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Abstract

In this paper, an experimental mechanical characterization of the magnesium alloys ZE10 and
AZ31 is performed and a suitable constitutive model is established. The mechanical characteriza-
tion is based on uniaxial tensile tests. In order to avoid poor formability at room temperature, the
tests were conducted at elevated temperature (200°C). The uniaxial tensile tests reveal sufficient
ductility allowing sheet forming processes at this temperature. The differences in yield stresses
and plastic strain ratios (r-values) confirm the anisotropic response of the materials under study.
The constitutive model is established so that the characteristic mechanical features observed in
magnesium alloys such as anisotropy and compression-tension asymmetry can be accommodated.
This model is thermodynamically consistent, incorporates rate effect, is formulated based on finite
strain plasticity theory and is applicable in sheet forming simulations of magnesium alloys. More
precisely, a model originally proposed by Cazacu and Barlat in 2004 and later modified to account
for the evolution of the material anisotropy is rewritten in a thermodynamically consistent frame-
work. The calibrated constitutive model is shown to capture the characteristic mechanical features
observed in magnesium alloy sheets.

Keywords: mechanical characterization, magnesium alloys, constitutive model

1. Introduction

Motivated by the growing demand for light weight materials, research on magnesium and its
alloys has been getting more attention. This is attributed to the fact that magnesium is the lightest
metal in use for the production of structural components with a promising application in the auto-
motive and aircraft industry. Existing applications are mainly based on cast products, whereas the
utilization of semi-finished products such as sheets is to be expanded for the fabrication and ap-
plication of components and structures. Despite the high strength-to-weight ratio, the application
of wrought magnesium such as sheets to light weight structures is limited. However, sheets are a
fundamental form of material for use in numerous industrial applications and almost every metal
is also available as a sheet product which allows the production of formed components.
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The limitation for the structural application of magnesium sheets is correlated with its pro-
nounced anisotropy, the compression-tension asymmetry as well as with its comparably poor
formability, especially at room temperature, cf. [1, 2, 3, 4, 5]. A reason for this behavior is the ap-
pearance of magnesium and its alloys with a hexagonal close-packed lattice structure which limits
the number of active deformation mechanisms in comparison to cubic metals. Therefore the duc-
tility as well as the formability of magnesium sheets is limited which establishes restrictions for
processing steps along the whole process chain, i.e. the rolling procedures for magnesium sheets,
the forming procedures of structural components and the mechanical properties of the resulting
parts.

Pursuing the objective of resolving the aforementioned limitations, recent research on mag-
nesium focuses on two main topics. The first is the development of new magnesium alloys with
improved mechanical properties and especially improved formability, see [5, 6]. It was recently
discovered that alloys which contain a certain amount of rare earth elements such as cerium,
neodymium or yttrium, tend to develop different microstructures and especially textures during
conventional rolling procedures in comparison to established standard alloys such as AZ31. It
has been shown that these different microstructures and textures have a distinct impact on the
sheet formability as well as on the anisotropy of mechanical properties cf. [6]. The second topic
deals with the investigation of the mechanical behavior of magnesium sheet alloys as a function
of the applied processing parameters in the course of component forming. In the present study,
the effect of the temperature on the mechanical behavior will be addressed. The choice of testing
temperatures above room temperature for the investigation is attributed to the fact that only then
a reasonable formability can be achieved. A comprehensive account on this topic can be found in
[7,8,9,10, 11, 12, 13, 14, 15, 16, 17].

The improvement in the formability at elevated temperatures results from the easier activation
of deformation mechanisms such as prismatic slip and < ¢ + a > pyramidal slip, cf. [18, 19, 11].
For commercial magnesium alloys, such as AZ31, the aforementioned studies indicate that suf-
ficient formability is observed for temperatures varying between 150°C and 250°C. Despite the
encouraging efforts made to understand the mechanical behavior of magnesium alloys at elevated
temperatures, the available data on this topic are still limited. In order to supplement these limited
data as well as to obtain further insight into the mechanical behavior, an experimental mechanical
characterization of Mg alloy sheets is performed. The assessment of the sheet performance is often
based on uni-axial mechanical testing in which strength properties, ductility, in-plane anisotropy
(r-value) and strain hardening behavior are characterized. Empirical approaches for the deter-
mination of optimum forming conditions based on these data alone are not sufficient. Forming
procedures such as stretch forming and deep drawing generally involve more complex loading
conditions. Accordingly, there is a need for accurate simulation techniques for metal forming
using the finite element (FE) analyses, which represent the current state-of-the-art in virtual proto-
typing, cf. [20]. For realistic finite element predictions, it is vital to use accurate plasticity models.
As the quality of the prediction strongly depends on the constitutive model used, the calibration of
the constitutive model parameters becomes a key issue.

Evidently, a suitable material model for numerical simulations of complex processes, such as
sheet forming, should be computationally efficient. For that purpose, the so-called phenomeno-
logical constitutive models are commonly used. Over the years, several authors have proposed
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a number of such models describing the yielding behavior in terms of macroscopic yield func-
tions, cf. [21, 22, 23, 24, 25, 26, 27]. For instance, von Mises proposed the first yield function
for anisotropic materials in the form of a quadratic function, cf. [21, 20]. Later, Hill introduced
a modification of this model for application to orthotropic materials with reduced parameters of
anisotropy, cf. [22]. A number of alternative and versatile anisotropic models can be found in
[23, 24, 25]. However, they do not capture an important feature in magnesium alloy sheets, namely
the stress-differential effect. Cazacu and Barlat introduced a yield function (CaBa2004) as a mod-
ification of the Drucker model, having the capability to account for the material anisotropy as well
as for the stress-differential effect, cf. [26, 27]. The yield function presented in this work is based
on CaBa2004. It is rewritten in tensor form employing 4th-order transformation tensors associ-
ated with the distortion of the yield locus. Even more important and different to CaBa2004, such
tensors are not constant here, but evolve according to suitable evolution equations, see [28, 29].
By doing so, the distortional hardening effect (change in shape of the yield locus) can be taken
into account. Furthermore, in order to insure a physically sound relation, the constitutive model is
recast into a thermodynamically consistent form, cf. [30, 31, 32].

2. Material characterization

2.1. Materials under investigation

Two different commercial magnesium rolled sheets have been selected for investigation: A
relatively new alloy, ZE10 (Mg + 1%Zn + 0.3%Ce based mischmetal) and the well known and
widely used alloy AZ31 (Mg + 3%Al + 1%Zn) in a heat treated condition (O-temper) (for detailed
assessment of sheet conditions the reader is referred to [33]). Both sheets have a thickness of
1.3mm. The differences in the mechanical behavior and the formability of the two magnesium
sheet alloys have been described in earlier works, see [5, 34, 16]. ZE10 shows improved ductility
at room temperature compared to AZ31 which is associated with an effect of the included rare
earth elements and the result of deformation and recrystallization during sheet rolling. In Fig. 1
micrographs of the two sheets are presented which show that the grain structure is comparable
between both sheets. Therefore no significant differences for the mechanical behavior are expected
as a result of this feature of the microstructure. Fig. 2 shows the re-calculated (0002) basal pole
figures representing the texture of the sheets which was assessed on pole figure measurements
using a standard x-ray diffraction setup with a goniometer. The AZ31 sheet has a strong basal
texture with a preferential alignment of basal planes in the sheet plane. It is understood that
this preferential alignment inhibits a good ductility and formability of this sheet because basal
slip as the preferred deformation mechanism is not easily activated in such orientations [5, 34].
Furthermore, the angular distribution of basal planes between the normal direction (ND) of the
sheet and the rolling direction (RD) is broader compared to the one between the normal direction
(ND) and the transverse direction (TD). This favors the activation of basal slip e.g. if stress is
uni-axially applied along the RD rather than along the TD and therefore imposes a pronounced
mechanical anisotropy. The ZE10 sheet exhibits a significantly weaker texture which does not
exhibit the basal character which the AZ31 sheet shows. Basal planes are typically tilted away
from the sheet plane, i.e. the pole figure intensity in ND is low. If it is again considered that
basal slip is the preferred deformation mechanism, such orientations make it easier to activate this
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(a) ZE10 (b) AZ31

Figure 1: Micrographs of longitudinal sections of ZE10-and AZ31- sheets in O-temper condition:
both alloys show well recrystallized microstructures with comparable grain sizes.

AZ31

Figure 2: Basal (0002) pole figures of ZE10- and AZ31- sheets in O-temper condition; AZ31
shows strong basal texture, while a relatively weak texture is observed in ZE10.

glide system, establishing an improved ductility and formability [6, 20]. There is still a broader
distribution of basal planes towards the TD rather than towards the RD which results in an even
more pronounced mechanical anisotropy in uniaxial testing. For a comprehensive description of
textures in relation to the mechanical properties of materials, the reader is referred to [35].

2.2. Mechanical tests

To characterize the mechanical behavior of the magnesium sheets, uni-axial tensile tests were
conducted. Specimens were prepared according to the DIN 50125-H standard. Each specimen
had a gauge length of 60mm and a width of 12.5mm. Specimens were oriented in rolling direction
(RD), 45° and 90° (TD) from RD, see Fig. 3(a). The tests were conducted by a universal testing
machine (Zwick Z050). In order to check the reproducibility of the experimental results, at least
two specimens were tested at room temperature (RT) and at an elevated temperature of 200°C. The
elevated temperature during the tests was achieved by attaching a furnace to the test machine. The
choice of the test temperature 200°C follows from the studies in [7, 8]. These studies indicate that

4



TD Plain sheet
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(a) Tensile test specimen geometry (b) ARAMIS® setup and surface
treatment

Figure 3: Tensile test specimen configuration, experimental setup and surface treatment for
ARAMIS® measurement.

for commercial magnesium alloys such as AZ31, the forming temperature that yields sufficient
formability ranges between 150°C and 250°C. The tests at room temperature are considered to be
references based on which the tests at 200°C are evaluated and described. For the tests conducted
at RT the strain rate was set constant to 0.001/s. In order to quantify the strain rate effects at 200°C,
tests were performed at the three strain rates 0.001/s, 0.02/s and 0.1/s. For deformation measure-
ment, mechanical extensometers in length and width direction and an optical field deformation
measuring system (ARAMIS® system) were used. For the tests at RT, both systems could be used,
allowing for benchmarking the optical (indirect) strain signals. Regarding the elevated tempera-
ture tests, mechanical extensometers could no longer be used due to limitations in the setup with
the attached furnace. Thus, the deformation information has been solely acquired by the optical
system. The use of an ARAMIS® system requires special surface treatment of the test specimens.
This is necessary for establishing a stochastic pattern that can be analyzed with image processing
tools. This was achieved by applying a white developer spray on the background followed by a
graphite spray to create a stochastic pattern with a good contrast, see Fig. 3(b).

The mechanical responses obtained from the tensile tests are presented in terms of direction-
dependent flow curves and r-values. The flow curves relate the true stresses with the logarithmic
plastic strains. The true stress is computed from the force-displacement signal assuming material
incompressibility during plastic deformation. Following the common practice, the true stresses
are calculated for each test up to specimen fracture. After the onset of necking the stress state
turns to be multiaxial, thus the significance of the calculated stress is limited. This is attributed in
the figures by adding a shaded area to the strain interval in which strain localization (diffuse and
localized necking) occurs.

The anisotropy of sheet metals can be characterized by the r-value defined as

1
a

= (D

r

where £ and sf’l are the logarithmic plastic strains in the width and thickness direction, respec-

tively. By assuming material incompressibility the strain gfl is calculated from the longitudinal
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and transverse plastic strains, i.e.,

pl - _ pl pl = - _ Slv)v]

& (g +e&, r —gfl " gEJ , )
where 81101 is plastic strain in the longitudinal direction. Eq. (2) is only valid for small plastic defor-
mation or for deformation paths with a constant strain direction. Such conditions are reasonably
well met for the considered experiments. The r-values are computed at all levels of the deformation
taking advantage of the continuous measurements of the ARAMIS® system.

2.3. Results and discussion

2.3.1. Mechanical response at room temperature
The results of the tensile tests at RT are shown in Tab. 1 and Figs. 4 and 5. The flow curves
obtained for the alloy ZE10 show higher yield stresses in RD than in TD and 45, see Fig. 4(a).
This manifests the anisotropic behavior of the material. The yield stress difference is less pro-

Mat. | Ori. | YS (MPa) | UTS (MPa) | Us (%) | Ts (%)
RD 144 229 11.3 16.3

ZE10 | 45° 121 221 15.2 22.6
TD 111 220 15.7 18.9
RD 163 266 18.3 21.5

AZ31 | 45° 175 269 16.7 20.3
TD 187 275 16.0 17.4

Table 1: Yield stresses (YS) and ultimate tensile stresses (UTS) together with uniform (Us) and
total (T's) strain to fracture measured for ZE10 and AZ31 at RT.

nounced between TD and 45°. Represented by the shaded area, Fig. 4(a) also reveals an observable
amount of localized deformation. Similar tests on AZ31 show higher yield stresses in TD than in
45°, which in turn is greater than the response in RD, see Fig. 4(b). Thus, the trend with respect
to the stress level is reversed in AZ31 compared to ZE10: Whereas TD is strongest among the
three orientations tested in AZ31 it is the weakest in case of ZE10. More generally, AZ31 shows
a higher stress level, compare also Tab. 1. Although ZE10 undergoes a larger interval of localized
deformation, the level of ductility for both alloys is similar.

A comparison of the r-values is also carried out for the two alloys. These r-values shown here
are evaluated based on the strain measurements obtained from the ARAMIS® system. According
to Fig. 5(a), the r-values for ZE10 at RT are below or around one. The different orientations reveal
only a slight difference in r-values. The curves describing the r-values as a function of the strain
show a small dependency at small strains — at strains above 0.05 the r-value appears to be constant.

The r-values for AZ31 are plotted in Fig. 5(b). From the figure, it can be seen that they are
found to be strain-dependent. Although such behavior is not in line with the conventional approach
of adopting a constant r-value, often taken within a strain range of 5 to 20 percent, cf. [20, 36],
it is consistent with results reported in [17]. Overall, it is observed that the r-values of AZ31 are
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Figure 4: Flow curves measured for ZE10 and AZ31 at room temperature; the shaded section
corresponds to localized deformation.
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Figure 5: r-values measured for ZE10 and AZ31 at room temperature; the shaded section corre-
sponds to localized deformation.

much higher than those of ZE10. Thus, AZ31 reveals a stronger anisotropy than ZE10 based on
the r-values. This does not hold for the yield stresses, where ZE10 exposes a more pronounced
anisotropy compared to AZ31.

2.3.2. Mechanical responses at 200°C

The effect of temperature on the mechanical response is quantified based on equivalent uniaxial
tensile tests as described above conducted at 200°C at a constant strain rate of 0.02/s. Concerning
ZE10, the first observation is a significant increase in total strain, which implies an increase in
ductility, see Tab. 2. However, as indicated by the shaded area in Fig. 6(a), a significant increase
in localized deformation is also recorded. Another observation is a significant drop in the yield
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Mat. | Ori. | YS (MPa) | UTS (MPa) | Us (%) | Ts (%)
RD 86 112 17.1 50.7

ZE10 | 45° 78 104 19.5 73.7
TD 80 105 19.3 64.4
RD 80 119 12.1 53.8

AZ31 | 45° 81 118 10.9 53.7
TD 86 122 10.3 52.5

Table 2: Yield (YS) and ultimate (UTS) tensile stresses together with uniform (Us) and total (Ts)
strains measured for ZE10 and AZ31 at 200°C.
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Figure 6: Flow curves measured for ZE10 and AZ31 at 200°C and strain rate of 0.02/s; the shaded
section corresponds to localized deformation.

stress. It can also be seen that the yield anisotropy becomes less compared to that measured at
RT. Similar observations regarding the stress-strain responses for AZ31 have also been made. A
large increase in the total strain indicates an improved ductility, see Tab. 2. However, the uniform
deformation range decreases along with the yield stress, which diminishes by more than 50 percent
of the stress at RT. Fig. 6(b) also shows a less pronounced yield anisotropy.

From the strain measurements the r-values have been computed for both ZE10 and AZ31.
In Fig. 7, it is shown that the r-values of the two alloys are influenced differently by the test
temperature. The r-values for ZE10 show a slight increase compared to those measured at RT.
Similar measurements for AZ31, however, show a decrease in r-values within the same strain
range, see Fig. 7(b). These values show no saturation within the uniform deformation range. This
suggests that the r-values have a stronger dependence on strain at 200°C than at RT.

In order to quantify the strain rate effect of the analyzed alloys, additional uniaxial tensile tests
at strain rates of 0.001/s and 0.1/s were conducted. The resulting effects are discussed in terms
of the (representative) stress response for a specimen orientation of 45, see Fig. 8. The figures
indicate a positive strain rate dependency, i.e. the stress increases with increasing strain rate.
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Figure 7: r-values measured for ZE10 and AZ31 at 200°C and strain rate of 0.02/s; the shaded
section corresponds to localized deformation.
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Figure 8: Effect of strain rate on the flow curves for ZE10 and AZ31 for strain rates of 0.1/s, 0.02/s
and 0.001/s at 200°C; the shaded section corresponds to localized deformation; orientation 45°.

The logarithmically scaled relation between the yield and ultimate stresses and the strain rates is
depicted in Fig. 9. The effect of strain rate on ductility is quantified in Tab. 3. Accordingly, in the
case of AZ31, the latter effect is small, whereas in the case of ZE10 the fracture strain decreases
with increasing strain rate.

Fig. 10(a) for ZE10 and Fig. 10(b) for AZ31 demonstrate the effect of strain rates on the r-
values. It is observed that, in the case of AZ31, the increase in strain rate increases the r-values.
This also implies a considerable effect on the material anisotropy. According to the report in
[17] and contrary to the above observation, the r-value at room temperature for AZ31 is shown to
decrease with an increase in strain rate. For ZE10, although not as considerable as the increase in
the case of AZ31, the increase in strain rate reduces the r-values.
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Figure 9: Effect of strain rate on the yield (YS) and ultimate (UTS) stresses at 200°C’; orientation
45°,

Mat. Rate | YS (MPa) | UTS (MPa) | Us (%) | Ts (%)
0.001/s 73 91 19.4 87.6
ZE10 | 0.02/s 78 104 19.5 73.7
0.1/s 81 109 18.6 61.8
0.001/s 72 94 10.0 59.7
AZ31 | 0.02/s 81 118 10.9 53.7
0.1/s 85 137 12.1 51.8

Table 3: Strain rate effect on yield stress (YS), ultimate stress (UTS), uniform strain (Us) and total
strain (Ts) measured for ZE10 and AZ31 at 200°C; orientation 45°.

A comparison of the stress response of differently oriented specimens under different strain
rates (not shown here) revealed that the strain rate has a small effect on the material anisotropy in
terms of the stress response. Thus, the rate effect on the material anisotropy can be neglected.

3. Constitutive model

Within the previous section, the magnesium alloys AZ31 and ZE10 were characterized by
analyzing the mechanical response during uniaxial tension tests. According to such tests, both
alloys show an anisotropic yielding behavior. Furthermore, a strain rate dependency could also
be observed. However, the aforementioned findings are strictly speaking restricted to uniaxial
tension tests. A convenient way of extending them to more complex stress states, e.g. those
characteristic of metal forming applications, is provided by physically sound constitutive models.
This is discussed in the present section. Since the focus is on the mechanical behavior prior to
macroscopic damage initiation, the framework of finite strain plasticity theory is adopted.
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Figure 10: Effect of strain rate on r-values for ZE10 and AZ31 for strain rates of 0.1/s, 0.02/s and
0.001/s at 200°C; the shaded section corresponds to localized deformation; orientation 45°.

3.1. Fundamentals of elastoplasticity at finite strains

The fundamentals of plasticity theory at finite strains as well as the used notations are briefly
introduced here. A summary of the most important equations is given in Tab. 4. According
to Tab. 4, the yield function, the flow rule and the evolution equations are defined with respect
to the intermediate configuration. By doing so, the principle of material frame indifference is
automatically fulfilled, cf. [38].

Most equations shown in Tab. 4 can be applied to a broad range of different materials. A typical
example is given by the multiplicative decomposition of the deformation gradient (see Eq. (3)).
By way of contrast, some functions depend strongly on the material to be modeled. Those are the
Helmbholtz energy ¥, the flow rule characterized by the function M (see Eq. (6),), the evolution
equations defined by g (see Eq. (6),) as well as the yield function f.

Since the elastic response of magnesium is not strongly anisotropic, it can be reasonably ap-
proximated by an isotropic constitutive model. For this reason, the Neo-Hookean energy

We(Ce) = %(Jez 1) - (g ; ,u)ln I+ %‘ (trCe — 3) ®)

is adopted in the present paper. Here, A and u represent the Lame parameters, J¢ = detF° and tr is
the trace operation, cf. [39, 40]. Concerning the flow rule, the normality assumption is a frequent
choice. It is also adopted in the present paper implying

M=90sf = LM=20sf 9)

In order to complete the constitutive model, the functions f, g and P?' remain to be defined. To
guarantee thermodynamical consistency, they have to fulfill the reduced dissipation inequality

D=X:L+ ¥ >0. (10)

Evolution equations complying with Eq. (10) will be elaborated in the following section.
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e Multiplicative decomposition of the deformation gradient F into the elastic part F® and the
plastic part FP!, cf. [37]

F=F - F' with det(F) > 0 and det(F*) >0 (3)

e Additive decomposition of the Helmholtz energy ¥
¥ = ¥(C%) + PP (@), with C°:=F°".F® (4)
Here, @ € R" is a set of internal strain-like variables associated with hardening.
e Space of admissible stresses Sy based on a convex yield function f

Sy = {(£.Q) e R

FEZ.0) <0}, with Q=-0,%" (5)
Y =2 C®- dc-Y denotes the Mandel stresses and @ is a stress-like variable conjugate to a.
e Flow rule and evolution equations defined by the functions M and g
P = . 2 A ME,0), a=1gZa) (6)

Here, A denotes the plastic multiplier and the superposed dot represents the material time
derivative.

e Karush-Kuhn-Tucker optimality conditions

1>0, f<0, Af=0 (7)

Table 4: Fundamental equations defining rate-independent plasticity theory at finite strains. The
yield function, the flow rule and the evolution equations are defined with respect to the intermediate
configuration.
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3.2. A yield function describing magnesium alloys

According to Section 2, a yield function suitable for the modeling of magnesium alloys has to
capture the stress differential effect. Furthermore, and in line with the underlying atomic lattice
structure of the material, the yield function should only depend on the stress deviator, i.e., it
should not be affected by hydrostatic stresses. A function complying with such requirements was
presented in a series of papers by Barlat and co-workers, cf. [27]. It is referred to as CaBa2004 in
what follows. This function is also adopted in the present paper. However, and in sharp contrast
to the cited work, the model is re-formulated in terms of Mandel stresses automatically fulfilling
the principle of material frame indifference. Furthermore, it is rewritten in tensor notation here.
This new notation has several advantages - particularly, for incorporating distortional hardening
(distortion of the yield function). Considering perfect plasticity (no hardening), the yield function
CaBa2004 reads in tensor notation

F=o@ -1, with ¢E) = [LE)] +LE). (11)

Here and henceforth, 7, is the (for now constant) yield stress and J35(X) and J5(X) are the modified
second and third invariants of X. They are defined as

1 - = 1 - = =
B=5u@ E) and S =g uE L), (12)

where stress tensors El and El follow from the linear transformations
L, =H,:X and X,=H,:Z. (13)

Here, H; are fourth-order tensors. According to Eqgs. (11)—(13) by setting H, = 0 and H;, =
I- % 1® 1, a von Mises-type yield function is obtained.

Although the presented constitutive model is conceptually relatively simple, the number of the
respective material parameters is very large. More precisely, with 7, € R and H; € R¥>3*¥%3 163
material parameters have to be calibrated. Clearly, that is numerically and physically not practical.
However, it turns out that this large number of material parameters can be significantly reduced by
enforcing some physical constraints. These constraints are:

e Major symmetry: Similarly to the fourth-order elasticity tensor, H,; and H, are assumed to
show major symmetry. That is equivalent to the existence of a potential defining H; and H,
as its Hessian.

e Minor symmetry: Since the Mandel stresses are symmetric (isotropic elastic Neo-Hookean
model is used, cf. Eq. (8)), H; and H, show minor symmetry, i.e.

Hklmn = Hlkmn = Hklnm = Hmnkl for Hl and HZ- (14)

e Pressure invariance: Since the yield function should be independent with respect to hydro-
static stress states
Hkkmn =0 for H] and Hz (15)

holds.
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e Orthotropic material symmetry: Magnesium sheets have an orthotropic mechanical response.
In this case, the number of material parameters can be further reduced.

Combining the aforementioned physical constraints, the number of material parameters defin-
ing H; can be reduced to six. Thus, using Voigt notation (matrix notation) indicated by calligraphic
letters (H;), H; can be written as six by six matrices of the type

[ (CQ +¢3)/3 —c3/3 —c2/3 0 0 0]
—C3/3 (03 +C1)/3 —C1/3 0O 0 O
B -2 /3 —c1/3 (c1+c)/3 0 0 O .
Hi = 0 0 0 s 0 0 i=12 (16)
0 0 0 0 ¢s O
0 0 0 0 0 c6 |

where c; with j = 1...6 are the reduced six components of the transformation tensors H; and H.
For plane stress conditions, which is a reasonable assumption in most sheet forming processes,
the six components of the transformation tensor can be further reduced to four. As a result, the
definition of the yield function (11) requires the identification of nine parameters in this case
(dimH; + dim H, + dim 7y = 9).

3.3. The evolution of the yield function - hardening models

For capturing the stress-strain responses of the magnesium alloys ZE10 and AZ31, as discussed
in Section 2, suitable hardening models are required. Most frequently, isotropic and kinematic
hardening models are applied for that purpose. However, such models do not account for the
distortion of the yield function which can also be observed for magnesium. This distortion is due
to texture evolution. For incorporating this effect as well, the two transformation tensors H; are
considered as evolving internal variables. With this assumption, a yield function of the type

f=¢EH, H) -1 - ()] (17)

is considered in the present paper. Here, ¢ is defined by Eq. (11),, 7, is the initial yield stress and
7 is a stress-like internal variable associated with isotropic hardening.

According to Eq. (5),, the internal variables Q = {r;H;; H,} follow implicitly from the def-
inition of the Helmholtz energy ¥. Assuming that isotropic and the two distortional hardening
mechanisms are uncoupled, yields the energy P!

= (o) + PP () + PP () (18)

180

with E; being dual internal variables conjugate to H; and « denoting the dual to 7. Concerning
isotropic hardening, an exponential saturation is assumed. More precisely,

a

(@) = =0,¥Y = A1, [l —exp({ @)] = ‘Pilo = fra da. (19)

a=0
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where « is the strain-like internal variable conjugate to 7, At and { denote two material param-
eters defining the saturation value and the saturation rate of 7. The isotropic hardening model is
completed by considering an associative evolution equation of the type

& =210, f. (20)

For the sake of simplicity, quadratic functions are assumed to describe distortional hardening.

Accordingly,

1

P, = 5 Hi B (21)

disti

where H; denotes the hardening modulus. In line with isotropic hardening, evolution equations for
the internal variables H; or [E; are required. However, due to the tensorial nature of H; and [E; the
development of such evolution equations is not straightforward, since they have to fulfill certain
physical principles. While the proposed framework automatically fulfills the principle of material
frame indifference, that is not the case for the second law of thermodynamics.

In order to derive a physically sound model which also fulfills the second law of thermody-
namics, the reduced dissipation inequality (10) is considered. After a straightforward calculation
it reads

D=X:L"+7a¢+H =K +H,::E, >0. (22)

Here, the elastic response X = 2 C° - dc-'¥ has already been inserted. Since the function ¢ — 7° is
positively homogeneous of degree three with respect to (X, 1), Eq. (22) can be rewritten as

Z)=3)178+H] cE+H, B, > 0. (23)

Evidently, the first term is greater than zero. Consequently, a sufficient condition for guaranteeing
the dissipation inequality is given by

Dyisi = H; = E; > 0. (24)

Assuming now that distortional hardening is only driven by the internal variable, Eq. (24) simpli-
fies to

OE;
Z)disti = Hi T—a=>0. (25)

Oa
The assumption E; = E;(@) is a good approximation for radial loading paths and thus complies
with the experimental setup. Since H; = —H; E;, H; = H;(@) represents an equivalent assump-

tion. Within the material parameter calibration which will be presented in the next section, the
exponential functions
cj(@) = A;+ B;(1 - exp(-C; @)) (26)

are adopted where A;, B; and C; with j = {1...6} are the model parameters (for each ;). In line
with Eq. (16), the coefficients c; in Eq. (26) denote the components defining the tensors ;.

Remark 1. Within the implementation, the internal variable « defined by the evolution equation

@=-317 (27)
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is replaced by the alternative choice
a = VL»': LpL, (28)

This choice is related to a previous implementation based on the classical von Mises yield function.
It needs to be emphasized here that the rescaling of a implied by Eq. (28) does not essentially
modify the resulting constitutive model.

Remark 2. The viscoplastic rate effect observed within the experiments is captured by replacing
the rate-independent isotropic hardening variable T (see Eq. (17)) in the yield function by its rate-
dependent counterpart
C.}f n
Trate = T (E) . (29)

Here, B and n are model parameters. According to this choice, a rate effect is only accounted
for the isotropic hardening part. The shape of the yield function (distortional hardening) is thus
rate-independent.

Remark 3. The implementation of the proposed constitutive model is based on the return-mapping
scheme, cf. [38, 41]. More precisely and following [38], the flow rule is approximated by an im-
plicit exponential mapping and the evolution equations are integrated by employing a classical
backward Euler scheme. If loading is signaled by the trial step, the root of the nonlinear set of
equations (yield function, integrated evolution equations and integrated flow rule) is computed
by using a Newton-Raphson scheme. Within this scheme, the plastic multiplier as well as flow
direction are chosen as independent variables. Once convergence is obtained, the algorithm is
linearized leading to the consistent algorithmic tangent moduli necessary for an asymptotically
quadratic convergence also at the finite element level.

3.4. Summary of the constitutive model

According to the previous subsections, strain hardening in the current model consists of two
parts: The distortional part expressed by transformation tensors H; depending on the accumulated
plastic strain @ (see Eq. (26) and Eq. (16)) and an isotropic part depending on the accumulated plas-
tic stain @ and the current strain rate & (see Eq. (29) and Eq. (19)). The isotropic part naturally does
not depend on the loading direction. In contrast, the distortional part allows for a strain-dependent
change of the yield surfaces shape. A dependency on the strain rate in this part is not included, as
experimental results indicate that material anisotropy is not significantly affected by the strain rate
of the loading, see Section 2. This suggests the following sequence for the determination of the
numerous model parameters. First, a reference orientation is selected and the parameters related
to the isotropic rate-dependent hardening model are calibrated by tensile tests along the chosen
reference direction. The stress-elongation signals are used up to their respective maximum load,
thus the resulting stress states can be regarded as being uniaxial and any possible confusion with
the choice of the proper equivalent measure can be avoided. Second, the parameters related to
the orientation-dependent hardening tensors H; are calibrated using tensile tests along different
orientations while maintaining the isotropic hardening from the reference orientation. For this, the
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stress-elongation signal and the r-value are used. Depending on the orientation considered, the
different stress levels during deformation are accounted for by the elements of the transformation
tensors. This, in turn, implies that the prescribed hardening and strain rate characteristics are set
by the choice of the reference orientation and will be the same for all orientations considered.

4. Model parameter identification

The calibration of the parameters included in the constitutive model developed in Section 3
is achieved by minimizing the differences between the experimentally observed mechanical re-
sponses (see Section 2) and those predicted by the model (see Section 3). Although any exper-
imental result can be used in general, in the following the identification procedure is limited to
those data acquired for AZ31 and ZE10 at 200°C, as the intended application of the model is the
simulation of sheet metal forming operations at elevated temperatures.

4.1. Isotropic hardening including strain rate effects

The parameters related to strain hardening (Ar.,, ¢, 7,) and those corresponding to rate effect
(B, n) are computed by minimizing the target function

2
— Exp Mod —
REV_ZZ[Zy kp_zyokp] _O’
k p

(30)
with

.\

@
= = (1 +10) (E) : (31)
The target function constitutes the differences between the experimentally measured stress re-
sponses ZEXP i and the respective model predictions Zi‘,""d. These differences are summed over the
number of strain rate measures k (namely 0.001/s, 0.02/s and 0.1/s) and summed over a number of

strain increments p (at every 0.01) along a reference orientation, the rolling direction (RD).
The identified parameters are presented in Tab. 5 for both ZE10 and AZ31. Based on the

At(MPa) | 0 | 7o(MPa) | B(1/s) n()
ZE10 59.212 -8.752 | 87.385 | 2.384E-2 | 0.0454
AZ31 42.069 -21.147 | 52.140 | 2.185E-4 | 0.0841

Table 5: Parameters obtained based on minimization of Eq. (30).

described computations at the material point level (Eq. (31) with Tab. 5), the uniaxial tensile
test has been reanalyzed as a coupon-like structure. Thus, geometrical effects such as necking
are consistently included within the resulting force-displacement. The corresponding engineering
stress responses (force over undeformed cross sectional area) and those of the experiments are
compared in Fig. 11.

17



150 150
— 125 4 — 125 1
< <
% pest IR e IO %
=, 100 T SANKEANERAAALAL,, e "..~ - = 100 T .o
«n 3 AAAA‘_A__-.' o »n AAARER AWz .‘.‘
s i A T .
2 75K 2 75 s Ve o
7] - 7] g n AAAAA
. . AL
o . ) ) . )
Lﬁ 50 - a4 Experiment a [5 50 4 Experiment
b — — Simulation b — — Simulation
25 + ..e- 25 ce--
0 10 20 30 40 50 0 10 20 30 40 50
Eng. strain [%] Eng. strain [%]
(a) ZE10 (b) AZ31

Figure 11: Comparison between experimental and numerically predicted engineering stress re-
sponses (force over undeformed cross sectional area) for uniaxial tensile tests of ZE10 and AZ31
at strain rates of 0.1/s, 0.02/s and 0.001/s for specimens oriented in RD.

4.2. Material anisotropy and distortional hardening

The model parameters related to distortional hardening are components of the transformation
tensors H; and [H,. Each of these transformation tensors constitute the parameters A ;, B; and C;
with j = {1...6}. In total, this mathematical setup requires the identification of 2 %« 6 * 3 = 36
constants in the case of a 3D-problem. For a plane stress state, it reduces to 2 * 4 * 3 = 24
constants. The identification of these parameters does not include the strain rate dependence, as
experimental results indicate that material anisotropy is not significantly affected by the strain rate
of the loading, see Section 2. Subsequently, the experimental results utilized in the identification
are only those obtained at 200°C and at a strain rate of 0.02/s.

The identification of these parameters is performed through an optimization procedure. More
precisely, a constrained genetic algorithm is adopted. A detailed description of such methods can
be found in [42] (Section 2). The optimization method employs an objective function of the least

Square-type
U= 000 i (e =) g, (i - 1) (32)
a 1

This function incorporates sums accounting for stresses Z(q)p as well as r-values. The sums run
over the number of specimen orientations g considered during the uniaxial tensile tests and over
the selected discrete points of the equivalent plastic strain p accounting for the evolution of the
yield loci. ,ufp and ,ufjp are weighting factors to control the contribution from the stress and r-
value, respectively. The superscripts Exp and Mod refer to the reference values obtained from
the experiment and those related to the predictions of the model, respectively. In Eq. (32), " is a
modified r-value obtained from the ratio of the plastic strain rates. This can be approximated by
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the derivatives of the yield function as

, 85;1 Sin2 H azm_f - Sin 20 azxvf + COSZ 6 azvvf
= — ~ — - - —, (33)
é,‘p 0Zxxf + az)‘)'f

t

where & and e'fl are the rates of the plastic strains in width and thickness direction of the tensile
test specimens. The angle 6 is the orientation of the tensile test specimens with respect to the
rolling direction. Evidently, in the case of a constant r-value, Eq. (33) leads to the conventional
r-value computed from the ratio of strains.

The optimization of the objective function in Eq. (32) is complemented by constraints imposed
to ensure the validity of the identified model constants. These constraints include the convexity
of the yield function, the dissipation inequality required for the thermodynamic consistency, as
mentioned in Section 3.2, and non-intersecting yield loci. The different constraining conditions
within the optimization scheme are implemented as follows.

First, the convexity constraint is imposed by evaluating the eigenvalues (17) of the Hessian
matrix (represented by the second-order derivative of the yield function with respect to the stress

tensor) 2
det( ar nH) =0, (34)

for the two in-plane principal stresses at prescribed discrete strain levels and loading cases. Then
the computed eigenvalues are ensured to be greater or equal to zero.

Second, the non-negative dissipation is ensured by evaluating Eq. (25) for all discrete strain
and loading cases corresponding to the yield surfaces.

Finally, intersections of the yield surfaces are prevented by ensuring non-softening stress re-
sponses for all loading cases. This is achieved by computing the stress components at a given
loading direction for discrete but monotonically increasing strains.

The parameters of the model are identified for both ZE10 and AZ31, see Tab. 6. Fig. 12

(a) ZE10 (b) AZ31
Hl HZ Hl HZ

A B C A B C A B C A B C
c1 | 45| 2.7 0| 1.0]|-59]|6.5 1.71-19,103| 21|-08 1|44
c | 4.1 | -6.5 0.1 1.2 1]-22/|32 16| 25|100]|-15| 061 0.8
c3 | -3.5 ] -3.1 8.8 58| 0.0] 3.1 32124131 05 25|1.0
ca | 41 191]104|-54| 34|39 1.6 1.7/28|-09]|-12|33
Cs 1 0 0 0 0 0 1 0 0 0 0 0
Ceo 1 0 0 0 0 0 1 0 0 0 0 0

Table 6: Parameter sets corresponding to the novel anisotropic material model.

demonstrates the predicted stress responses as a function of the specimen orientations in compari-
son to those measured experimentally. From the figure, it can be seen that the model captures the
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Figure 12: Stress responses predicted by the novel anisotropic material model (see Tab. 6 for the
material parameters) as a function of specimen orientation for strain levels ranging from 0 to 0.3
at a strain rate of 0.02/s.

stress response in all orientations for the specified strain range very well. Moreover, the modified
r-values (r") are calculated and compared to those obtained from the experiment, see Fig. 13. The
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Figure 13: r’-values predicted by the novel anisotropic material model (see Tab. 6 for the material
parameters) as a function of the plastic strain at a strain rate of 0.02/s.

comparison shows a good agreement between the experiment and the prediction. It should also be
noted that the model is capable of capturing the strain-dependency of the computed r-values. The
convexity constraint imposed during the optimization procedure was indeed satisfied as shown in
Fig. 14. The figure shows convex three-dimensional plots of the evolving iso-strain contours at
plastic strain levels of 0.0, 0.02 and 0.1.

The feature of the model to predict a variation of the anisotropy ratio with increasing defor-
mation directly evidences the distortional character of the calculated deformation. The change
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Figure 14: Convex iso-strain contour surfaces of the stress response predicted by the novel
anisotropic material model (see Tab. 6 for the material parameters) at a strain rate of 0.02/s.

of the direction of the plastic strain increment requires a change in the yield surface shape. As
mentioned previously, this is modulated by the first term in Eq. (17), which refers to the shape
change. Its effect on the biaxial deformation can be illustrated by considering a two-dimensional
principal stress state (plane stress, in-plane shear stresses assumed to be zero). The evolution of
the yield condition, Eq. (17), with increasing plastic accumulated strain is plotted in Fig. 15(a) for
ZE10 and in Fig. 15(b) for AZ31 using the identified model parameters, see Tab. 6. The stresses

1.5

21D /Z0i
21D/ Zoi

. 15 0 05 10 15
XRD/Zoi ZRD/Zoi
(a) ZE10 (b) AZ31

Figure 15: Normalized iso-strain stress responses displaying the capability of the model to capture
distortional hardening.

are normalized by the respective yield stress in rolling direction, Xy;, making all contours to meet
at 1 on the abscissa. The respective inner contour can be regarded as an initial yield locus. While
the inner contour in the case of ZE10 has a lower equi-biaxial yield stress than a uniaxial one
(Ztp/Zrp < 1), the situation is different in the case of AZ31, where the ratio of Xp/Xgp equals
one. The subsequent contours show that hardening in the case of biaxial loading is more pro-
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nounced compared to that of uniaxial loading, which holds true for both materials. However, the
effect seems to be stronger in the case of AZ31. At least for the case of AZ31 this is regarded to
be in good agreement with recent findings, which quantified similar effects by either performing
crystal-plasticity based FE-analysis of representative volume elements see [43] or by performing
mechanical biaxial tests see [44].

5. Summary and conclusion

This paper presented the mechanical characterization of two different magnesium sheet prod-
ucts, together with the development of a constitutive model for numerical analyses of sheet form-
ing processes. A calibration of the model parameters was conducted based on standard tensile
tests.

The mechanical characterization was achieved through standardized uniaxial tensile tests of
AZ31 and ZE10 at two test temperatures (room temperature and 200°C), three material orienta-
tions and three loading rates. From the resulting mechanical responses an increase in ductility for
higher test temperatures could be confirmed. This effect is accompanied by the expected reduction
in yield stress. Furthermore, the yield stresses increased for higher strain rates showing a positive
strain rate effect. The stresses depended on the loading direction: they complied with the mate-
rial anisotropy as observed in tensile tests conducted at room temperature. The anisotropy was
less pronounced in the case of elevated temperatures compared to room temperature. In order to
analyze the anisotropy in a more detailed manner, r-values were computed. It was observed that
they showed a strain-dependence. Based on this finding it was concluded that the materials exhib-
ited distortional hardening. The strain-dependency of r-values was higher at elevated temperatures
than at room temperature. Compared to ZE10, this effect is more pronounced for AZ31 due to its
strong material anisotropy. The authors wish to emphasize that this has an important consequence
for modeling the plastic response of the material: at elevated temperatures (where forming oper-
ations have to be performed) the distortional hardening effect has to be accounted for. It has also
been observed that in the case of AZ31 the r-values increased with increasing strain rate, while
ZE10 showed a less pronounced but opposite effect.

The large number of process parameters involved in sheet forming make experimental investi-
gations of the process very expensive. Therefore, numerical analyses are efficient and promising
substitutes. For that purpose, a novel model was developed and calibrated. This constitutive model
adopts the structure of the Cazacu and Barlat 2004 model to account for the complex yielding be-
havior of magnesium alloys. In contrast to the Cazacu and Barlat 2004 yield function, the proposed
model is frame indifferent due to the tensorial reformulation in terms of Mandel stresses. The evo-
lution of the shape of the yield locus was accommodated by expressing the model parameters as
a function of the equivalent plastic strain. Furthermore, the constitutive model was recast into a
thermodynamically consistent form by imposing a non-negative dissipation.

The calibration of the model was achieved by fully utilizing the mechanical responses at 200°C
in terms of the strain-dependent r-values and stress responses. The reason for limiting the matrix
of mechanical tests to this basic setup is obvious: reducing experimental cost and efforts. More
complex experiments (e.g. hydraulic bulge and shear tests) will certainly add more physics to
the model, but on the other hand make a calibration process more extensive. It was shown that
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the present model predicts a pronounced increase in the equi-biaxial stress with increasing plas-
tic strain observed by other authors. Although the generated sets of model parameters cannot be
regarded as unique, the consideration of strain-dependent r-values provided an important informa-
tion regarding the distortional hardening behavior of the investigated materials. The model has
now to be assessed considering more complex loading conditions, e.g. by cup forming analyses as
demonstrated in [45, 46].
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