over the North Sea region, which causes the underes-
timation of the wave heights. Nevertheless, the significant wave heights for two periods
vary approximately within the same interval and the downscaling LR model fitted with one
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dataset (here hindcast) can be successfully applied to the downscaling of the other (control
run). For the same two periods the histograms of the annual 99-percentiles of HF SWH
were constructed (Fig. 4.12d). The distributions of percentiles demonstrate significant dif-
ference and the control run extreme waves appears to be much lower than the hindcast data.
This is consistent with the differences found for the instantaneous SWH distributions, but
in contrast to the instantaneous SWH statistics, the annual percentile values have only a
slight overlap for two considered periods. The LP model was fit to the hindcast dataset and
showed good skills in representation of the SWH percentiles from the same distribution.
However, it has limited, if any, skill in the representation of the SWH percentiles from the
control run distribution.

To illustrate the uncertainty of the downscaling results obtained with the model which
was fit and applied to differently distributed data, the annual SWH 99-percentiles from two
periods were compared for the example locations P1 and P2 (for locations see Fig. 4.10c).
For these locations the largest positive and negative differences between LRC and LPC 99-
percentiles were detected. In Figures 4.12a,b the scatter plots of the medium-scale HF and
high-resolution KMH hindcast (1958-1965,1990-2001) are shown, this is the data used for
the LP model construction. Thus, all 99-percentiles obtained with LP model for any period
and these location have to lie close to the shown linear curves. For comparison the scatter
between HF and LR hindcast (1958-2001) are shown, the LR percentile representation
only slightly differs from KMH. The last group of data is the HFC control run annual
percentiles versus LRC 99-percentiles. The ”control run” pair follow the linear pattern
of the ”hindcast LR” as soon as the same model is used for their reconstruction. The
differences presented in Figure 4.10b,c are basically explained by the discrepancy between
the linear fit of HF-KMH percentiles and the HF-LR instantaneous fit, which appears to
be lower for the hindcast and larger for the control run. The absence of the high-resolution
99-percentile data correspondent to the HF wave heights of the 3-4 m magnitude gives no
opportunity to fit the LP model properly for all the range of the driving (HF) SWH data,
as well as no ability to check if the modeled with existed LP model percentiles are adequate
for the control run period.

4.2.3 Future climate projections

Due to the uncertainties detected for the LP downscaling model in the representation of
the wave statistics, projections for the future climate change scenarios are built using the
linear regression for instantaneous SWH and the analysis is based on this data only. The
mean of annual 99-percentiles of SWH obtained for the A2 and B2 scenarios with linear
regression model (LRA, LRB) are compared with the mean of 99-percentiles for control
run (LRC). The estimated differences between extreme wave SWH for the altered climate
with respect to present one are shown in Figure 4.13a,b. For comparison the analogous
differences for the medium-scale SWH were obtained for the German Bight (Fig. 4.13c,d).
Here the annual 99-percentiles were calculated from the HF data. The projected mean
SWH percentiles are higher for both scenarios with respect to control run for the most
part of the bight. The maximum positive differences of about 20 cm can be detected in
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scenarios and control runs a) with the LR model for the A2 SRES scenario, b) with the LR model
for the B2 SRES scenario, c) with the HF model for A2 d) with the HF model for B2.

the northern part of the bight. That is about 5% of the control run mean 99-percentiles.
At the same time the differences are negative along the southern coastline, where the
projected SWH extremes are lower than the extremes from the control run. The maximum
negative difference is about 15 cm. For the area around Helgoland the extreme wave
heights for both scenarios appear to be higher than the control run results. The differences
for the area to west from the island reach 13-15 cm and for the eastern part they are
about 5-8 cm (Fig. 4.13c,d). For the high-resolution wave representation (Fig. 4.13a,b) the
spatial distribution of the differences between the scenarios and the control run has similar
structure, but they are more detailed and variable with respect to the regional case. Thus,
the area of very low increase or even decrease of the SWH 99-percentiles for the scenario
A2 can be distinguished to the north-east from the island. For the B2 scenario this area
is also characterized by smaller differences between the scenario and the control run. The
maximum local differences can be found for the A2 scenario in south-eastern part of the
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area. They reach 16 cm, that is about 6% of the mean SWH 99-percentiles from the control
run. This corresponds to the regional picture of the wave extremes (Fig. 4.13c), where the
area to the south-east from the island is also characterized by the larger scenario/control
run differences with respect to nearby locations.

The differences between two scenarios can be seen for the regional and the local wave
representations. The significance of these differences was tested for the local and regional
data separately. The next hypothesis was tested for each location: the means of the annual
SWH 99-percentiles from the A2 and B2 scenarios can not be distinguished. The standard
T-test was applied and it appeared that the hypothesis can not be rejected for all locations
of the regional as well as of the local wave height projections. This means, no clear statistical
distinction between the A2 and B2 SRES scenarios for the SWH extremes is possible. This
corresponds to the findings of Woth [2005] for surge residuals, where no significant difference
was found between two scenarios based on HadAM3H GCM.

The next considered question is how the projected changes in local wave climate caused
by the anthropogenic climate change correspond to the actual changes detected for the last
decades. It is not completely valid to compare the inter-annual trends obtained for the
hindcast with the absolute differences between the time-slice data for the scenarios, but the
spatial distribution of the changes and a rough approximation of the trends for the annual
99-percentiles can be justified. The projected changes are lower and have slightly different
spatial pattern in comparison with the changes for the past wave climate (Fig. 4.6). Thus,
for the hindcast the magnitude of SWH changes decreases from the west to the east, while
for both scenarios the decrease in the north-east direction was detected. The largest changes
for the proposed scenarios are about 16 cm. Looking at the largest annual changes for the
hindcast, that are about 1.8 cm yr−1, it can be estimated that the changes of magnitude
16 cm can be expected after approximately 9 years, if the similar tendency would be held.
At the same time the scenarios are constructed for the end of the century. Different nature
of the changes of SWH extremes for the scenarios and the hindcast could cause the shown
discrepancy. The anthropogenic influence is the crucial reason for the changes projected
by the scenarios. For the hindcast the reasons are not so clear. Here the high increasing
trends can be partially explained by the choice of the period considered for the analysis
(see 4.1.1).

The estimated differences between the scenario and the control run for the SWH ex-
tremes appear to be lower than the differences obtained and shown in other works dedicated
to the scenario studies, for example in the STOWASUS-2100 project. There the estimated
differences for the 99-percentiles of SWH between the scenario and the control run were
about 25-50 cm for the North Sea region. One reason for the differences can be the formula-
tion of the used in STOWASUS-2100 scenario, which differed from the scenario used in this
study (double CO2 vs. A2 SRES). Other reasons include the use of different GCMs, RCMs
and coarser resolution used for the wave simulations in the STOWASUS-2100 project with
respect to HF and LR models (75 km vs. 5 km and 100 m).

Finally, it should be pointed out that in this study only one realization for each of
two scenarios was shown. It is important to produce the assessments of local wave cli-
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mate changes for the entire range of obtained with different RCM/GCM regional atmo-
sphere/ocean data for different scenarios. This provides the opportunity of evaluating the
uncertainty level of the projected local wave climate response to different realizations of
global climate change scenarios and on different scenarios themselves. However, the task is
beyond the scope of this study, it is proposed as further step towards the evaluation of the
local near-shore wave climate for the future and assessment of potential local changes due
to different rates of anthropogenic activities.

4.3 Summary

Summarizing results for the wind and wave hindcast for the last four decades, significant
increase of the wind speeds and the increase of the number of westerly winds for the medium
as well as for extreme wind events was found for the Helgoland region. Significant upward
trends were detected for annual medium and upper percentiles of the regional and local SWH
fields. The magnitude of the trends is dependent on the location and wave height with a
general tendency for higher waves and larger trends for the area west from Helgoland and
lower waves and trends east of the island. The maximum trend for the 99-percentile revealed
from local LR data is about 1.7 cm yr−1, which corresponds with the trends obtained from
the medium-scale HF wave data for the Helgoland. The wave direction statistics for the
high waves remains unchanged during last decades. The spatial pattern of the prevailing
wave directions for the deep water part of the area is mainly influenced by westerly wind
conditions, for the near-shore zone the shallow water processes are dominating the wave
direction development.

The trends for the extreme wave and wind events were found to be significantly positive
for the examined period, however, their nature was not clearly identified. The analysis
of regional wind and wave statistics for longer periods, carried out in earlier studies (e.g.
Alexandersson et al. [1998], Bärring and von Storch [2004]) for the North Sea region, has
shown no significant changes for the last decades with respect to the beginning of the
century. In this way, the trends for the wave extremes found in this study can be rather
attributed to the inter-decade variability than considered as climate change signal. If for
the assessment of future wave climate the wave data from the only last 40 years is used, it
can cause artificial increase in intensity and frequency of estimated wave extremes.

The future local wave climate was evaluated based on two approaches. The first one is
the extreme value analysis, which allows the assessment of the return values and periods for
the wave heights and considers only past wave statistics but not the trends for the extreme
events. Here no assumptions about the directions of future global or local development
were made. The second approach was the scenario study. The past wave climate was not
considered here, instead, the scenarios for the future climate which undergone different
degrees of anthropogenic influence were elaborated. The results of the first type of the
future climate analysis can be used directly for the engineering purposes as soon as they
summarize to great extent the knowledge about the realistic local wave climate. The second
approach gives rather the assessment of the potential and often extreme changes in wave
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climate. This helps to evaluate the range of possible responses of the system on the external
perturbations.

In this work the examples of the local and regional wave responses were examined. One
of the goals of this experiment was to test whether there is a need for the local wave climate
scenario studies or if local changes simply replicate the regional ones. This seems not to
be the case and Figure 4.13 demonstrates, in particular, the impact of the local structure
on changes of wave extremes. The other aim of the experiment was to demonstrate the
applicability of the statistical-dynamical methodology to such problems. It appears that,
although, in general, the local changes associated with the scenarios follow the regional
rate of changes, the more detailed representation of the local wave climate changes can be
obtained with the proposed downscaling method. The consideration of further scenarios and
different realizations of each scenario is needed to provide the comprehensive picture of the
potential changes in local wave statistics. The reasonable computational resources required
for the multi-decade simulations with the proposed method allow for the consideration of
as much scenarios or scenario realizations with different RCM as necessary.
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Chapter 5

Conclusions and Discussion

In this study the problem of long-term near-shore wave data localization was investigated
with the main goal to provide the tools for the simulation or extraction of high-resolution
wave statistics and to analyze the obtained wave climatology for the example Helgoland
island area. The idea of downscaling of medium-scale wave hindcast for obtaining local
wave statistics was elaborated. The application of the dynamical wave model to the task
was successful, but due to computational constraints an alternative approach was devel-
oped. The combination of the statistical downscaling model and dynamical wave model was
proposed for obtaining instantaneous local wave fields from medium-scale data. Using the
statistical-dynamical method, the high-resolution wave statistics for Helgoland surround-
ings were obtained for the last four decades, thus providing the source of data for various
coastal applications. The results concerning each part of the study were summarized after
the corresponding chapters. Here the outline of the work as well as the possible directions
of further investigation and development are discussed.

• The dynamical K-model was set up for the Helgoland area using the medium-scale
wave data as the boundary conditions. The test runs showed the practical difficulty
of the multi-decade simulations of high-resolution wave data because of the large
computational resources required by the model. After producing a series of model
modifications, the local wave hindcast was obtained with the K-model for 22 years.
It was concluded that the multi-decade high-resolution wave simulations are hardly
feasible at the present state of affairs. Further improvements of the model effective-
ness and significant increase of the available computational resources are needed for
successful application of the spectral wave model for the long-term high-resolution
wave hindcasts and especially for scenario studies, where the multiple multi-decade
simulations are often required.

• The results of the K-model local wave simulations were compared with measure-
ments at two locations. The model demonstrated good skills in representation of
such instantaneous wave parameters as significant wave height, peak period and wave
direction with the tendency to overestimate SWH for high waves. For the wave statis-
tics for longer periods a good agreement with observations was also found, although,
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an overestimation of high waves was detected. This was mainly attributed to the
overestimated high waves provided by boundary conditions. Thus, it was pointed out
that the quality of the local wave statistics obtained with dynamical wave model was
strongly dependent on the quality of the regional wave data used as corresponding
boundary conditions. The lack of observational data in different parts of the modeled
area and especially near the shore makes difficult any categorical conclusion about the
quality of the model results at each location. At the same time, most of the spatial
and temporal features of the simulated local wave fields can be reasonably explained
by local physical processes like shoaling, bottom dissipation and current influence.
Finally, the agreement with available measurements, successful K-model performance
for another near-shore area and adequate behaviour of the modeled wave parameters
suggests that the K-model wave simulation is realistic and appropriate for the use as
the substitute for reality further in the study.

• The added value obtained by the local wave modeling with respect to the origi-
nal medium-scale data has been assessed. It was demonstrated that the HIPOCAS
medium-scale wave data is adequate for the general representation of the near-shore
wave statistics. The spatial features in wave statistics attributed to the high-resolution
bathymetry, coastline shape and local processes are not reproduced and can not be
directly extracted from the medium-scale dataset. It was concluded that additional
elaboration of the medium-scale wave data was required for obtaining adequate local
wave statistics and one of successful methods for such localization procedure is the
dynamical wave modeling.

• The combination of dynamical and statistical approaches to the downscaling of medium-
scale wave data was proposed as a faster alternative to the purely dynamical method.
Three statistical models were built approximating the relation between instanta-
neous medium-scale and dynamically obtained local significant wave heights. All
three methods showed good skills in the representation of the wave height statistics,
their results were comparable with the dynamically obtained results for long-term
wave statistics and significantly improved the medium-scale data. That means most
information about the local wave statistics was contained in the regional data and
time-independent local features such as bathymetry, whereas the variable in time local
fields such as currents or water level change played only a minor role in the formation
of local wave statistics. Several issues concerning the methods have been addressed
in the study and linear regression was chosen as the optimal statistical model for
further experiments. Although suffering from some uncertainties and limitations, the
statistical-dynamical model has an irrefutable advantage of short computational time
since the model is built for a certain area. The question of the applicability of the de-
scribed method for other coastal areas has been discussed and no principal objections
were found, except that the considered area should have the connection to the open
sea and, at least partially, be dependent on the regional wave climate. Of course, in
each case the peculiarities of the area should be additionally considered.
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• Linear regression method, in combination with the dynamical wave model, allowed
the production of a 44-year high-resolution wave hindcast for the Helgoland area,
providing the wave statistics with the quality required by numerous coastal appli-
cations. The analysis of the past wind and wave statistics showed that, in general,
regional and local wave extreme events occurred under the westerly wind conditions.
During the last decades there has been a slight, but statistically significant, increase
in the intensity and frequency of westerly winds. Positive linear trends were revealed
for annual extreme and mean wave heights on both regional and local scale, which
corresponds with the results from earlier studies for the south-eastern North Sea (i.e.
WASA Group [1998]). Although the general behaviour of annual wave extreme statis-
tics was similar for the medium-scale and local data, the magnitude of the local wave
extreme events as well as the rate of the inter-annual trends for high-resolution wave
data differed significantly within the model domain, demonstrating the significance
of local effects for the wave statistics. The reasons for the intensification of the storm
events in German Bight for the last four decades are not completely clear. The as-
sessment of the return values for the local wave heights was made based on the past
wave statistics using the extreme value analysis. This method does not consider any
inter-annual trends for the wave extreme events and, thereby, the nature and the
direction of the trends are not important for this type of the analysis.

• The problem of the local system response to anthropogenic climate change was par-
tially considered in the study by the localization of two global change scenarios. The
proposed statistical-dynamical methodology was tested for this application and it was
found that the downscaling of the instantaneous wave parameters is more robust in
the altered climate environment than the downscaling of the annual extreme wave
statistics. The analysis of the projected local and regional instantaneous wave data
showed the increase of the magnitude of wave extreme events for the most part of
the German Bight, with the maximum difference between the altered and the present
date climate of about 20 cm for the SWH 99-percentiles. At the same time, the areas
of the wave height decrease were detected for the southern coastline of the German
Bight. The differences between two SRES scenarios were found to be insignificant. It
was pointed out that for the adequate evaluation of the possible future responses of
the local wave climate it is important to consider the full range of regional scenarios
obtained with different RCM, which gives the estimation of the uncertainty level for
the wave climate projections.

Further development of the proposed statistical-dynamical methods or the consideration
of the other methods within the presented concept, depending on the particular application,
may be the next step towards obtaining of the more accurate and comprehensive local wave
data. The longer local wave hindcast and the consideration of various climate change
scenarios are supposed to improve the description of the long-term variations of the local
wave statistics. This helps to understand the mechanisms governing these perturbations and
to reveal the role of the anthropogenic influence on the local waves and wave extreme events.
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Consequently, the more confident evaluation of the future wave climate is possible, which
allows the better adaptation of the coastal areas to the estimated future wave conditions
and the better grounded policy making for the present day global and regional development.
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Appendix A

Techniques for variability analysis

A.1 Empirical Orthogonal Functions

The Empirical Orthogonal Function (EOF) analysis allows determination of main pat-
terns of variability of statistical fields. Usually, a m-dimensional vector ~xt = {x1(t), . . . , xm(t)}
is considered and one needs to identify simultaneous variations of the components of the
vector. The anomaly vector

~x
′
t = ~xt − ~µ (A.1)

is formed to describe the these variations. Here ~µ is estimate of the mean. Then anomalies
are expanded into a finite series

~x
′
t =

k∑
i=1

αi,t
~ei. (A.2)

The patterns ~ei are called Empirical Orthogonal Functions, they are chosen to be orthogonal
and to minimize the error

∑
t

(~x
′
t −

k∑
i=1

αi,t
~ei)2. (A.3)

The time coefficients αi,t are called EOF coefficients or principal components. They are ob-

tained by projecting the anomalies ~X
′
t onto the patterns ~ei. In addition, optimal coefficients

satisfy: ∑
t

αi,tαj,t = 0, i 6= j. (A.4)

The procedure for determination of EOFs for an arbitrary field is summarized in the next
theorem.

Theorem. Let ~X be m-dimensional vector with mean ~µ and covariance matrix Σ.
Let λ1 ≥ λ2 ≥ · · · ≥ λm be the eigenvalues of Σ and let ~e1, . . . , ~em be the corresponding
eigenvectors of unit length. Since Σ is Hermitian, the eigenvalues are non-negative and
the eigenvectors are orthogonal. Then The k eigenvectors that correspond to λ1, . . . , λk
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minimize

εk = E(‖( ~X − ~µ)−
k∑

i=1

〈 ~X − ~µ, ~ei〉~ei‖2) (A.5)

and the next relations are valid:

εk = V ar( ~X)−
k∑

i=1

λi (A.6)

V ar( ~X) =
m∑

i=1

λi. (A.7)

The eigenvectors of the covariance matrix are taken as empirical orthogonal functions.
The variance of ~X is split into m components associated with the EOFs ~ei. The variance
explained by the kth component with respect to the total variance is λk/

∑m
i=1 λi. Usually,

the components are ordered by the size of eigenvalues. In this case the first component
represents the major part of variance among all the others, the second one represents the
second significant variance and so on. The main part of the variance of the field can often
be explained by k EOFs, where k ¿ m. This allows the approximation of the field by
truncated sum of only k EOFs with an error not less than εk.

A.2 Canonical Correlation Analysis

The Canonical Correlation Analysis (CCA) is used for the study of the simultaneous

variability of two dependent statistical fields. Let ~X be an m-dimensional vector and ~Y
be an n-dimensional vector. For the CCA one seeks such vectors ~fX and ~fY that for
βX = 〈 ~X, ~fX〉 and βY = 〈~Y , ~fY 〉 the correlation

ρ =
Cov(βX , βY )√

V ar(βX)V ar(βY )
=

~fT
XCov( ~X, ~Y ) ~fY√

V ar(〈 ~X, ~fX〉)V ar(〈~Y , ~fY 〉)
(A.8)

is maximized. In addition, the normalization of ~fX and ~fY is chosen:

V ar(〈 ~X, ~fX〉) = 1 (A.9)

V ar(〈~Y , ~fY 〉) = 1. (A.10)

Then the correlation has a form:
ρ = ~fT

XΣXY
~fY (A.11)

where ΣXY is the cross-covariance matrix of the vectors ~X and ~Y . After solving the
maximization problem for A.11 the vectors ~fX and ~fY can be found as eigenvectors of
the matrices Σ−1

XXΣXY Σ−1
Y Y ΣT

XY and Σ−1
Y Y ΣT

XY ΣXXΣXY accordingly. Together with them
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the first pair of canonical correlation coordinates βX and βY and correlation ρ =
√

λ are
found. Here λ is the largest eigenvalue of both matrices.

Similar method allows the derivation of the next k = min(m,n) patterns ( ~f i
X , ~f i

Y ),
canonical coordinates and corresponding correlations ρi in such a way, that the canonical
coordinates are uncorrelated, i.e. Cov(βX

i , βX
j ) = Cov(βY

i , βY
j ) = 0 for i 6= j. They are

ordered according to the value of the correlation. Finally, the canonical correlation patterns
~F i
X and ~F i

Y are defined as the columns of the matrices ΣXXfX and ΣY Y fY . Here fX , fY are

matrices containing vectors ~f i
X and ~f i

Y as columns. The original fields can be represented
as

~X =
∑

i

βX
i

~F i
X , ~Y =

∑
i

βY
i

~F i
Y . (A.12)

If the fields were first transformed with EOF analysis and thus can be approximated by kX ,

kY EOF patterns and EOF coefficients, then for the CCA the vectors ~X ′ = (αX
i , . . . , αX

kX
)

and ~Y ′ = (αY
i , . . . , αY

kY
) are used instead of original fields. This simplifies the CCA proce-

dure significantly if kX ¿ m and kY ¿ n.



88 A Techniques for variability analysis



Appendix B

List of acronyms

BAW Bundesanstalt für Wasserbau
(Coastal Division of the Federal Engineering and Research Institute)

BSH Bundesamt für Seeschiffahrt und Hydrographie
Federal Maritime and Hydrographic Agency

CFL Courant-Friedrich-Levy criterion
DE1, DE2 Düne island position (Fig. 2.1)
DKRZ Deutsches Klimarechenzentrum Hamburg
DWP deep water buoy position (Fig. 2.1)
EOF empirical orthogonal function
ERS2 European Remote Sensing satellite (Bonicel et al. [1997])
GCM General Circulation Model
GFZ-Potsdam GeoForschungsZentrum Potsdam
HH1, HH2 Helgoland harbor position (Fig. 2.1)
HIPOCAS Hindcast of Dynamic Processes of the Ocean and Coastal Areas

of Europe (Soares et al. [2002])
HYPAS shallow-water version of HYbrid PArametrical wave model

( Günther and Rosenthal [1985]
IPCC Intergovernmental Panel on Climate Change (www.ipcc.ch)
LNA Lange-Anna position (Fig. 2.1)
NCEP National Center for Environmental Prediction
PRUDENCE Prediction of Regional scenarios and Uncertainties for Defining

EuropeaN Climate change risks and Effects project
(Christensen et al. [2002])

RCAO Rossby Centre regional Atmosphere-Ocean model (Döscher et al. [2002])
RCM Regional Climate Model
rms root mean square error
SRES Special Report on Emissions Scenarios
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STOWASUS-2100 Regional STOrm, WAve and SUrge Scenarios for the 2100 century
(Kaas and STOWASUS-Group [2001])

SWH significant wave height
TOPEX satellite altimeter data from the TOPography EXperiment

for Ocean Circulation mission Schöne et al. [2000]
WAM third generation WAve Model (WAMDI Group 1998)
WaMoS Wave and Surface Current Monitoring System radar

(Hessner et al. [2001])
WASA Waves and Storms in the North Atlantic (WASA Group [1998])

.




