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Melting temperature of metal polycrystalline
nanowires electrochemically deposited into the
pores of anodic aluminum oxide

Yu. I. Shilyaeva,a V. V. Bardushkin,a S. A. Gavrilov,a M. V. Silibin,*a V. B. Yakovlev,a

N. I. Borgardt,a R. L. Volkov,a D. I. Smirnova and M. L. Zheludkevichbc

The arrays of metallic nanowires are considered as promising precursors for 1D semiconductor nano-

structures after appropriate treatment at temperatures close to the melting point. Therefore the melting

behaviour of the metallic structures in oxide templates is a key parameter for the subsequent conversion

process. The present paper focuses on understanding of the effect of mechanical stress generated

during heating on the melting point of the metal nanowires deposited into the pores of anodic alumina.

Extremely high local compressive stress appears due to the difference in the thermal coefficients of the

oxide template and nanowires inside the pores. The effect of the composite structural parameter that

may be related to the concentration of nanowires on the melting temperature has been investigated.

A numerical model predicting the melting point has been developed for composites with indium, tin,

and zinc nanowires. The simulation results obtained using the suggested model were compared with

the experimental data.

1. Introduction

The arrays of metal nanowires represent an important class of
one-dimensional nanostructures with properties very different
from those of the corresponding bulk materials.1 The investiga-
tion of properties of nanowires is of fundamental importance,
and it is necessary from the point of view of their application.
For example, the magnetic cobalt and nickel nanowires have
great potential for high density data storage2 and as materials
for microwave applications.3 The nanowires of noble metals are
often considered for sensor applications4 and as highly effec-
tive catalysts.5 The arrays of nanowires of some fusible metals
are relevant for thermoelectric systems6 and have attracted
considerable attention as precursors for one-dimensional semi-
conductor nanostructures7–9 and core–shell structures.10 Besides,
fusible metal nanowires are often chosen as convenient objects for
studying the thermodynamic properties. An appropriate thermo-
chemical treatment of metal nanowires at temperatures close to
their melting point is the way to get the desirable material. The
resulting semiconductor nanostructures have a wide range of

applications including nanoscale field-effect transistors,11

nanolasers,12 nanogenerators,13 and many others.14

The ordered arrays of metal nanowires with a high aspect
ratio, reproducible geometry, and a high degree of spatial order
can be fabricated by electrochemical deposition into nano-
porous templates of anodic aluminum oxide (AAO). This method
is simple, cost-effective and can be performed at low temper-
ature leading to wide usability.15 However, the enclosure of
particles inside the pores of an inert matrix is accompanied by
additional phenomena associated with the presence of inter-
faces that affect the thermodynamic properties of nanostructures
and require a detailed study.

Over the past two decades, a great number of nanowires of
low melting point metals,16,17 ferromagnetic metals,16–18 and
noble metals5,17,19 were successfully fabricated using the AAO-
templates. Characterization of formed structures typically includes
X-ray diffraction (XRD) and scanning electron microscopy (SEM)
analyses while studies of the thermal behavior are often only
theoretical in nature. The experimental20 and theoretical21 aspects
of thermal stability and temperature dependence of the mechan-
ical properties22 are addressed to a significantly lower extent.
In the published papers related to the thermal characterization
of metals inside the pores of the alumina matrix, the authors
have presented the size dependence of the melting tempera-
ture.20,23 At the same time, other geometric parameters such as
the concentration of wires were not considered. Nevertheless,
the actual structure of materials should be considered, since the
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placement of wire within an inert material is one of the ways to
improve the stability of the nanoparticles.

In our previous papers we have shown that the actual
structure of nanocomposites must be allowed for when con-
ducting simulations.24,25 In our previous studies the bulk
density of the energy of deformation in composites with
metallic nanowires in AAO was estimated and model calcula-
tions were performed.

The main aim of this work is to create a predictive model
which can allow the numerical calculation of the melting tem-
perature of the nanowire–AAO composites. In this study, we have
synthesized highly ordered In, Sn, and Zn nanowire arrays within
the pores of AAO membranes by electrochemical deposition.
A series of samples with different diameters and concentrations
of metallic wires have been investigated by differential scanning
calorimetry (DSC) to assess the melting point.

The general assumption accepted in the model is that in
a considered uniaxially reinforced nanocomposite the com-
ponents are isotropic and the position of nanowires in the
template is random. However, the material is assumed to be
statistically homogeneous as a whole. This assumption results
in the existence of an average distance between wires that may
be related to the loading of the metal in the composite. Thus,
the relation h/r is an important characteristic parameter of the
nanocomposite structure (structural parameter). An averaged
elementary volume can be considered as a regular hexagonal
prism with one cylindrical nanowire oriented along the z axis in
the centre. Some of these elementary volumes are schematically
shown in Fig. 1a. Fig. 1b shows the cross-section of one
elementary volume orthogonal to the z axis.

The concentration of the nanowires is considered by intro-
ducing appropriate structural parameters along with their
diameter when modelling the melting processes. Thus, the
model accounts for both the diameter of nanowires and the
mechanical stress that originated from the difference in the thermal
linear expansion coefficients (TLECs) of metals and the oxide
matrix respectively. The observed melting behavior of embedded
nanocrystals is then correlated with the suggested theoretical
considerations. The presented model supported with experi-
mental results will allow optimization of conditions for forma-
tion of semiconductor nanowires in the pores of the refractory

matrix by additional post-treatment of metallic nanowires at
temperatures close to their melting point.

2. Experimental

Anodic aluminum oxide was fabricated by using a two-step
anodization process in a solution containing 40 g l�1 of oxalic
acid as described elsewhere.26 The obtained oxide samples were
thoroughly washed and dried followed by treatment in a solution
containing 3 wt% H3PO4 at 35–37 1C for 0, 15, 25, 35, and 45 min
to form templates with different porosities.

Self-standing AAO membranes were obtained by dissolving the
non-oxidized metallic Al in a mixture of 0.1 M CuCl2 and 10 wt%
HCl. The barrier layer was removed via immersion in 0.5 M NaOH
solution for a short time. The conductive layer on the backside of
alumina membranes was applied by deposition of a 100 nm thick
Ti layer followed by a 200 nm thick Cu layer using PVD.

Metallic nanowire arrays have been prepared by electro-
chemical deposition inside the pores of the alumina matrix at
ambient temperature in a galvanostatic mode, the current density
was about 5 mA cm�2. The composition of solutions27 used for
the electrodeposition process is given in Table 1.

Electrosynthesis was carried out using a two-electrode cell
providing contact of the solution with the AAO matrix on one side
only. The anode material was identical to the deposited metal.
The process was continued until the moment when a metallic
film appears on the surface, this film was then removed in the
consequent step by gentle polishing. The samples were then
rinsed with deionized water and dried in a nitrogen stream. Fig. 2
shows the flowchart of the AAO template-based fabrication of
metallic nanowire arrays.

The structure of nanocrystal arrays in pores of the alumina
matrix was characterized by X-ray diffraction analysis. Measure-
ments were carried out using the multifunction X-ray unit
)X-Ray MiniLab* operating in a diffraction mode. Samples were
studied in the Y � 2Y scan mode with a wavelength l (CuKa) =
1.54 Å using Bragg–Brentano focusing.

Morphology of formed structures was investigated by scan-
ning electron microscopy. Measurements were carried out using
the Helios NanoLab 650.

Thermal properties of the obtained composites were char-
acterized using a differential scanning calorimeter DSC 204 F1
Phoenix (Netzsch). Heating of samples (3–5 mg) was carried out
in aluminum crucibles at a rate of 10 K min�1 under an argon
atmosphere. Empty Al crucibles were used as references.

Fig. 1 Schematic representation of the composite structure: (a) several
elementary volumes and (b) an elementary volume in the cross-sectional
plane.

Table 1 Solutions used for electrodeposition of different metals

Metal Components Concentration (g l�1)

Indium In2(SO4)3 150
Na2SO4�10H2O 10

Tin SnSO4 40
H2SO4 100

Zinc ZnSO4 300
H2SO4 10
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3. Results

Fig. 3 shows the top view and the cross-sectional view of AAO
membranes filled with tin nanowires.

One can see that the deposited metal completely fills the
pores. In this case the diameter of the nanowire is assumed to
be equal to the inner pore diameter. Values of the pore radius
and the structural parameter of the alumina matrix were
determined from the microscope data using statistical analysis
of micrographs taken on the sample surfaces. Fig. 4 illustrates

the change in the character of the structural parameter and the
pore radius depending on the time of treatment with a 3 wt%
H3PO4 solution.

The structure of obtained In, Sn, and Zn nanowire arrays
embedded in the AAO membranes was studied using XRD.
Fig. 5 shows X-ray diffractograms of the respective samples.
The obtained diffractograms clearly demonstrate the presence
of electrodeposited metals (In, Sn, Zn) as well as peaks which
correspond to unetched aluminum remnants.

The analysis of XRD results do not show any signs of strong
texturing of polycrystallites in the pores. The wide signal in the
range of 2Y angles up to 301 is associated with the scattering of
X-rays on the amorphous porous alumina matrix.

Fig. 6 shows DSC heating curves of composites with different
values of the structural parameter h/r. DSC analysis was also
performed on an empty AAO membrane and electrochemically
deposited bulk films of indium, tin, and zinc for the correct
comparison of the temperature effects observed for the metal
filled AAO membranes.

No thermal effects were detected on the DSC curve of the
empty AAO membrane. Heating curves of bulk metal probes are
also shown in Fig. 6.

The melting point was determined from the onset tempera-
ture of the endothermic peak. Melting temperature of indium,
tin, and zinc nanowires was analyzed for composites having
different loadings of metals determined by controlling the geo-
metrical parameters.

It can be clearly seen that the melting temperature of nano-
wires embedded in the oxide matrix is remarkably lower than
that of the bulk metal. There is also a well-defined trend

Fig. 2 Schema of the nanowire array fabrication process by electrode-
position: (a) first step anodizing of aluminum, (b) removal of the low
ordered oxide layer, (c) second step anodizing of aluminum, (d) removal
of unreacted aluminum and the barrier oxide layer, (e) deposition of the
conductive layer, and (f) electrochemical growth of metal nanowires.

Fig. 3 SEM cross-sectional view (a) and top view (b) of the AAO–Sn
composite.

Fig. 4 Dependence of the structural parameter and the pore radius of the
alumina template on etching time in H3PO4 solution.

Fig. 5 X-ray diffractograms of In (a), Sn (b), and Zn (c) nanowire arrays in
the AAO membranes.
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showing a decrease of the melting point with an increase of the
structural parameter h/r for all the metals under study.

4. Model

The following tasks should be resolved first when creating a
model predicting the melting point of metallic nanowires electro-
chemically deposited into AAO pores:

(a) to correlate the distance between the wires with struc-
tural parameters that can be measured directly,

(b) to derive mathematical formulas convenient for numerical
analysis without losing information about the structure of the
composite.28,29

One can assume that each nanowire has an average radius r
and the distance from the center of a regular hexagon to its side
is r + h (see Fig. 1b). The base area of the elementary cell is then

S ¼ 2
ffiffiffi
3
p
ðrþ hÞ2, and the cross sectional area of the wire is

Sw = pr2. Defining the concentration of wires as nw = Sw/S,
we have

nw ¼
p

2
ffiffiffi
3
p
ð1þ h=rÞ2

; nm ¼ 1� nw:

The index ‘‘w’’ here and below denotes the values related
to the metallic wires, while ‘‘m’’ indicates those related to the
matrix.

The characteristic parameter defining the structure of the
composite can thus be represented by the concentration of
nanowires as

h

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

2
ffiffiffi
3
p
� nw

r
� 1: (1)

It is evident that the maximum theoretical value of the concen-
tration of nanowires is observed when h/r - 0, which corre-

sponds to nw !
p

2
ffiffiffi
3
p � 0:9.

The minimum value of the concentration of wires is
observed when h/r - N; hence, nw - 0. This range of
concentrations for nanowires corresponds to the boundaries
of the applicability of the suggested approach for simulation of
such materials.

Derivation of model

The melting point Tm of the cluster enclosed in a refractory
matrix can be described by the following equation:30,31

Tm � Tm;1
Tm;1

¼ 1

DHm;1
DE þ slm � ssmð ÞA

V

� �
; (2)

where Tm,N (K) is the melting point of the corresponding bulk
material; DHm,N (J m�3) is fusion enthalpy; DE (J m�3) is strain
energy density resulting from the volume change upon melting;
slm and ssm (J m�2) are liquid/matrix and solid/matrix interface
energies, respectively; and A/V (m�1) is the parameter account-
ing for the form of the nanowire and is equal to the ratio of
surface area to volume.31 Formula (2) will be further used to
calculate the melting temperature of metallic nanowires
enclosed in the pores of the alumina matrix. The A/V ratio for
the cylindrical shape wire is:

A

V
¼ 2

r
þ 2

L
;

where r is the radius of the nanowire in the cross-sectional
plane and L is the length of the nanowire.

The term 2/L can be neglected since the length of the nano-
wires in the experiment is about 30 microns. Then eqn (2) can
be transformed into the following form:

Tm � Tm;1
Tm;1

¼ 1

DHm;1
DE þ 2ðslm � ssmÞ

r

� �
: (3)

The next step is to perform a more detailed description
of the calculation of each parameter included in eqn (3).
The average values of the surface energies can be used as
the interphase energies of melt/matrix slm and nanocrystal/
matrix ssm:

slm ¼
sAl2O3

þ sl
2

; ssm ¼
sAl2O3

þ ss
2

; (4)

where sAl2O3
= 169 mN m�1 is specific surface energy of anodic

alumina;32 sl and ss are specific surface energies of liquid and
solid metals near the melting point, respectively31,32 (Table 2).
The heats of fusion31,32 for considered metals are also given
in Table 2.

Fig. 6 DSC curves of composites with (a) indium, (b) tin, and (c) zinc nanowires with various values of the structural parameter h/r. Curves marked ‘‘bulk’’
correspond to bulk metal film electrodeposited under similar conditions.
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The strain energy density, DE, is determined by the mechanical
stress caused by the difference between the TLECs of nanowires
and the matrix.30 The correct definition of DE is one of the main
problems that arise when building up a prediction model. Below,
the solution of the model equation is described in a step by
step way.

First of all, the data on the thermoelastic properties of
composite components are required. Detailed information about
these characteristics is known from the literature33–37 as given
in Table 3.

The derivation of equation for DE is based on the general-
ized singular approximation of random field theory.38 From the
physical point of view, using this approximation is equivalent
to the assumption about homogeneity of physicomechanical
fields within the individual element in a composite medium.
The strain energy density DE is defined as the value resulting
from the averaging procedure:

DE = nwEw + nmEm, (5)

where Ew and Em are appropriate energies in the wire and
matrix respectively.

The bulk strain energy density E(r) is one of the most
important local physicomechanical characteristics of hetero-
geneous media. Here, r is the radius vector of a random point
in the medium; E(r) = Ew, in the wire and E(r) = Em, in the
matrix. E(r) is defined as:28,29

E(r) = 1
2eij(r)sij(r), i, j = 1, 2, 3. (6)

The composition of tensors of deformation eij(r) and strain
sij(r) considers the contraction on the corresponding indices.
Adequate simulation of the laws of change in E(r) enables the
correct prediction of their behavior under loading conditions
(critical in particular) in designing materials. It can give

recommendations for the choice of component compositions
and their concentrations.

Using the generalized Hook’s law

eij(r) = sijkl(r)skl(r), i, j, k, l = 1, 2, 3,

where sijkl(r) are components of compliance tensor s; eqn (6) for
E(r) can be written as

E(r) = 1
2sijkl(r)skl(r)sij(r). (7)

The basis for analysis of the distribution of the local values
of elastic energy is determining the relationship between strain
sij(r) in one element and the average (external) strain hskl(r)i
applied to the entire composite. The most convenient charac-
teristic which enables performing this analysis is the operator
of strain concentration Ks(r) (a fourth-order tensor) with com-
ponents Ks

ijkl(r):28,29,39–41

sij(r) = Ks
ijkl(r)hskl(r)i. (8)

Eqn (7) can then be rewritten as

E(r) = 1
2sijkl(r)Ks

klmn(r)hsmn(r)iKs
ijpq(r)hspq(r)i. (9)

The suggested approach which related the assessment of the
local stress–strain state of an inhomogeneous medium using
the operator Ks(r) is convenient because it allows us to exclude
information about external mechanical action due to the fact
that Ks(r) is only dependent on the parameters of the medium
and the material structure.28,29,39–41

The equations for the equilibrium of an elastic hetero-
geneous medium must be solved for the correct analysis of
the local stress concentration in the composite enabling us to
take into account the interaction of elements of heterogeneity,
composition and structure of the material, shape and concen-
tration of inclusions. However, in general, it is impossible to
derive the relation for numerical calculations Ks(r). Therefore,
various approximations are used for its calculation. Within the
framework of generalized singular approximation only the singular
component of Green’s tensor of equations for the equilibrium
is used. It depends only on the Dirac delta function. A homo-
geneous reference body whose material constants are included
in the final expression for calculating Ks(r) is also introduced.
In this case, the equation for Ks(r) has the following form
(indices here and below are omitted for convenience whenever
possible):28,29

Ks(r) = c(r)(I � gc00(r))�1hc(r)(I � gc00(r))�1i�1, (10)

where I is a unit tensor of the fourth order; c is the elasticity
modulus tensor; fourth-order tensor g is an integral from a
singular component of the second derivative of Green’s tensor
for equations of equilibrium. The double primes indicate the
difference between the corresponding parameters of a hetero-
geneous medium and a homogeneous reference body, charac-
teristics of which are denoted by the superscript ‘‘ref’’: c 00(r) =
c(r) � cref. The angular parentheses here and below determine
the procedure for averaging which for some random variable

Table 2 Specific surface energies sl, ss and fusion enthalpy DHm,N of
metals

Metal sl (mN m�1) ss (mN m�1) DHm,N (MJ m�3)

Indium 566 633 210
Tin 515 680 430
Zinc 650 830 790

Table 3 Thermoelastic characteristics of composite components

Material

Young’s
modulus
E (GPa)

Poisson’s
ratio m Tm,N (K)

aJ � 106

(K�1)
a> � 106

(K�1)

Indium 10.5 0.46 429.6 �42.0 (400 K) 79.5 (400 K)
Tin 48 0.33 504.9 41.4 (500 K) 20.3 (500 K)
Zinc 115 0.325 692.6 50.3 (650 K) 27.9 (650 K)
Alumina 140 0.32 1273a 6.46 (400 K) 5.82 (400 K)

7.38 (600 K) 6.68 (600 K)
7.99 (800 K) 7.23 (800 K)

Note: aJ and a> are the values of TLECs parallel and perpendicular to
the z axis (wire), respectively. a Temperature corresponding to the
beginning of geometric parameter changes in alumina.
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a(r) in the case of the composite containing matrix and iso-
tropic inclusions is reduced to summing

ha(r)i = nwaw + nmam, (11)

where nw + nm = 1.28,29,42

Components gijkl of g tensor can be calculated upon knowing
components aijkl of the fourth-rank tensor A as the following:

aiklj ¼ �
1

4p

ð
nknjtil

�1dO; (12)

and then symmetrization is performed using pairs of i and j
and k and l indices.38

In eqn (12), dO = sin y dydj is an element of the solid angle
in a spherical system of coordinates; til

�1 are the elements of the
reverse matrix T with elements til = cref

ikljnknj; nk and nj (k, j = 1, 2, 3)
are components of a vector of an external normal to the
inclusion’s surface. For ellipsoidal inclusions with principal
semiaxes l1, l2, and l3 the components of the normal vector are
determined by the relationship:

n1 ¼
1

l1
sin y cosj; n2 ¼

1

l2
sin y sinj; n3 ¼

1

l3
cos y:

For the matrix structure, the parameters of the reference
body can be considered to correspond to the respective char-
acteristics of the matrix.42

When considering inclusions in the form of nanowires with
principal semiaxes l1 = l2 = r, l3 -N, the following relation will
be satisfied for the components of the normal vector:

n1 ¼
1

r
sin y cosj; n2 ¼

1

r
sin y sinj; n3 ! 0:

The elastic characteristics of the matrix can be taken as the
parameters of the reference body. Then in eqn (10), c 00(r) = c(r)�
cm, and c 00(r) = cw � cm in calculations for the nanowires and
c 00(r) = 0 for the matrix. Considering eqn (5), the equation for a
strain concentration operator in the nanowire would take the
form:28,29

Ks
w = cw(I � g(cw � cm))�1 � (nwcw(I � g(cw � cm))�1 + nmcm)�1.

(13)

The equivalent equation for a strain concentration operator
in the matrix has the following form:

Ks
m = cm(nwcw(I � g(cw � cm))�1 + nmcm)�1. (14)

Eqn (13) and (14) are used for further model calculations of
the bulk strain energy density E(r) (in the wires and the matrix)
using formula (9). Furthermore, the operator of strain concen-
tration K s(r) will be used for deriving the formula for predicting
the value of the average stress hskl(r)i that originated from the
difference between the TLECs of isotropic components of the
uniaxially reinforced composite.

The next step is to derive the relation for calculating hskl(r)i
which in turn can be used for calculation of E(r) using formula (9).

It should be noted that for real inhomogeneous media,
operator Ks(r) is nondegenerate.28,29 Therefore, using the inverse
of the Ks(r) tensor, one can calculate the average stress hskl(r)i.
The local stress then has the following form:

sij(r) = cijkl(r)akl(r)DT.

Here, akl(r) are the thermal expansion tensor components
and DT is the temperature change. The following expression
can be written for a composite with isotropic components:

akl(r) = a(r)dkl,

where a(r) is the thermal expansion coefficient, with a(r) = am for
the matrix and a(r) = aw for the inclusions, and dkl is the Kronecker
symbol. The contribution of the local stress state of an individual
inclusion to the average stress state of the composite is then

hswi = (Ks
w)�1sw = (Ks

w)�1cwawDTdkl.

For an individual infinitesimal volume of matrix, the con-
tribution of the local stress state to the average stress state of
the composite is

hsmi = (K s
m)�1sm = (K s

m)�1cmamDTdkl.

Taking into account eqn (11), the average stress induced by
the thermal expansion of the uniaxially reinforced composite
with isotropic components can be defined as:

hsij(r)i = nwhswi + nmhsmi, or

hsij(r)i = (nw(K s
w)�1cwaw + nm(K s

m)�1cmam)DTdkl. (15)

DE can be calculated using relation (5) when the volume
concentration of wires in the composite and relations (13)–(15)
for calculations E(r) = Ew and E(r) = Em (according to formula
(9)) are known.

Thus, the model built for metal nanowires–AAO composites
allows us to take into account the radius of wires and their
concentration and can be used for modeling thermoelastic
characteristics24,25,43,44 as well as melting processes of nano-
wires embedded in a refractory matrix (see (3)).

Numerical calculations

The tensors written in the matrix form were employed in the
numerical calculations. The nonzero elements cij (i, j = 1,. . .,6) of
the elastic modulus tensor c for an isotropic material can be
expressed through its Young’s modulus E and Poisson’s ratio m:38

c11 ¼ c22 ¼ c33 ¼
Eð1� mÞ

ð1þ mÞð1� 2mÞ;

c44 ¼ c55 ¼ c66 ¼
E

2ð1þ mÞ;

c12 ¼ c13 ¼ c23 ¼
Em

ð1þ mÞð1� 2mÞ:

At first, model calculations of the strain concentration
operator for matrix and wires depending on the structural
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parameter h/r were carried out using formulas (13) and (14).
The results of numerical modeling of stress and strain concen-
tration operators for these materials are published elsewhere.44

Furthermore, for the same composites the model calculations
of the average stress hskl(r)i were performed using relation (15)
on the basis of calculated dependence of stress concentration
operator components on h/r. Calculations of hskl(r)i were per-
formed at T E Tm,N K, DT = 20 K in perpendicular and parallel
directions to the wires. Here, the values aJ and a> were firstly
subjected to the procedure of linearization of available data
given in Table 3. For example, the calculated value aJ for Al2O3

at 500 K (a temperature close to Tm,N of tin) is the arithmetical
mean of its values at 400 K and 600 K given in Table 3, i.e. aJ =
6.92 � 10�6 K�1. Then, calculated in this way values aJ and a>
for each material were averaged using the following formula:

a ¼
2a? þ ak

3
:

Exactly these averaged values aw and am were used in model
calculations carried out using relation (15). The results of numer-
ical modeling of hskl(r)i for these materials have been presented
earlier.24 Note that it is necessary to know for the calculation of E(r)
according to formula (9) the values of the elements sij(i, j = 1,. . .,6)
of s matrix of compliance tensor. To get sij one should use the fact
that s = c�1.42 The results of numerical modeling of E(r) for these
materials have been also reported previously.25

Data presented in Tables 2 and 3 combined with slm, ssm, andDE
values calculated using eqn (4) and (5) were used to calculate melting
temperature Tm using formula (3) for indium, tin, and zinc nano-
wires electrochemically deposited into the AAO pores. The results
of numerical modeling of Tm depending on the structural parameter
h/r are given in Fig. 7. The h/r values used for the calculations
correspond to the real structures measured experimentally by DSC.
A good agreement can be observed between the measured melting
temperatures and ones calculated using the suggested model.

5. Conclusions

The theoretical model for melting temperature dependence on
the structural parameters of metal nanowires embedded in
anodic oxide pores is developed. The model takes into account

the concentration of metallic wires and strain energy caused by
mechanical stress that resulted from the difference between the
TLECs of nanocrystals and the matrix. Model numerical calcu-
lations for embedded indium, tin, and zinc nanowire arrays in
the pores of anodic aluminum oxide have been performed on
the basis of the proposed model.

The ordered arrays of indium, tin, and zinc nanowires with
different geometrical parameters have been synthesized by
electrochemical deposition. Melting of nanocrystals enclosed
in the AAO matrix was investigated by differential scanning
calorimetry. The effect of the structural parameter on the melting
point of embedded indium, tin, and zinc nanowires has been
experimentally determined showing a decrease of the melting
temperature for nanowires with lower diameter.

The appropriateness of the suggested model is confirmed by
results of comparative analysis of experimental and calculated
data, which showed satisfactory agreement of model calcula-
tions and measured values of the melting point.

The proposed model of physical and mechanical properties
and thermal stability ranges of nanowires in oxide templates
will allow us to optimize the processes of production and exploita-
tion of nanocomposites based on AAO.
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