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ABSTRACT 

2-mercaptobenzothiazole (MBT) and 1,2,3-benzotriazole (BTA) are very promising inhibitors 

for the corrosion protection of aluminum alloys. These inhibitors can be incorporated in 

protective coatings in the form of anions intercalated into interlayers of layered double 

hydroxides (LDHs). Capacity and performance of such LDH-nanocontainers depend on the 

arrangement of the anions in their interlayers. In this work, intercalation of MBT- and BTA- 

into Mg-Al-NO3 and Zn-Al-NO3 LDHs were studied in detail using X-ray diffraction (XRD) 

methods including in situ XRD. The nitrate-to-MBT(BTA) anion exchange is much faster than 

considered previously. Well-formed Mg-Al-MBT, Zn-Al-MBT, Mg-Al-BTA LDHs were 

obtained after a 20-min exchange reaction at pH 11.5 at room temperature. It was demonstrated 

that Zn-Al-BTA LDH cannot be obtained under the same conditions due to the reaction 

between BTA and the Zn-Al hydroxide layers. Substitution of nitrates by organic anions occurs 

with the participation of hydroxide anions. Although no intermediate LDH phase intercalated 

with the combination of NO3
- and OH- appears, formation of the LDH-MBT and LDH-BTA 

phases results also in appearance of an LDH phase intercalated with OH- at the final stage of 

the anion exchange. In the LDH interlayer, MBT- and BTA- form a double layer in which these 

species have a tilted orientation against the layer plane (herringbone-like arrangement). Such an 

arrangement meets the LDH layer-interlayer electroneutrality and matches well with the 

observed values of the layer-interlayer distance.   
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INTRODUCTION 

Nowadays, a great attention is given to the development of new protective materials that can 

replace toxic chromium (VI) compounds as effective corrosion inhibitors for aluminum alloys. 

A variety of new organic and inorganic compositions has been proposed and optimized for 

application in protective coatings [1,2]. It was shown that some of those inhibitors can be used 

more effectively and safely (both for the coatings and for the environment), if they are 

intercalated in their anionic forms into the solids with anion-exchange ability such as layered 

double hydroxides (LDHs) [3,4,5].  

LDHs are typically composed of positively-charged mixed metal MII-MIII hydroxide 

layers and interlayers occupied by anions (Ay-) and water molecules. The general formula of the 

most common LDHs can be represented as [MII
1-xMIII

x(OH)2]x+(Ay-)x/y·zH2O [6,7]. LDHs are 

typically characterized by hexagonal symmetry with the c-axis perpendicular to the layers. 

Parameter a is a function of both size and ratio of cations MII and MIII, while parameter c 

depends mainly on size, charge and orientation of the intercalated species. The intercalated 

anions are arranged in the interlayer to compensate the charge of the hydroxide layer (which is 

+xe per formula unit, where e is the elementary charge). Small anions with relatively high 

charge density are generally the most preferable; nevertheless, LDHs can be intercalated with 

low-charge large anions (including organic species) [6,7,8]. Miyata [9] has demonstrated that 

CO3
2- leads a series of inorganic anions in terms of the preference for intercalation. NO3

- which 

is almost equal in size but with half charge of carbonate is at the end of this series. Therefore, 

nitrate-containing LDHs are commonly used as parent compounds for further intercalations: 

LDH-nitrates of various cationic compositions can be easily synthesized and then intercalated 

with a desired anion through anion exchange reactions. The corrosive anions Cl- and SO4
2- are 

about in the middle of the anionic exchange preference series [9].

The protective action of LDHs loaded with inhibiting anions is based on the anion-

exchange reaction induced by particular triggers, such as a change in pH and/or an appearance 

of the corrosive anions. Then the LDH nanocontainers release inhibitors and absorb those 

anions [3,4,10]. It has been demonstrated that Mg-Al and Zn-Al LDHs intercalated with 2-

mercaptobenzothiazole (MBT) provide such an active protection effect [3]. The allied 

heterocyclic compound – 1,2,3-benzotriazole (BTA) – was later found to be an effective 

corrosion inhibitor as well [11]. A successful application of LDH intercalated with BTA for 

protection of aluminum alloy AA6061 has recently been reported [12]. As it often happens, the 

functionality of new protective materials was demonstrated before their fundamental 

characteristics (crystal structure, anion-exchange capacity, etc.) are studied. Meanwhile, such a 
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study is basic for optimization of the preparation procedure and the application ways. Both the 

LDH nanocontainer capacity and the anion-exchange behavior in various corrosive media 

depend on the manner how inhibiting anions are arranged in the interlayers.  

It is generally easy to determine the anion arrangement in the case of intercalation of 

simple, monoatomic, and high-symmetry anions with a relatively high charge density: the 

interlayer height is usually equal to the minimal dimension of the anion [13]. The task is more 

complicated when the intercalated anion trends to the formation of polytypes [14,15,16]. 

Determination of the interlayer arrangement of large anions with a relatively low charge 

density (which is typical of organic species) is not straightforward. Organic anions usually form 

complex configurations of species tilted against the layer plane [7,8].  

A similar arrangement behavior seems to take place in Mg-Al and Zn-Al LDHs 

intercalated with MBT: the interlayer height calculated from the position of the diffraction 

reflections in the XRD patterns exceeds the maximum size of MBT anion [3]. Besides, a 

second LDH phase which could not be associated with the parent LDH-nitrate was found to be 

always present in the as-prepared material along with the main LDH-MBT phase. It has been 

suggested that these two phases with different basal spacings (distances between the double 

metal hydroxide layers, d) correspond to two particular orientations of MBT anion in the 

interlayers; however, this issue has not been thoroughly considered [3]. As regards the BTA-

containing LDHs, no crystal structure characterization has been reported yet. MBT and BTA 

anions are very similar in terms of the chemical structure. Hence, one can suggest that, in the 

LDH interlayer, these species are arranged in the same manner. On the other hand, the fixed 

difference in their linear dimensions can be used as a measure when comparing the basal 

spacings values of the same LDHs intercalated with either MBT- or BTA-.  

Intercalation of organic anions into LDHs was studied by O’Hare et al. through the time-

resolved in-situ diffraction experiments using both laboratory and synchrotron x-ray facilities 

[17,18,19]. During some intercalation reactions, a second LDH phase with a small d was 

observed and associated with the tilted orientation of organic anion and grafting into the 

hydroxide layers. 

In this work, methods of x-ray diffraction (XRD) including in situ XRD were applied to 

study in detail the processes that occur at different stages of intercalation of either MBT- or 

BTA- into Zn-Al-nitrate and Mg-Al-nitrate LDHs. Based on a comparative analysis of the XRD 

patterns, the arrangement of these organic anions in the LDH interlayers was modeled.  

 

EXPERIMENTAL 
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Materials 

Zinc nitrate hexahydrate (≥99.0%), aluminum nitrate nonahydrate (≥98.5%), magnesium nitrate 

hexahydrate (99%), sodium hydroxide (≥98%), sodium nitrate (≥99.5%), sodium carbonate 

(>99.95%) and 2-mercaptobenzothiazole (97%) were purchased from Sigma-Aldrich, while 

1,2,3-benzotriazole, (>99%) was purchased from Riedel-de-Haën. Nitric acid (65%) was 

purchased from Merck. All the chemicals were used as received without further purification.  

 

Preparation of the LDH compositions  

The parent LDH compositions, Mg-Al-nitrate and Zn-Al-nitrate, were synthesized based on the 

previously described experimental procedure [3]. This procedure was optimized in order to 

improve both the reproducibility of the synthesis and the final product quality. The syntheses, 

hydrothermal treatment, intercalation reactions and drying procedure were carried out under a 

nitrogen atmosphere. All solutions were prepared in decarbonated water. Proportions of the 

reagents used were to meet the 2:1 ratio of Mg/Al (Zn/Al). A solution containing 0.5M 

Mg(NO3)2·6H2O (or Zn(NO3)2·6H2O) and 0.25M Al(NO3)3·9H2O (200 ml) was instilled to a 

1.5M NaNO3 solution (400 ml) under continuous stirring and N2 flow at room temperature. 

This procedure took about 90 minutes. During the reaction, pH of the mixture was controlled to 

be between 7 and 9 by addition of a 2M NaOH solution. Then the obtained suspension (pH 9-

10) was kept in a water bath at about 100°C for 4 h to complete the crystallization. After this 

hydrothermal treatment, the suspension was centrifuged at 104 rpm for 90 s. The resulting 

dense slurry was washed with deionized water (in proportion of about 20 ml for 4 g of slurry) 

and centrifuged. This procedure was repeated three times. Such LDH slurry was estimated to 

contain about 85% of water.  

The obtained Mg-Al-nitrate and Zn-Al-nitrate LDHs were intercalated with either MBT 

or BTA through anion exchange in a 0.1M solution of the respective organic compositions. In 

order to dissolve MBT and BTA and produce their anionic forms, the pH of the solution was 

adjusted with NaOH to 11.5±0.1. In the anion exchange reaction, 13 g of the LDH slurry were 

mixed with 100 ml of the MBT (BTA) solution. The mixture was stirred for 24 h at room 

temperature. Then the slurry was centrifuged and washed in the same manner as described 

above. In order to clarify pathways of the nitrate-to-MBT(BTA) substitution reaction, 

supplementary anion-exchange experiments were carried out. The descriptions of these 

experiments are given in Results and Discussion.  
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Certain amounts of the obtained LDH materials both before and after the anion exchange 

procedures were dried at 60ºC for 6 h and used for further characterization along with the slurry 

samples.  

Characterization techniques 

Morphology of the LDH powders was characterized using a Hitachi S-4100 scanning electron 

microscope (SEM) with an electron beam accelerating voltage of 25 kV and a beam current of 

10 μA. 

An inductively coupled plasma (ICP) spectrometer (Horiba Jobin Yvon Ultimata2CTM) 

was used for chemical analysis of the parent LDH compositions. The samples were dissolved in 

a 0.1M HNO3 solution and analyzed with a solution flow of about 3 ml/min. The spectral lines 

of 167.02, 213.84 and 279.55 nm were used for estimation of Al, Zn and Mg content, 

respectively.  

Phase content and crystal structure of the samples were characterized using a PANalytical 

X’Pert Powder diffractometer (Ni-filtered Cu Kα radiation, Theta-Theta goniometer in the 

reflection mode, PIXcel1D detector, step 0.02o, exposition time ~1.5 s per step) at room 

temperature. Theta-Theta goniometer provides for horizontal position of a sample surface 

during an XRD scan and thereby allows to measure liquid samples. The measurements were 

performed using Spinner Sample Stage (a sample rotation of 4 s-1). A zero-background holder 

made of obliquely cut Si crystal was used for powder samples. A standard steel holder with the 

cover ring of 16 mm in diameter and about 1.5 mm thick was applied for slurries. The obtained 

data were refined by the Rietveld method using the FULLPROF in the profile matching mode 

[20].  

In situ study of the anion-exchange reactions (NO3
-→ MBT- and NO3

-→ BTA-) was 

performed on slurry samples of the parent LDHs-nitrates. The cover ring of the standard steel 

sample holder was filled with the LDH slurry and put on the top of an open 20 ml cylindrical 

container with 0.1M MBT(BTA) solution at pH 11.5±0.1 (Scheme 1). The bottom surface of 

the slurry contacted the solution through a permeable film (approx. three 0.1 mm holes per 1 

mm2). A magnetic stirrer provided a continuous agitation of the solution in the vicinity of the 

solution-slurry interface. The assembly was placed on a Multi-Purpose Sample Stage (MPSS) 

and aligned to position the horizontal surface of the slurry in the center of goniometer. The 

measurements were performed in a Static Mode: 30 s per scan; 2 min dwell between scans.  
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Scheme 1. Anion-exchange cell used in the in situ XRD study: LDH slurry (1), cover ring (2), 
permeable membrane (3), a Na-MBT (Na-BTA) solution (4), magnet (5), magnetic stirrer (6), 
MPSS (7).  
 

 

RESULTS AND DISCUSSION 

Phase content and chemical composition of the prepared LDHs  

The XRD patterns of the parent LDHs-nitrates and the compositions intercalated with either 

MBT or BTA are shown in Figures 1 and 2. The diffraction reflections typical of the LDH 

structure are seen in all the patterns. Analysis has revealed that the parent compositions 

correspond to the single-phase Mg-Al-NO3 and Zn-Al-NO3 LDHs. The crystal structures of 

these compositions were successfully refined using the rhombohedral 3R m  space group1. The 

calculated values of the lattice parameters were c= 2.682 nm and a=0.3042 nm (Mg-Al-NO3), 

and c= 2.673 nm and a= 0.3070 nm (Zn-Al-NO3). The relative errors in determination of the 

parameters c and a were 0.1 % and 0.07 %, respectively.  

As regards the LDH phases obtained as a result of the anion-exchange reactions, the 

diffraction reflections of the (00l) family in the XRD patterns of Mg-Al-MBT and Mg-Al-BTA 

(Figure 1), and Zn-Al-MBT (Figure 2) turned out to be shifted to a lower-angle range 

indicating a considerable increase in the basal spacing values as compared with the respective 

values for the parent LDH-nitrates. These LDHs phases were the only phases found in the XRD 

patterns of the obtained compositions. No traces of the parent LDHs were detected. Therefore, 

it has been concluded that the substitution of nitrates by the organic anions was complete.  

The anion exchange reactions were revealed to cause no change in positions of the (110) 

diffraction reflections (Insets in Figures 1 and 2). Since a=2d(110) and depends on the Mg/Al 

                                                           
1 The XRD patterns of all the LDH compositions studied in this work were indexed in a three-layer 3R polytype 
[21,22].  

θ
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(Zn/Al) ratio [7]), it implies that the chemical composition of the double metal hydroxide layers 

was not affected.  

The lattice parameters obtained from the crystal structure refinement as well as other 

parameters that characterize the LDH compositions are listed in Table 1. The basal spacings 

were calculated as d=c/3; the interlayer thickness (gallery height, h) was found by subtracting 

the hydroxide layer thickness from the basal spacing value. The used layer thicknesses were 

0.477 and 0.471 nm for Mg-based and Zn-based layers, respectively [23].  

The relative error in determination of c-parameter in the case of MBT(BTA)-intercalated 

compositions was estimated to be about 0.6% which is considerably bigger than that for the 

respective parent LDHs, while the relative error in determination of a-parameter was the same 

(0.07%). Diffraction reflections of the (00l) family of the LDHs phases intercalated with either 

MBT or BTA were broadened as compared with the respective reflections of the parent phases. 

The broadening effect estimated using the full width at half maximum turned out to be the 

strongest for the reflections with l=odd. The diffraction reflections of a second LDH phase with 

a much smaller d-value (as reported in Ref [3]) were observed in the XRD patterns of Zn-Al-

MBT and Mg-Al-MBT along with reflections of the main phase. All these effects and features 

are discussed in detail below.  

The intercalation of BTA- into Zn-Al-nitrate was unsuccessful although various reaction 

conditions in terms of concentration of the BTA solution (0.01M, 0.1M, and 0.5M), 

temperature (from 30 to 100°C) and pH (from 6 to 12) were attempted. The only LDH phase 

observed in the XRD pattern of a typical product of the reaction (Figure 2, "Zn-Al-BTA") was 

a phase with the basal spacing of 0.756 nm that corresponded to the gallery height of 0.285 nm. 

The latter is very close to the double van der Waals radius of oxygen. The basal spacing value 

of about 0.76 nm is characteristic of Zn(n)Al LDHs (n≈2) intercalated with either CO3
2- or OH- 

[13]. Since the anion exchange was performed in a carbonate-free solution, it can be concluded 

that the observed LDH phase is actually Zn-Al-OH. Diffraction reflections of other phase(s) 

were observed in the XRD pattern of "Zn-Al-BTA" as well; however, the identification 

attempts using the ICDD database (PDF 4+, 2014) resulted in no reasonable matches.  

Since zinc is known to form complexes with benzotriazole [24,25], we have assumed that 

the unidentified phase(s) can be a product of the reaction between the Zn-Al hydroxide layers 

and BTA. In order to test the assumption, the conditions of the anion-exchange reaction in the 

BTA solution (as described in Experimental) were reproduced using zinc oxide instead of Zn-

Al-nitrate LDH. ZnO powder (99.99%, Sigma-Aldrich) was taken in the amount corresponding 

to the same molar fraction of Zn as that in the parent Zn-Al LDH used in the anion-exchange 
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experiments. Figure 3 shows the XRD pattern of the dried product of a 48-h immersion of zinc 

oxide in the BTA solution. The XRD pattern of "Zn-Al-BTA" is shown for comparison. As 

seen, the positions and the relative intensities of most of the diffraction reflections, which were 

not identified for the "Zn-Al-BTA" sample, match well the reflections of the ZnO+BTA 

reaction product. Thus, an attempt to intercalate BTA into Zn-Al-nitrate LDH results in the 

reaction with a partial substitution of NO3
- by OH- and a partial decomposition of the parent 

LDH followed by formation of the phase(s) based on zinc oxide/hydroxide and BTA. The exact 

chemical composition and crystal structure of this product is unknown. Identification would 

require a particular research which is out of the scope of the present work.  

The above-mentioned case suggests the likely reactions between the double metal 

hydroxide layers of the LDHs and the organic species. Therefore, the samples of LDHs 

successfully intercalated with MBT(BTA) were analyzed aiming to reveal signs of possible 

recrystallization, dissolution and other morphology changes caused by the anion-exchange 

processes. Figure 4 shows the SEM images of the dried Zn-Al and Mg-Al LDH powders before 

and after the intercalation procedure. It is seen that the particles are flake-shaped which is 

typical of the LDH materials. The characteristic size (diameter) of the flakes was estimated to 

be from 2 to 5 μm and from 50 to 200 nm for the particles of the Zn-Al LDHs and the Mg-Al 

LDHs, respectively. No regular changes in the shape and/or size of the particles which could be 

associated with a process of anion substitution have been revealed. These observations are in 

agreement with the conclusion drawn from the analysis of the (110) diffraction reflections that 

the intercalation reactions induced no change in the chemical composition of the LDH 

hydroxide layers.  

The cations ratio (n) in the hydroxide layers of the obtained LDHs was estimated using 

two independent methods. The ICP spectrometry chemical analysis found that the Mg/Al and 

Zn/Al ratios in the parent compositions were 1.9±0.2 and 2.1±0.1, respectively. Comparison of 

the measured a-parameter values (Table 1) with the reported dependences a(x) [x = (n + 1)-1] 

for Mg-Al and Zn-Al LDHs [7] also showed the cations ratio in the obtained LDHs to be close 

to 2:1.  

 

Nature of the second phase in the LDHs intercalated with organic anions 

In order to monitor the formation of the second phase, the intercalation processes were studied 

in more detail. Phase content of the Zn-Al and Mg-Al LDH samples was characterized by XRD 

after immersion in the MBT solution for 20 min, 2, 6, 24 and 48 h under the conditions 

described in Experimental. The samples (slurry) were studied immediately after centrifugation. 
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The XRD patterns of all the samples were found to be surprisingly identical: the LDH phases 

intercalated with MBT- were well crystallyzed; no traces of the parent LDH-nitrate were 

detected (Figure 5, Zn-Al-MBT slurry). The second LDH phase (with the basal spacing of ~ 

0.76 nm) was revealed in all the samples in approximately equal amounts. It follows from this 

study that the nitrate-to-MBT anion exchange reaction is much faster than it was considered 

before [3] (cf.: 20 min versus 24 h). Furthemore, intercalation of MBT- into the LDH-nitrate 

takes considerably less time than that of V2O7
4- (about 6 hours at room temperature [26]), 

although the vanadate anion is more compact and with a higher charge. It should be noticed, 

however, that the nitrate-to-vanadate exchange was carried out at a relatively low pH (8.4).  

We considered also the reaction time of the nitrate-to-BTA anion exchange. It was found 

that such an exchange in Mg-Al LDH is complete in about 20 min. Besides, an analysis of the 

XRD patterns of both the Mg-Al-BTA powders and slurry suggested a likely presence of a 

second LDH phase with d2 ≈ 0.76 nm. The value of the basal spacing in Mg-Al-BTA (Table 1) 

is almost exactly twice higher than d2. Therefore, the most intense diffraction reflections (003) 

and (006) of the second phase are overlapped with the (006) and (0012) reflections of the main 

phase (Figure 6). The presence of the second phase was concluded from the unusual ratios of 

the (00l) reflection intensities in the XRD patterns of both slurry and powder of the Mg-Al-

BTA LDH samples.  

In some cases, the anions in the adjacent interlayers are arranged in different ways 

resulting in a layer-interlayer sequence with two basal spacings: ·d1·d2·d1·d2·d1· [27]. Such a 

configuration causes an appearance of the diffraction reflections corresponding to the d1+d2 

values. The same effect can be induced by presence of two or more different anions in the 

interlayers. To make certain that no LDH phase with such combined interlayers formed as a 

result of the intercalation, a supplementary XRD study was performed over a 2Theta range 

between 1.5 and 5o. No reflections which could correspond to the d1+d2 spacing, where d1 is the 

basal spacing value of the LDH intercalated with either MBT or BTA (Table 1) and d2 = 0.76 

nm have been detected.  

Thus, the LDH phase with d2 = 0.76 nm is an attribute of the anion exchange reactions 

between nitrate and MBT- (BTA-). Appearance of such a phase is often associated with the 

carbonate contamination, suggesting that carbonate anion is the most favorable for 

intercalation. We prepared LDHs intercalated by OH- and LDHs intercalated by CO3
2- from the 

respective parent Zn-Al- and Mg-Al-nitrates. Anion exchanges were performed in solutions of 

NaOH and Na2CO3, respectively, at the same pH (~11.5) as that used for the MBT- and BTA- 

intercalations (see Experimental). As seen from Figures 5 and 6, the diffraction patterns of 
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LDHs intercalated with either hydroxide or carbonate are very similar; both LDH-OH and 

LDH-CO3 are characterized by d ≈ 0.76 nm. However, as the organic anions intercalation was 

carried out in a carbonate-free environment, one should conclude that the observed second 

LDH phase is a Zn-Al (Mg-Al) layered double hydroxide intercalated with OH-.  

 

Mechanism of the organic anions intercalation into the parent LDH-nitrate  

It is seen from Figure 5 that the amount of the LDH-OH phase in Zn-Al-MBT is about twice 

lower in slurry than in the dried powder of the same sample. Besides, drying was found to 

result in broadening of the diffraction peaks that correspond to the (003) and (009) reflections. 

The same feature was observed in Mg-Al-MBT and Mg-Al-BTA LDHs. The fact that the 

LDH-OH phase is always present in the as-prepared samples, as well as the observed 

correlation between the relative amount of this phase and the broadening of the diffraction 

reflections of the LDH phases intercalated with organic anions suggest that the hydroxide 

anions play an important role in the substitution mechanism. It can be assumed that at the initial 

stage of the substitution, hydroxide anions are the first which substitute nitrate anions. In such a 

scenario, the intercalated hydroxide anions increase the available space of the interlayer. It 

would lead to the rearrangement of the remaining nitrate anions to decrease the tilt angle 

against the hydroxide layers, thereby reducing the basal spacing. As a result, intermediate LDH 

phase(s) intercalated with the NO3
-+OH- combinations of would appear.  

In order to clarify the issue, the nitrate-to-MBT exchange was studied using in-situ XRD. 

As seen from Figure 7, for the most part of the 45-min process, Zn-Al-NO3 and Zn-Al-MBT 

are the main phases. The amount of the former decreases with time, while that of the latter 

increases. Traces of the Zn-Al-OH phase are detectable only at the final stage of the exchange 

reaction. No regular displacements of the diffraction reflections of the observed LDH phases 

have been found. Thus, the nitrate-to-MBT substitution occurs without formation of any 

intermediate LDH phases. Therefore, a direct replacement of nitrate anions by the organic 

species in the presence of hydroxide anions should be suggested. It seems reasonable to assume 

that the Zn-Al-MBT phase in the slurry contains a relatively higher amount of hydroxides and 

crystal water in the interlayer in comparison with that in the dried material. In more hydrated 

form, the interlayer species (MBT-, OH- and H2O) have more flexibility in terms of 

arrangement: anions are effectively coordinated by water molecules which screen their charges. 

The basal spacing of such an LDH (~1.7 nm, Table 1) is determined by the biggest species 

arranged, namely MBT. Drying is believed to decrease the relative amount of crystal water in 

the LDH interlayer. Uncoordinated hydroxide anions cannot be accommodated in the gallery 
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with such a big height. This induces redistribution of the anions in the interlayer. OH-rich and 

MBT-rich crystallites appear that finally results in a phase separation into Zn-Al-MBT (less 

hydrated) and Zn-Al-ОН. That is why the amount of the LDH-OH phase in the powder is 

detected to be higher than that in the slurry (Figure 5). In order to keep the layer-interlayer 

electroneutrality, the organic anions in the less hydrated Zn-Al-MBT have to be arranged closer 

to each other in the plane parallel to the layers. Symmetry of such an arrangement appears to 

mismatch the symmetry of the double-metal hydroxide layers that can result in local 

inhomogeneities of the MBT distribution in the interlayer indicated by broadening of the (00l) 

diffraction reflections with l=odd.  

Arrangement of MBT(BTA) in the LDH interlayer 

As seen from Table 1, the gallery height (h) values of the Zn-Al and Mg-Al LDHs intercalated 

with MBT (1.207 and 1.190 nm respectively) are equal within the experimental error. It 

suggests that MBT anions are arranged in interlayers of these compositions in the same way. 

The h-value calculated for the Mg-Al-BTA LDH (1.044 nm) is lower than that for the MBT-

intercalated LDH which is consistent with the difference in length of MBT and BTA: 0.741 and 

0.546 nm, respectively. At the same time, the h-values are smaller than the double size of the 

respective anions. Therefore, one can suggest that in the LDH structure, MBT and BTA form a 

double layer in which these species have a tilted orientation against the layer plane. In other 

words, a herringbone-like arrangement [28, 29] of the organic anions is proposed (Figure 8). 

Such an arrangement is common for the benzene rings since provides the most expedient 

molecule organization [29] and characterized by “looking” of the ring of one molecule to the 

center of another one.  

Provided the herringbone arrangement, the orientation of MBT(BTA) anions in the LDH 

interlayer can be characterized by two angles, α and β (Figure 8). The former (50-52° [28]) 

describes a slope between the anion plane and the double metal hydroxide layer (ab plane). The 

latter is the angle between the symmetry axis of the benzene rings lengthwise of the anion and 

the line through the atoms which are in contact with the hydroxide layer (see Insets in Figure 

8). The β value depends on the chemical structure of negatively charged heterogenic ring.  

Following the idea of distributed charge into heterogenic part of the organic species 

(between nitrogen atoms, in case of BTA [30], and between sulfur atoms or sulfur and nitrogen 

atoms, in the case of MBT [31]) we suggest those pairs of atoms to be in contact with the 

hydroxide layer for better charge compensation. This assures the maximal possible interaction 

between negatively charged part of the anion and the hydroxide layer. It follows from such a 

condition that slope β is about 60° and 85° for MBT and BTA, respectively. Taking into 
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account the estimated values of α and β angles as well as the van-der-Waals radii of sulfur 

(0.182 nm), nitrogen (0.155 nm) and hydrogen (0.110 nm), the height of the herringbone-

arranged organic species is calculated to be within the ranges of 1.187-1.211 nm for the MBT 

intercalates and 1.035-1.056 nm for the BTA intercalates. These values are in very good 

agreement with the galleries heights calculated from the XRD data (see Table 1).  

The suggested configuration of the organic anions was verified to meet a requirement of 

electroneutrality of the layer-interlayer system. Figure 9 shows a possible arrangement for the 

case of BTA anions in the interlayer of Mg-Al LDH with the cation ratio Mg/Al = 2. One can 

see that the herringbone-arranged organic species are distributed to compensate the hydroxide 

layer charge leaving enough space for the crystal water in the interlayer.  

 

CONCLUSIONS 

2-mercaptobenzothiazole (MBT) and 1,2,3-benzotriazole (BTA) are successfully intercalated 

into Mg-Al-nitrate and Zn-Al-nitrate LDHs at room temperature and at high pH (11.5) which is 

necessary to keep an anion form of these organic species. Intercalation of BTA- into Zn-Al-

nitrate is not possible because of irreversible formation of a compound based on zinc 

oxide/hydroxide and BTA.  

Formation of Mg-Al-MBT, Zn-Al-MBT and Mg-Al-BTA LDHs occurs through a direct 

replacement of nitrate anions by the organic species without appearance of any intermediate 

LDH phase. The exchange takes about 20 min which is much faster than previously considered.  

Hydroxide anions are present in the interlayer of the most hydrated form (slurry) of the 

LDHs intercalated together with the organic anions. OH- and MBT- (BTA-) are effectively 

coordinated by water molecules which screen their charges. Drying results in a decrease of the 

relative amount of crystal water. Then, the uncoordinated hydroxide anions cannot be 

accommodated in the interlayer. This induces the redistribution of the anions in the interlayer 

which results in a phase separation into Zn-Al-MBT (less hydrated) and Zn-Al-ОН. 

In the LDH structure, MBT- and BTA- form a double layer in which these species have a 

tilted orientation against the layer plane (herringbone-like arrangement). Such an arrangement 

mismatches the symmetry of the double-metal hydroxide layers.  
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