
                                                 
 
 
 
 
 
 
 
 
 
Final Draft 
of the original manuscript: 
 
 
 
 
 
 
Mohedano, M.; Blawert, C.; Zheludkevich, M.L.:  
Cerium-based sealing of PEO coated AM50 magnesium alloy  
In: Surface and Coatings Technology  (2015)  Elsevier 
 
DOI: 10.1016/j.surfcoat.2015.01.003 



Cerium-based sealing of PEO coated AM50 magnesium alloy 

M. Mohedano*, C. Blawert, M.L. Zheludkevich 

Helmholtz Zentrum Geesthacht, Magnesium Innovation Centre, Institute of Materials 

Research, Max-Planck-Str. 1, D-21502 Geesthacht, Germany. 

*Corresponding author. Tel:+494152871956; Fax:+494152871960 

E-mail: marta.mohedano@hzg.de 

 

Abstract 

Environmentally friendly Ce-based sealing post-treatments were developed for PEO coatings 

on AM50 magnesium alloy. The influence of the Ce(NO3)3 concentration in the Ce bath and 

the time of the sealing process were evaluated in terms of morphological and structural 

properties using SEM, EDS and XRD. Ce content in the layer increased with both the amount 

of salt in the solution and the time of the sealing post-treatment process due to a higher Ce 

products accumulation into the pores and cracks of the coatings. Sealed PEO coatings 

revealed an improvement in the corrosion protection properties as measured by 

electrochemical impedance spectroscopy. Differences in the corrosion resistance values for 

the sealed coatings indicate a strong relation between the parameters of the sealing process 

and its effectiveness, showing higher resistance for the sealed PEO coating developed after 3 

h of immersion in 10 g/l Ce(NO3)3 sealing bath. 
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1. Introduction 

The growing demand for lightweight materials in the automotive, aeronautic and recreational 

industries has triggered renewed attention for magnesium alloys owing to their outstanding 

specific strength, high damping capacity, good castability, machinability and weldability 

[1,2]. However, high chemical reactivity and poor corrosion and wear resistance limit the 

widespread use of magnesium alloys in many applications [3-5].  

The addition of several alloying elements such as aluminium, zinc and rare earths have been 

reported to improve the corrosion resistance of Mg alloys [6,7]. However, the technological 

requirements for several applications remains still unsatisfied [8].One of the effective ways to 

improve the corrosion resistance of Mg-based substrates is application of protective coatings, 

which provide a barrier against aggressive species and reduce detrimental effects from the 

environment [9]. There are several technologies available for coating magnesium alloys. 

These mainly include electrochemical plating, conversion coatings, anodizing, hybrid sol-gel 

coatings, gas-phase deposition processes, laser surface melting and organic/polymer coatings 

[10-14]. Among these coating processes, plasma electrolytic oxidation (PEO) is a promising 

surface treatment technique to build ceramic-like layers on Mg, Al, Ti and other valve metals. 

This technique involves polarization of the valve material under high voltages in an 

appropriate electrolyte, with the generation of a large number of short-lived microdischarges 

caused by dielectric breakdown and the formation of plasma modifying the coating with the 

incorporation of species from the electrolyte [15-18]. The main advantages of PEO coatings 

include improved corrosion and wear resistance, high dielectric strength, heat resistance and 

suitable surface morphology for topcoat paints and other metals/ceramics to create duplex 

coatings [19,20]. 

In the particular case of Mg and its alloys, some commercial PEO processes are already 

available [21-23]. However these treatments often contain non-environmentally friendly 
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components, like chromic acid and fluoride based compounds, therefore some effort has been 

made to solve this disadvantage by using electrolytes based on silicates and phosphates [24-

26]. Coatings can be formed under DC, AC or bipolar electrical regimes and the appropriate 

adjustment of the electrical parameters reduce the porosity of the coating and increase the 

inner dense layer thickness [27,28]. However, the presence of the pores is unavoidable in the 

PEO coatings leading to decrease in barrier properties. The pores compromise the corrosion 

resistance of such coatings, particularly in presence of Cl- ions, and this may restrict any 

future potential application of PEO on Mg alloys.  

Different surface post-treatment approaches for PEO coatings were suggested including 

organic, sol-gel and polymer coatings in order to avoid the early failure of PEO coatings on 

Mg alloys due to their permeability to the environment [29-31]. Among these, the Ce-based 

post-sealing treatments for PEO on Mg can be considered as one of the most promising 

candidates in terms of costs, efficiency and environmental compatibility [32,33].  

The effectiveness of cerium-based coatings has been widely demonstrated for aluminium 

alloys in terms of corrosion protection performance [34-36]. Over the last years promising 

results have been also reported for magnesium and its alloys [37-40]. However the suitability 

of Ce-based post-treatments for PEO coatings is not clear due to the complex composition and 

morphology of these coatings and only there are few investigations to date. Lim et al. 

conducted investigations with DC PEO coated AZ31 and found a slight improvement in the 

corrosion resistance after post-sealing based on CeCl3 solution [41]. Laleh et al. also achieved 

better corrosion resistance for a short-term exposure in chloride media (30 min) after the 

application of sealing based on CeCl3 on DC PEO coated AZ91 [42]. 

However to date there is no sealing method based on cerium aqueous solutions able to 

improve the corrosion properties of PEO coatings on magnesium significantly. Moreover, no 

systematic study was performed and some very important aspects remain somewhat unclear 
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with respect to: i) distribution of the Ce-containing compounds through the coating, 

particularly for PEO coatings developed under AC electrical regimes ii) corrosion resistance 

for longer times of immersion iii) effect of sealing process parameters on the performance of 

coatings. 

The main goal of present work is to develop a Ce-based sealing post-treatment for 

environmentally friendly PEO coatings deposited on AM50 magnesium alloy. The systematic 

study on the influence of the duration of post-treatment and the bath composition on the 

corrosion protection performance is conducted with a set of complementary electrochemical, 

structural and microscopic methods. 

 

2. Material and methods 

2.1. Materials 

AM50 magnesium alloy (mass fraction: 4.4-5.5% Al, 0.26-0.6% Mn, max 0.22% Zn, max 

0.1% Si, and Mg balance) of size 15 mm × 15 mm × 4 mm  was used as the substrate for PEO 

coating process. 

Specimens were ground successively with emery papers of 500, 800 and 1200 grit size and 

cleaned with ethanol prior to PEO treatment.  

 

2.2. PEO treatments 

AC PEO treatments were conducted for 600 s using a PE Pulse Reverse Power Supply rated 

at max. 500V/24A mode pulses in alkaline silicate solution (10 g/l Na2SiO3 + 2 g/l KOH) at 

constant voltage. A square waveform voltage signal was applied at 500 Hz frequency with a 

positive-to-negative pulse ratio of 420/-60 V. An initial ramp of 60 s was used to achieve the 
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voltage amplitude. The PEO treatments were performed at 10 °C ± 2 °C. After PEO, the 

specimens were rinsed in distilled water and dried in warm air. 

 

2.3. Sealing post-treatments 

Three different post-treatments based on Ce(NO3)3 were performed by immersing the PEO 

coated specimens under the conditions described in Table 1. After that, sealed samples were 

rinsed with ethanol and dried in warm air. 

 

2.4. Characterization 

Plan views and cross-sections of coatings were examined with a Tescan Vega3 SB scanning 

electron microscope (SEM) equipped with energy dispersive X-ray (EDX) spectrometer. 

Cross-sections were prepared by grinding through successive grades of silicon carbide paper, 

with final polishing to a 1 µm diamond finish. Phase composition was examined by X-ray 

diffraction (XRD), with a Bruker X-ray diffractometer with Cu Kα radiation (Cu Kα = 

1.54056 Å) at a scanning speed of 0.01 s-1 in 2θ scan range of 2θ from 10 to 90°. 

 

2.5. Electrochemical tests  

Electrochemical tests were conducted in a stirred aqueous 0.5 wt.% NaCl solution at 22 ± 0.5 

°C using a Gill AC computer-controlled potentiostat. All potentials were measured with 

respect to Ag/AgCl reference electrode. A platinum mesh was used as the counter electrode. 

Electrochemical impedance spectroscopy (EIS) measurements were performed at different 

times up to 3 days applying a sinusoidal perturbation of 10 mV RMS amplitude and a 
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frequency sweep from 0.01 Hz to 30 kHz. All measurements were repeated twice with good 

reproducibility, using a working electrode area of 0.5 cm2. 

The impedance spectra were analyzed with ZView software, the goodness of fit of the 

simulated spectra corresponded to chi-squared (square of the standard deviation between the 

original data and the calculated spectrum) values <0.01. The errors for the individual 

parameters of the equivalent electrical circuits (such as CPE and R) were <5%. 

 

3. Results and discussion 

3.1. Coating morphology and microstructure 

The optical micrographs of unsealed and sealed coatings are shown in Fig. 1. PEO coating 

based on a silicate electrolyte revealed a white gray color typical for this type of coatings 

[15,43] (Fig. 1 (a)). Sealing post-treatments changed the color of the coated specimens into 

pale yellow (Fig. 1 (b)) and dark yellow (Fig. 1 (c,d)) depending on the treatment conditions 

due to the presence of Ce-containing products [44]. Compared with the time needed for 

traditional cerium-based conversion treatments, the post-treatments developed in this work 

showed deposition of Ce-species after 20 min of immersion [45,46]. This may be due to the 

presence of hydrogen peroxide in the sealing bath that has been reported to increase the 

kinetics of the conversion process oxidizing Ce (III) into Ce (IV) and leading to a higher 

deposition rate for Ce-species [47,48].  

The sealing of the pores is clearly evidenced by SEM/EDS analysis of the surface. Fig. 2 

shows the surface micrographs of AM50 alloy after the different surface treatments. Unsealed 

PEO coating (Fig. 2 (a)) exhibited a typical crater-like porous morphology with a pore size 

between 0.4µm-15µm. The pores arise at the sites of the discharges channels due to the gas 

evolution through the molten oxide material during the PEO process [49]. The number of 
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open pores decreases for all the coatings after the sealing post-treatments due to the 

accumulation of Ce-containing products in the pores. The sealing effectiveness increase with 

the amount of Ce(NO3)3 in the solution and with the time of the post-treatment process (Fig. 

2 (b-d)). In particular for PEO_SCe_10g_3h most of the pores disappeared and the surface 

was almost fully sealed after 3 h of treatment (Fig. 2 (d)). 

The higher magnification images of the sealed PEO coatings and the respective EDS mapping 

analysis of the Ce element revealed morphological and microstructural differences of the 

surfaces (Fig. 3). In case of PEO_SCe_3g_20min, larger pores were partially filled with Ce-

containing products and the average Ce concentration determined by EDS on a large area was 

0.3 at.% (Fig. 3 (a,b)). An increase in the concentration of Ce salt in the sealing solution (up 

to 10 g/l), leads to a higher accumulation of Ce products into the pores and cracks of the 

coatings resulting in an increase of Ce concentration to 0.8 at.% (Fig. 3 (c,d)). The most 

significant differences were observed for the PEO_SCe_10g_3h specimen, where a Ce-rich 

layer covers the surface and large deposits of Ce-containing products are located in the initial 

crater-like pores (Fig. 3 (e,f)). Some cracks are observed on the Ce-rich layer and this is likely 

to be related to the dehydration of the surface after the treatment [50]. Sealed PEO coating 

developed under these conditions, showed the highest average Ce concentration (2.5 at.%) 

determined by EDS. 

Fig. 4 shows the cross sections of the coatings along with the X-ray elemental mapping of Si 

(for PEO) and Ce (for sealed PEO). PEO coating shows a non uniform thickness and grow 

into the substrate and outwards to the coating surface simultaneously [51], to a maximum of 

30-40 μm (Fig. 4 (a)). The coating consists of a three-layered structure with a denser Si-rich 

outer part (less than 40% of the coating thickness with through-going discharge channels), 

followed by a very porous section (about 59% of the coating thickness) and an inner and 

7 
 

http://www.sciencedirect.com/science/article/pii/S0010938X10000259%23bib1


denser layer (about 1% of the coating thickness) mainly composed of Mg and O with traces of 

Si (Fig. 4 (b)). 

In case of sealed coatings, X-ray elemental mapping confirms the presence of cerium and 

demonstrates the significant influence of the deposition parameters: i) the concentration of Ce 

salt in the sealing solution (3 g/l and 10 g/l) and ii) the time of the post-sealing treatment (20 

min and 3 hours). PEO_SCe_3g_20min backscattered image shows a slight decrease of the 

coating thickness which indicates a slight dissolution of the coating during the post-treatment. 

Only a minor concentration of Ce was found on the top of the outer layer from EDS mapping 

(Fig. 4 (c,d)). An increase in the Ce salt content in the sealing solution up to 10 g/l favored the 

deposition of Ce-rich products through the internal cracks, penetrating approx. 40% into the 

thickness of the PEO layer. Moreover, an important reduction of the PEO coating thickness 

up to approx. 10 µm in some areas was observed and is related to a higher dissolution of the 

oxide layer compared to PEO_SCe_3g_20min specimen (Fig. 4 (e,f)). The cross-section for 

PEO_SCe_10g_3h (Fig. 4 (g,h)) reveals the highest reduction of the thickness of the coating 

to approx. 15 µm in some areas and according to this, also the highest Ce- precipitation on the 

surface of the remaining PEO coating. Ce-containing products penetrated approx. 100% into 

the thickness of the PEO coating blocking its internal porosity and cracks. 

The microstructural characterization of PEO coatings after all the different sealing post-

treatments revealed no evidence of Ce-containing products proceeding from the reaction with 

the matrix. This suggests that the Ce deposition does not follow the general mechanism of 

cerium conversion treatments based on an increase in solution pH at the cathode interface, due 

to the polarization of the substrate, and the precipitation of cerium compounds in those areas 

[52]. In the sealed coatings developed in this work the barrier inner layer, which is the major 

contributor to corrosion protection [53], remains intact. Therefore, for this type of PEO 

coatings, the formation of Ce-rich products is associated only with the chemical dissolution of 
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the coating and peroxide triggered processes. The process can be summarized as: i) chemical 

dissolution of MgO/MgSiO4 in acidic solutions locally increases the pH values [54,55] ii) 

high local pH values facilitates the precipitation of insoluble oxide/hydroxide Ce compounds 

[56].  

These results provide new information about the mechanism of rare earth sealing process of 

porous PEO coatings for Mg alloys that had remained unclear. Previous studies reported some 

differences in the outcomes: Lim et al. conducted investigations with DC pulse PEO coating 

on AZ31 alloy after CeCl3 based sealing and found that Ce-containing precipitates observed 

in the coating were initially formed at the interface between PEO coating and the substrate 

[41]. Laleh et al. also reported the presence of Ce species on the surface of DC PEO coating 

on AZ91 alloy after CeCl3 based sealing, but in this case there was no evidence where the 

chemical reaction/conversion process took place [42].  

This information indicates that there are two factors that might influence the sealing 

mechanism of PEO: i) the presence of Cl- ions in the sealing solution might lead to a higher 

degradation of the coating favoring its penetration across the porous and cracks and reaction 

with the metal surface [57] ii) the application of AC regimes for PEO treatments that achieve 

a higher resistance in the inner layer [58], might have the opposite effect preventing the 

penetration of the sealing solution through this inner layer and therefore the contact with the 

alloy.  

X-ray diffraction (XRD) analysis indicated that the PEO coating produced in silicate 

electrolyte is composed predominantly of two crystalline phases: Mg2SiO4 and MgO (Fig. 5). 

The coating layer on sample treated for 20 min using 3 g/l Ce(NO3)3, mainly showed strong 

diffraction peaks of the PEO coating. It is probable that the Ce-containing products layer is 

either too thin or incomplete as the treatment is not sufficient for the formation of a 

homogeneous coating as was observed with the SEM.  
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The XRD patterns from the sealed PEO coatings developed using 10 g/l Ce(NO3)3, revealed 

the formation of CeO2 and Ce2O3 with stronger intensity peaks for longer sealing post-

treatment process (PEO_SCe_10g_3h). Similar compositions have been reported for Ce 

conversion treatments developed on magnesium and its alloys [50,38]. The presence of CeO2 

and Ce2O3 was also found in Ce-based conversion treatments using CeCl3 bath on AZ31 

coated by PEO [41]. The Ce3+ (hydroxide/oxide) species in contact with O2 can be partially 

oxidized to Ce4+ (hydroxide/oxide). According to Wu et al. the Ce-containing products inside 

the cracks and porous of PEO coatings are composed of Ce3+ species and the external film of 

mixture of Ce3+ and Ce4+ species [59]. It is also possible that amorphous Ce conversion 

products are present after the sealing process, as reported previously for similar treatments 

[60].  

 

3.2 Electrochemical impedance spectroscopy results 

Electrochemical impedance spectroscopy is a powerful tool which allows correlation of 

electrical characteristics of the coated metallic substrate with corrosion resistance of the 

system. The frequency dependence of the complex impedance of the coated substrate permits 

effective evaluation of the different components of the coated system such as capacitance and 

resistance of the protective layers, polarization resistance and double layer capacitance 

associated with electrochemical activities on the surface. EIS method is used in the present 

work to gain a better understanding of the mechanism of the PEO coatings degradation and 

the effect of the Ce-based sealing post-treatments on the anti-corrosion performance [61,62]. 

Bode (a,b) and Nyquist (c) diagrams of EIS response in 0.5 wt.% NaCl solution measured up 

to 3 days of immersion are shown in: Fig. 6 for PEO, Fig. 7 for PEO_SCe_3g_20min, Fig. 8 

for PEO_SCe_10g_20min and Fig. 9 for PEO_SCe_10g_3h. 
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The equivalent circuit used for simulation of the electrical parameters is shown in Fig. 10 

inserted in the example of the fitting of the experimental data. Constant Phase Elements 

(CPE) were used instead of capacitances in order to account for non-ideal behavior of the 

system. Good fits of the experimental data, with chi-squared values in the range of 0.001–

0.0001, were obtained using a cascade equivalent electrical circuit where CPEout and Rout 

correspond to the capacitive and resistive behavior of the combination of outer and 

intermediate porous layers of the PEO coatings. This combined response is associated with 

the porosity interconnecting these two layers and for further analysis of the impedance 

spectra, PEO coatings are considered to have a two-layered structure: i) an outer layer 

(combination of outer and intermediate) characterized for through-going discharge channels 

and porosity and ii) a denser inner barrier part. CPEin and Rin are associated with the 

capacitive and resistive performance of the barrier inner part of the PEO coating respectively. 

The corrosion processes can be described by the double layer capacitance on the 

electrolyte/metal interface (CPEdl) and the polarization resistance (Rpolar), which is the 

Faradaic charge transfer resistance related to electrochemical reactions in the same 

electrolyte/metal interface region [63]. 

The impedance of a CPE is calculated as Z = 1/[CPE (jω)n]; where ω i s radial frequency, n 

is the exponential factor (−1 ≤ n ≤ 1) and j = √−1 is the imaginary number. CPE corresponds 

to a numerical value of admittance of the system, 1/Z, at ω = 1 rad s−1. With n = 1, constant 

phase element becomes an ideal capacitor. For all the equivalent circuits Rs corresponds to 

the solution resistance.  

Based on this equivalent circuit, three time constants corresponding to three relaxation 

processes are found in the response of the coated materials. However, the visibility of these 
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time constants in the impedance spectra is not possible for all the times due to strong 

overlapping.  

Up to 1 day of immersion, the impedance response for unsealed PEO (Fig. 6) shows the 

presence of different relaxation processes. The outer porous layer of the coating is responsible 

for the high-frequency relaxation process (103 Hz), whereas the middle frequency response of 

the system (101-102 Hz) can be attributed to the inner barrier layer of the PEO coating. In fact 

these two components are hard to distinguish in the beginning because of the strong 

overlapping. The separation becomes obvious after a longer immersion period. The low 

frequency time constant (0.1 Hz) observed since the beginning can be ascribed to the starting 

electrochemical activities on the alloy surface. These corrosion processes can be described by 

the double layer capacitance on the electrolyte/metal interface and the polarization resistance. 

After 1 day of immersion, the time constant at high frequencies corresponding to the outer 

porous layer of the PEO coating has almost disappeared. This indicates that the electrolyte can 

easily penetrate through the outer part and a chemical degradation of the coating occurs to a 

certain degree leading to the loss of the barrier properties of outer layer. The time constant at 

middle frequencies (102 Hz) becomes better visible now. The inner barrier layer dominates 

the response of the system in this situation. 

For sealed PEO coatings (Fig. 7-9), the impedance spectra show similar features as for the 

unsealed PEO coating. After one day of immersion in 0.5 wt.% NaCl solution, the resistance 

of the outer layer of the PEO coating is unappreciable and the time constant at lower 

frequencies can be associated with the corrosion process. The model of the equivalent circuit 

for unsealed PEO also describes the spectra for sealed PEO (Fig. 10). However, the obtained 

values of calculated parameters demonstrate that the physical properties of structural elements 

differ due to the presence of Ce-containing products, showing better corrosion properties. 

This improvement of the corrosion behavior, has been also reported for Ce conversion 
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coatings on aluminium [59] zinc [64] and magnesium alloys [65]. In particular, Wu et al. [59] 

suggested that the impedance spectrum after Ce conversion process was influenced by the Ce-

rich products precipitated on the materials leading to a capacitive and resistive behavior of 

Ce-rich coating. For sealed PEO coatings, the most important effect seems to be the 

stabilization of the inner layer during longer immersion tests. The time constant responsible 

for this component is much better defined, demonstrating higher values of inner layer 

resistance. The stabilization of the inner layer increase with the amount of Ce(NO3)3 in the 

solution and with the time of the post-treatment process. 

In order to evaluate the degradation behavior of unsealed and sealed PEO coatings and the 

influence of the different sealing parameters, the values of the total resistance (Rtotal(out+in+polar)) 

with the time of immersion in 0.5 wt.% NaCl solution are shown in Fig. 11.  

In addition, for a better understanding of the corrosion mechanism, the evolution of the 

polarization (Fig. 12 (a)) and inner resistance (Fig. 12 (b)) with the immersion time are shown 

separately. These resistance values were obtained by fitting the equivalent circuit to the 

impedance data and are presented with respecting their fitting errors. Low values of the outer 

resistance (Rout < 103 Ω cm2) and their fast decrease in the first 10 h indicate that the outer 

layer is not an important contributor to the corrosion protection and therefore not important 

for the analysis of the corrosion mechanism for this type of coatings [66].  

For immersion times up to 3 h, no significant differences in the values of Rtotal are observed 

for the coated materials due to the good protective character of PEO layer at this stage (Fig. 

11). For longer immersion times, unsealed PEO coating reveals the typical behavior for this 

type of coatings with a continuous decrease of Rtotal up to 2 orders of magnitude. A different 

response depending on the parameters of the sealing process is observed for the sealed PEO 

coatings. A continuous decrease in the Rtotal for PEO_SCe_3g_20min up to one order of 

magnitude indicates also a gradual corrosion process, showing the same tendency as the 
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unsealed coating. More effective sealing post-treatments processes were found for PEO 

coatings sealed in a solution containing 10 g/l Ce(NO3)3 (after 20 min and 3 h of post-

treatment). They show an increase in the Rtotal values during the early stages (up to 24 h) 

followed by a decrease associated with corrosion processes, which is more significant for 

PEO_SCe_10g_20 min. This tendency is due to the evolution of the Rpolar and related to the 

formation of corrosion products with some protective character (Fig. 12 (a)).  

After 3 days of immersion (Fig. 11) all the coated materials show a degradation process 

characterized by a decrease of the total resistance, but also a clear beneficial effect of the Ce-

based sealing post-treatments was observed. Unsealed PEO coating reveals the lowest value 

after 3 days of immersion (20 kΩ cm2) due to its higher susceptibility to corrosion. 

Differences in the resistance values for the sealed coatings, up to one order the magnitude, 

indicate a strong relation between the parameters of the sealing process and its effectiveness. 

According to the total resistance values, (PEO_SCe_10g_3h > PEO_SCe_10g_20min > 

PEO_SCe_3g_20min > PEO), higher concentrations of cerium salt in the bath (10 g/l of 

Ce(NO3)3) and longer times of sealing process (3 h) lead to a better corrosion properties of 

the sealed coatings. This is in agreement with the morphology and microstructure examination 

of the coatings, which show for those conditions a higher accumulation of Ce products 

blocking the pores and the internal cracks.  

In addition, the analysis of the Rin with time of immersion in 0.5 wt.% NaCl solution (Fig. 12 

(b)) shows a stabilization of the inner layer for the Ce containing coatings. Rin results 

obtained for shorter times of immersion (up to 10 h) show slightly higher values of sealed 

coatings compared with the unsealed PEO coating. For longer immersion times (up to 3 days) 

a different response is revealed showing different effects: i) a long-term protection effect of 

the post-treatments: an increase of the Rin is observed for all the sealed coatings compared 

with the unsealed PEO coating ii) an influence of the Ce sealing parameters: higher values 
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were obtained by increasing both the amount of Ce(NO3)3 in the solution and the post-

treatment process time and iii) a stabilization of the inner layer: sealed PEO coatings 

developed using 10 g/l Ce(NO3)3 show an increase of the Rin values after 10 h of immersion 

that might be related to the formation of corrosion products containing Ce which act as a 

temporary protective layer together with the original inner layer. In particular for 

PEO_SCe_10g_3h this effect is more significant, revealing an increase in Rin after 3 days of 

immersion to 105 Ω cm2.  

The better corrosion properties of the sealed PEO coatings might be related to a combination 

of different effects: i) microstructural effect: sealed coatings show that the large-sized pores 

and through-going paths across the whole layer were partially filled with Ce-containing 

products and that obstruct the permeation of the electrolyte into the inner coating ii) Ce-rich 

corrosion products accumulation effect: the chemical degradation of the coating leads to the 

migration of Ce-containing products from the PEO surface across the porosity of the coating 

improving the protective ability of the inner layer. These hypothesis are in accordance with 

the analysis of the cross-section of EIS tested coated materials after immersion in naturally-

aerated 0.5 wt.% NaCl solution for 3 days (Fig. 13). No sign of severe corrosion attack was 

observed in the coating/substrate interface and a significant accumulation of products mainly 

consisted of Ce-rich corrosion products were found in the porosity close to the inner layer of 

the coating. In addition, there might be an active effect of Ce ions in the coatings: when the 

electrolyte penetrates the PEO coating, some of the Ce containing products might convert into 

the Ce3+ ions. At the same time, a nano-scale corrosion process might occur in the inner layer 

leading to an increase in the pH, inducing Ce3+ deposition that can stabilizes the inner layer. 

The active corrosion protection or “self-healing” is generally defined as the recovery of 

coating integrity after some damage, and Ce-containing coatings were found to confer active 

protection for aluminium alloys coated by sol-gel, epoxy or chitosan layer [67-69]. According 
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to this active corrosion protection effect, it has been also report that cerium cations may react 

with silicates leading to the formation of a protective “self-healing” film [70]. In particular, 

for silicate based PEO coatings and for prospect work, it would be interesting to analyze these 

coatings with high resolution microscopy in order to observe structural modifications to the 

inner layer. 

 

4. Conclusions 

Environmentally friendly Ce-based post-sealing treatments were successfully developed on 

PEO coated AM50 magnesium alloy. Microstructural characterization showed that the Ce 

content of the coatings increased with both the amount of Ce(NO3)3 in the solution and the 

sealing post-treatment process time, leading to a higher accumulation of Ce products into the 

porous and cracks in the coatings. The formation of Ce-containing products is associated only 

with the chemical dissolution of the coating and there was no evidence of Ce-containing 

products proceeding from the reaction with the matrix. XRD patterns showed the formation of 

CeO2 and Ce2O3 for sealed PEO coatings developed using 10 g/l of Ce(NO3)3. 

Electrochemical impedance response revealed that the corrosion properties of the coatings 

improved after the application of the sealing post-treatments. Differences in the resistance 

values for the sealed coatings indicate a strong relation between the parameters of the sealing 

process and its effectiveness: higher concentrations of cerium salt in the bath (10 g/l of 

Ce(NO3)3) and longer times of sealing process (3 h) lead to a better corrosion properties. The 

sealed PEO coating developed after 3h of immersion in 10 g/l Ce(NO3)3 solution showed the 

highest Rin, Rpolar and therefore the highest total impedance after 3 days of immersion in 0.5 

wt.% NaCl. Better corrosion properties of the sealed coatings are due to a partial blocking of 

the internal porosity of the coatings and the stabilization of the inner layer during longer 

immersion tests. 
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Figure captions 

Figure 1. Optical micrographs of a) PEO, b) PEO_SCe_3g_20min, c) PEO_SCe_10g_20min, 

d) PEO_SCe_10g_3h. 

Figure 2. Backscattered electron images of the coatings plan view a) PEO, b) 

PEO_SCe_3g_20min, c) PEO_SCe_10g_20min, d) PEO_SCe_10g_3h. 

Figure 3. Backscattered electron images of the coatings plan view and respective Ce X-ray 

elemental maps of: (a,b) PEO_SCe_3g_20min, (c,d) PEO_SCe_10g_20min, (e,f) 

PEO_SCe_10g_3h. 

Figure 4. Backscattered electron images of the cross section of and respective X-ray 

elemental maps of: (a,b) PEO and Si element, (c,d) PEO_SCe_3g_20min and Ce element, 

(e,f) PEO_SCe_10g_20min and Ce element, (g,h) PEO_SCe_10g_3h and Ce element. 

Figure 5. X-ray diffraction patterns of unsealed and sealed PEO coatings. 

Figure 6. Impedance spectra of PEO coated sample up to three days of immersion in 0.5wt.% 

NaCl solution: (a, b) Bode plots and (c) Nyquist plot 

Figure 7. Impedance spectra of PEO_SCe_3g_20min coated sample up to three days of 

immersion in 0.5wt.% NaCl solution: (a, b) Bode plots and (c) Nyquist plot. 

Figure 8. Impedance spectra of PEO_SCe_10g_20min coated sample up to three days of 

immersion in 0.5 wt.% NaCl solution: (a, b) Bode plots and (c) Nyquist plot 

Figure 9. Impedance spectra of PEO_SCe_10g_3h coated sample up to three days of 

immersion in 0.5 wt.% NaCl solution: (a, b) Bode plots and (c) Nyquist plot. 

Figure 10. Equivalent circuit used for simulation of the electrical parameters inserted in an 

example of the fitting of the experimental data. 

Figure 11. Values of the total resistance (out+in+polar) for all the materials up to 3 days of 

immersion in 0.5 wt. % NaCl solution. 
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Figure 12. Evolution of resistance for all the materials with the immersion time up to 3 days 

of immersion in 0.5 wt. % NaCl solution a) Rpolar b) Rin 

Figure 13. Backscattered electron image of the cross section of PEO_SCe_10g_3h after 3 

days of immersion in 0.5 wt.% NaCl solution. 
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Table 1. Sealing post-treatment methods. 

 

Material Solution Temperature (°C) Time (min) 

PEO_SCe_3g 

_20min 

3 g/l Ce(NO3)3, 0.3 
g/l H2O2 and 1 g/l 

H3BO3 

30 20  

PEO_SCe_10g 

_20min 

 10 g/l Ce(NO3)3, 0.3 
g/l H2O2 and 1 g/l 

H3BO3 

30 20 

PEO_SCe_10g 
_3h 

10 g/l Ce(NO3)3, 0.3 
g/l H2O2 and 1 g/l 

H3BO3 

30 180 
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