

Final Draft of the original manuscript:

Czyperek, M.; Zapp, P.; Bouwmeester, H.J.M.; Modigell, M.; Ebert, K.; Voigt, I.; Meulenberg, W.A.; Singheiser, L.; Stoever, D.: **Gas separation membranes for zero-emission fossil power plants: MEM-BRAIN**

In: Journal of Membrane Science (2010) Elsevier

DOI: 10.1016/j.memsci.2010.04.012

Gas separation membranes for zero-emission fossil power plants: MEM-BRAIN

M. Czyperek^a*, P. Zapp^a, H. J. M. Bouwmeester^b, M. Modigell^c, K. Ebert^d, I. Voigt^e, W. A. Meulenberg^a, L. Singheiser^a, D. Stöver^a

^aForschungszentrum Jülich GmbH, Institute of Energy Research, Leo-Brandt-Str. 1, D-52425 Jülich, Germany ^bUniversity of Twente, Department of. Science and Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands ^cRWTH Aachen University, Department of Chemical Engineering, Turmstr. 46, D-52056 Aachen, Germany

^dGKSS-Forschungszentrum Geesthacht GmbH, Institute of Materials Research, Max-Planck-Str. 1, D-21502 Geesthacht, Germany

^eHermsdorfer Institut für Technische Keramik e.V., Michael-Faraday-Str. 1, D-07629 Hermsdorf/Thuringia, Germany

3 4 Abstract

1

2

5

6 The objective of the "MEM-BRAIN" project is the development and integration of ceramic and polymeric gas 7 separation membranes for zero-emission fossil power plants. This will be achieved by membranes with high 8 permeability and selectivity for either CO_2 , O_2 or H_2 , for the three CO_2 capture process routes in power plants, 9 enabling capturing of CO_2 with high-purity in a readily condensable form.

10 For the pre-combustion process, ceramic microporous membranes operating at intermediate temperatures ($\leq 400^{\circ}$ C) 11 are developed for H₂/CO₂ separation. For the oxyfuel process, dense ceramic mixed oxygen ionic-electronic 12 conducting membranes operating at 800-1000°C are developed for O₂/N₂ separation. The perovskite-type oxide 13 Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-δ} (BSCF5582) is taken as the reference material for this application. For the post combustion 14 process, polymeric and organic/inorganic hybrid membranes are developed for the CO₂/N₂ separation at temperature 15 up to 200°C. New hybrid organic/inorganic membranes with inorganic molecular sieves will be prepared,

16 characterized and incorporated in polymer matrices.

Additional to the development of membranes the integration of the membranes into power plants by modelling and optimization is considered. Finally, specific technical, economic and environmental properties of CO_2 capture as a

19 component of a CCS process chain are assessed, analysing at the energy supply system as a whole.

Keywords: zero-emission power plants; gas separation; ceramic membrane; polymeric membrane; process engineering; system integration;
 energy systems analysis

22

²³/₂₄**1. Introduction**

25 CO_2 is one of the greenhouse gases that contributes significantly to the global climate warming. Therefore, the 26 reduction or elimination of CO₂ emissions from electricity generation power plants fuelled by coal or gas is a major 27 target in the current socio-economic, environmental and political discussion. Scenarios about the future global 28 energy requirements forecast an increasing demand for electricity, with 44 % using coal as fuel in 2030 [[1]. Today, 29 power plants contribute more than 40 % of the worldwide anthropogenic CO₂ emissions; they are by far the biggest 30 point sources of CO₂-production and are therefore the main focus of CO₂ capture and storage technologies (CCS). 31 Current energy scenarios of the International Energy Agency (IEA) show an increasing importance of CCS 32 technology within global CO_2 mitigation strategies [[2]. Since several years the development, improvement and 33 adaptation of CCS technologies have received considerable attention [3]. The technical maturity of specific CCS 34 components varies greatly. Some technologies are extensively deployed in mature markets, primarily in the oil and 35 gas industry. For electricity production most CCS components are still in the research, development or 36 demonstration phases. Mayor challenges are a sizable reduction in efficiency connected with an increase in power 37 generation costs. Capture technologies using solvents additionaly face environmental problems due to degradation. 38 No experience with capture facilities at power plant scale exists but they are expected to be huge plants in 39 themselves. 40

41 One option to overcome all this challenges is the development and improvement of membranes for gas separation. 42 However, there are several technical hurdles which have to be solved first [4], [5]. The key scientific and 43

46 47

⁴³

^{44 *} M. Czyperek. Tel.: +49-2461-61-5450; fax: +49-2461-61-2455.

⁴⁵ *E-mail address*: m.czyperek@fz-juelich.de

⁴⁸

technological challenge for membrane systems are high permeability, specific selectivity and long-term stability up to 100,000 hours. The use of membrane technology is expected to have with significantly lower efficiency losses compared to conventional separation technologies. Membranes that are already being used for material gas separation in other fields (e.g. the chemical industry), are still far from being suitable for industrial applications. Strategies for novel membranes bring materials science and technology into the main focus of research and technology development, such as functional layers and porous structures in the nanometre range, as well as the development of mixed-conducting oxides by means of theoretical materials design approaches and design of components under operating conditions based on their physico-chemical and mechanical properties. The optimized integration of membrane systems into power plants as well as the analysis of the entire system encourages these efforts.

To address this mission the integrated "MEM-BRAIN" was started fall 2007 as part of the Alliance Programme of the German Helmholtz Association (HGF). The principle advantage of the project is the parallel, networked (iterative) development of the membrane materials by (i) design of components and equipment, (ii) integration into power plants and the related process engineering, and (iii) energy systems analysis.

6 The Helmholtz Alliance "MEM-BRAIN" consists of 12 research organizations: Forschungszentrum Jülich (FZJ, D), 7 GKSS-Forschungszentrum Geesthacht (GKSS, D), DESY/HASYLAB (D), Helmholtz Zentrum Berlin (HZB, D) and Ernst Ruska-Centre (ER-C, D), Hermsdorf Institute of Technical Ceramics (HITK, D), Flemish Institute for 9 Technological Research (VITO, B), Consejo Superior de Investigationes Científicas (CSIC, E), the universities of 10 Aachen (RWTH, D), Bochum (RUB, D), Karlsruhe (KIT, D), Twente (UT, NL). Five industrial partners ensure that 11 the results are applied in an industrial context : EnBW (D), GMT (D), Plansee SE (A), Shell (NL), Siemens (D). The 12 project is meeting a long-term scientific and technological challenge with a time horizon for significant 13 commercialization after 2020. 14

2. The Four Research Topics of MEM-BRAIN

There are three groups of CO_2 capture concepts with corresponding gas separation tasks, namely 18

- post-combustion (CO_2/N_2 separation)
- pre-combustion (H₂/CO₂ separation) and
- oxyfuel combustion (O_2/N_2 separation) (Figure 1).

27 **Fig. 1:** The three CO₂ capture concepts 28

29 Different kinds of membranes are considered for each concept: 30

- Polymeric membranes working at temperatures of up to 200°C are candidates for pre-combustion and in particular post-combustion processes.
- Microporous ceramic membranes operating at temperatures of up to 400°C can be used for pre-combustion and possibly for post-combustion capture.
- Dense ceramic membranes are necessary for oxyfuel processes working at 800-1000°C (mixed ionic-• electronic conductors, MIEC) and are possible candidates for pre-combustion operation at temperatures above 600°C (mixed proton-electronic conductors).

38 39

1

2

3

4

5

8

15

16 17

19 20

21 22

31

32 33

34

35

36

37

40 To face the described challenges the work of the Alliance has been structured into four Research Topics. The 41 technical basis is provided by two of the Research Topics in the field of materials science, one developing ceramic 42 membranes (RT 1), the other polymeric membranes (RT 2). Main scientific challenge is the development and 43 manufacture of novel membrane systems with high permeability, specific selectivity and long-term stability under 44 application conditions. These systems have to be included into power plants and an energy system which define 45 additional boundary conditions. It has to be proved that membrane systems have less energy losses as competing 46

47

48

capture technologies with comparable costs. Membrane area has to be kept small. Close co-operation with systems analysis groups is necessary to identify optimum operation conditions with low environmental impacts. Two Research Topics consider the integration of capture techniques into the power plant and the energy supply system as a whole (RT 3, 4).

2.1. Research Topic 1: High- and intermediate-temperature ceramic membranes

Research Topic 1 (RT 1) is concerned with material synthesis and processing as well as characterization and modelling of the performance of ceramic membranes. The overall aim is the identification and further development of the promising candidate membrane materials for the separation of H_2/CO_2 , O_2/N_2 and possibly CO_2/N_2 and others. RT 1 will provide the information necessary to enable selection of the most promising options for integration of membranes into power plant process scenarios aimed at CO_2 capture.

Important research goals to be addressed include:

- Development and characterization of ceramic molecular sieving membranes, including zeolite and sol-gelderived membranes, for H₂/CO₂ separation.
- Development and characterization of dense ceramic proton-conducting and mixed proton-/electron-conducting membranes for H₂/CO₂ separation.
- Development and characterization of dense ceramic mixed oxygen ionic-electronic conducting membranes for
 O₂/N₂ separation.
 - Modelling of transport issues and surface exchange behaviour (especially for dense ceramic membranes).
 - Design and development of a demonstration unit (Proof-of-concept) for O₂/N₂ separation.

17 2.2. Research Topic 2: Polymeric and hybrid membranes 18

Research Topic 2 (RT 2) is concerned with material synthesis, membrane manufacture and characterization as well as module development on a pilot scale for separation in temperature ranges of up to 200°C. Polymeric membranes are the furthest developed ones.

22 Polymeric and organic/inorganic hybrid membranes are being developed for CO₂/N₂-separation (post combustion 23 process) as well as for CO_2/H_2 -separation (precombustion process). In contrast to the membranes developed in RT 1, 24 these membranes are more permeable for CO_2 than for H_2 . Besides pure polymeric membranes, new hybrid 25 organic/inorganic membranes with inorganic molecular sieves will be prepared. Membranes should be available 26 which exhibit a carbon dioxide flux of more than 1 m^3/m^2 h bar and a CO_2/N_2 selectivity of more than 60. At the end 27 of the project, data will be available for ranking materials and designs for each power plant concept. Membranes 28 with a CO_2/N_2 selectivity of more than 100 are envisaged. These membranes will be produced on pilot scale (100 m² 29 or more). Technical membrane modules will be produced with a membrane area of at least 10 m^2 each. 30

³¹ ₃₂ 2.3. Research Topic 3: Process engineering and system integration

The major aim of Research Topic 3 (RT 3) is to link membrane development with the reality of power plant processes. Therefore, the different power plant process routes are modelled and their potential of using membranes for CO_2 capture are analysed. The required technical parameters are selectivity and permeability as well as boundary conditions such as mechanical, thermal and chemical loads. They form the basis for process simulation to evaluate the performance due to the different CO_2 removal technologies.

- The power plant process chain has to be modified to accommodate the performance of the developed membranes. This leads to an iterative approach to achieve a compromise between requirements and performance.
- 40 This leads to an iterative approach to achieve a compromise between required 1 Based on this central role the following major goals can be defined:
- To provide the proper boundary conditions that membranes have to face and withstand in terms of temperature, pressure and gas composition. Also, to define testing procedures in cooperation with the membrane developers for the evaluation of membrane materials and membranes with respect to performance and stability under power plant conditions.
- 46

1

2

3

4

5

6

7 8

9

10

13

14 15

- 47
- 48
- 49

- To define the optimal power plant process for the membranes developed, taking into account the membrane limitations in terms of selectivity, permeation rates and thermal and chemical stability.
- To define a limited set of evaluation criteria permitting a quantification of the optimum power plant process parameters.
- To provide a reliable and consistent set of technical process data for the membrane power plant concepts under consideration, their competing CO₂ removal technologies and current power plants based on harmonized assumptions for the major input data, boundary conditions and component performance using state-of-the-art process simulation tools
- To highlight, quantify and evaluate the differences between membrane power plants compared to competing CO₂ removal technologies and current power plants in terms of technical performance, required hardware modifications or extensions, complexity of plant design.

1

2

2.4. Research Topic 4: Energy systems analysis

6 Research Topic 4 (RT 4) even widens the frame by performing an accompanying energy systems analysis during the 7 research phase for membrane technology. It is concerned with an assessment of specific technical, economic and 8 environmental aspects of CO₂ capture as a component of the whole CCS process chain including also CO₂ transport 9 and storage. For life cycle assessments or for evaluating natural resource demands information about material 10 composition and the production of the selected membranes from the membrane developers (RT 1, 2) is required. 11 Results from plant modelling (RT 3) regarding the entire power production cycle allow a comparison to be made 12 with competing CCS technologies. Energy systems analysis provides benchmarks concerning costs compared to 13 other CO₂ avoidance strategies, capacity increase and window of opportunity. The aims are: 14

- Characterization of ranges of techno-economic requirements for capture technology from subsequent processes, e.g. purity of CO₂ for compression, transport and storage;
- Quantification and assessment of the impacts on the environment and natural resources, e.g. inventories for relevant inputs and outputs of the process chains for capture, weak point analysis, environmental impact analysis;
 Description of the potential of earbon capture in the conversion sector as part of a Carman climate mitigation.
- Description of the potential of carbon capture in the conversion sector as part of a German climate mitigation strategy.

²³₂₄ **3. Results**

 $^{25}_{26}$ In all research areas preliminary results could be gathered and are used as basis for further investigations.

²⁷ 3.1. Research Topic 1: High- and intermediate-temperature ceramic membranes

29 30 *3.1.1. Sol-gel-derived membranes*

Before the start of the project, first attempts were made to prepare gas-selective TiO_2/ZrO_2 layers on conventional substrates commonly used for silica membranes but so far without selectivity. Moreover, the mesoporous γ -Al₂O₃ is expected to have limitations with respect to hydrothermal stability and will be replaced by a mesoporous layer with higher stability. Indications were found that TiO_2/ZrO_2 membranes are densified under hydrothermal conditions.

35 Therefore one other material, Ta_2O_5 , will be included in the working plan.

36 The following results were achieved:

- First stability tests of different TiO₂/ZrO₂ compositions indicated a higher stability for ZrO₂-rich compositions.
 Therefore membrane preparation will focus on this direction. Stability tests will be continued.
- 39 The quality of mesoporous ZrO_2 layers was improved significantly. Thin defect-free ZrO_2 layers were successfully prepared on top of this intermediate layer (**Figure 2**).
- 41 The sol-gel chemistry of Ta_2O_5 starting from tantalum ethoxide $Ta(C_2H_5O)_5$ was investigated. Stable sols with 42 nanosized particles were prepared by hydrolysis and condensation at room temperature, and storage at -28 °C.
- The sols were used to prepare both unsupported and supported membranes. The membranes display Knudsen behaviour in gas separation measurements of He, H_2 , N_2 , CH_4 and SF_6 . Further optimization of sol-gel recipes
- 45 and/or coating procedures is required in order to develop membranes with molecular sieving properties.
- 45 46
- 47
- 48
- 49

Fig. 2: Microporous ZrO₂ membrane on top layer of a high quality mesoporous ZrO₂ layer

3.1.2. Zeolite membranes

Three types of zeolites, sodalite (SOD), NaA-type zeolite and ITQ-29 were selected as membrane materials for the project. SOD is a 6-ring zeolite. The pore size of only 2.5 Å should allow the high selective H2-separation from gas mixtures by size exclusion. NaA and ITQ-29 are 8-ring zeolites with a pore size of 4 Å. The larger pores are giving a lower selectivity but higher permeances through the membrane. ITQ-29 is a pure silica zeolite with a potential

- 5 -

- 2 high hydrothermal stability.
- 3 The following results were achieved:
- 4 SOD and ITQ-29 were prepared as pure crystalline powders
- Powders of NaA (commercial), SOD and ITQ-29 were tested for thermal and hydrothermal stability. All
 materials are stable at 400°C in a dry atmosphere and in 2.5 vol% water, no material was stable at 270°C in
 saturated water steam (57 bar), SOD was most stable (800°C, 2.5Vol% H₂O and 180°C, 10 bar water steam)
- 8 Flat support discs were seeded by slip coating with zeolite slurries prepared from the powders (NaA, SOD,).
- 9 After hydrothermal crystallization (intergrowing of seed crystals to form a dense zeolite layer) the substrates
 10 were completely covered by zeolite layers (SEM) (Figure 3).
- 11 -Two types of membranes (SOD, NaA) were tested for single gas permeances. A H_2/SF_6 permselectivity of 7.7 12 and a H₂ permeance of 2,300 $l/(m^2 \cdot h \cdot bar)$ indicated gas permeation through non-zeolite pores of the NaA 13 membrane. Low permeances of 2 l/(m²·h·bar) (SF6) - 18 l/(m²·h·bar) (H₂) were measured with SOD 14 membranes giving evidence of a well intergrown but nearly impermeable membrane. The blocking of zeolite 15 pores with water was assumed to be the reason for the low permeances. Therefore one membrane was dried at 16 250° C. Increased permeance by the factor of 1,000 was the result. Higher fluxes (32,000 l/(m²·h·bar) H₂) were 17 measured for a two times synthesised SOD membrane. But in all cases no mole sieving separation behaviour 18 was found up to now. Drying as well as double syntheses cracked the membranes. 19
- 20 21

1

²² Fig. 3: SOD membrane layer on top of an α -Al₂O₃ support disc

23

²⁴ 3.1.3. Mixed ionic-electronic conductors (MIEC)

²⁵ Up to now three major candidate materials were selected for further in-depth investigations, including the perovskite ²⁶ oxides $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$ (BSCF5582) and $BaCo_xFe_yZr_zO_{3-\delta}$ (BCFZ) and the fluorite-structured oxide ²⁷ Ce_{0.8}Gd_{0.2}O_{2-\delta} (CGO). Both BSCF5582 and BSCFZ are investigated for potential application in the oxyfuel process ²⁸ without sweep gas. CGO is investigated for potential use in the pre-combustion process. Oxyfuel combustion with ³⁰ flue gas recycle is not taken into consideration since none of the presently known membrane materials with ³¹ appreciable oxygen fluxes are found to be stable under the harsh conditions (CO₂, SO₂, ash etc.) as encountered in ³² oxyfuel combustion.

A round-robin study was performed towards the oxygen flux exhibited by BSCF5582. The measurements showed 33 that the results are sensitive to the geometrical and flow conditions of the experimental set-ups used in the different 34 laboratories of the partners involved in the MEM-BRAIN project. BSCF5582 was further investigated 35 comprehensively concerning its crystal structure, structural stability in different gas phase environments, which 36 includes its stability against the presence of CO_2 contaminants in the gas phase, oxygen surface exchange, and 37 thermo-chemical and -mechanical properties. Typical results of HR-TEM imaging of BSCF5582 are shown in Fig. 38 4. BSCF5582, however, shows limited structural stability as a slow structural transformation occurs from cubic to 39 hexagonal upon cooling below ~800°C [6]. The composition BSCF5582 is therefore mainly regarded as a reference 40 material. Similar studies towards compositions derived from parent BSCF5582, in which it is attempted to stabilize 41 its cubic structure by partial substitution with redox-stable dopant ions, are currently underway. Among a number of 42 other compositions, major research is conducted towards BCFZ. This composition was earlier proposed by Tong et. 43 al. [7] for use in partial oxidation of methane. Doped ceria as considered for possible application in the pre-44 combustion route is known to be far more stable than the afore-mentioned perovskite compositions, especially in 45 reducing atmospheres. Measurements have demonstrated that viable oxygen fluxes can be achieved by sweeping 46

- 47
- 48 49

CGO membranes with methane, Presently, thin membranes (< 60um) of CGO are fabricated on NiO/ZrO₂ porous support layers to further optimize the oxygen fluxes.

Fig. 4: HR-TEM of perovskite BSF5582

3.1.4. Ceramic proton-conducting membranes

This work package aims to develop and optimize new proton-conducting materials and membranes by enhancing the electronic and protonic conduction stability with respect to wet CO₂, thermo-mechanical properties and manufacturing issues. This integrated research focuses on a new class of crystalline oxide-based conductors, [8], [9], i.e. the system $Ln_{6x}Ca_xWO_{12}$, which presents simultaneously significant protonic and electronic conductivity at intermediate temperatures (see Figure). The activities include a parallel study of (a) fundamental properties aiming at understanding and designing new materials and (b) application-oriented properties to ensure their fast and reliable manufacture and operation.

The stability under CO₂/H₂O-rich reducing environments at different temperatures (350, 700 and 800 °C) has been proven [10] for a set of materials, i.e. Ln_6WO_{12} with $Ln = \{La; Nd; Eu; Er\}$ annealed at different temperatures (900, 1150 and 1350 °C). The current material development approach applies co-doping strategies, different synthetic routes (sol-gel, solid state reaction and freeze-drying) and fine-tuning of the Ln/W ratio, which influences the final conduction properties as well as the ordering of cations and anions in the lattice and hence originates changes in the cubic fluorite space group and the fluorite symmetry. Nevertheless, it is necessary to manufacture asymmetric 12 supported membranes based on Ln_{6-x}Ca_xWO₁₂ materials in order to achieve hydrogen fluxes above 1 ml·min⁻¹·cm⁻² at temperatures in the range 800-900 °C. 14

16 Fig. 5: Scheme of the permeation process in a mixed protonic-electronic conducting membrane made of La_6WO_{12} 17

18 19 20

1

2

3

4

5

6

7

8

9

10

11

13

15

3.2. Research Topic 2: Polymeric and hybrid membranes for temperatures up to 200°C 21

3.2.1. Membrane development with multi-block copolymers 23

24

22

Thin film composite membranes with thins selective separation layers based on multi-block copolymers were 25 developed. The two commercially available polymers are poly(amide-b-ethylene oxide) (Pebax® from Arkema) and 2.6 poly(ethylene oxide)-poly(butylene terephthalate) (Polyactive[®] from IsoTisOrthoBiologics, USA). The formulaes of 27 the polymers are given in Figure 6. Both polymers possess ethylene oxide segments in the chain which are known 28 to have a high affinity for CO_2 thereby favouring the separation of CO_2 over other gases [11]. 29

The properties of these multi-block copolymers strongly depend on the microstucture as a result of the type of 30 blocks, the composition of each block, the molecular weight and the processing conditions [12]. 31

- 32
- 33
- 34
- 35
- 36
- Fig. 6: Structural formulaes of Pebax[®] and Polyactive[®] 37
- 38 39

The permeability of Pebax[®] 1657, which was found to be the most promising Pebax with respect to CO₂ separation, 40 41 strongly depends on the crystallinity caused by the crystallization of the ethylene oxide chains. In the previous phase of the project composites were developed consisting of Pebax[®] 1657 and different low molecular weight PEG's, 42 either pristine or functionalized. It was shown that by blending Pebax 1657 with the PEG's the crystallinity could be 43 44 suppressed significantly [13], [14], [15]. At a concentration of 20 wt% of PEG in the blend a sharp increase in 45 diffusivity and consequently, in permeability was observed. Blends of Pebax with 50 wt% of PEG200 showed a CO₂ 46 permeability of 151 Barrer which is twice the permeability of pristine Pebax by maintaining the CO₂/N₂ selectivity. 47

48

By adding PEG terminated with different ethers, as for instance dimethylether (DME), it was found that both the CO_2 permeability and the CO_2/H_2 selectivity increased simultaneously [16]. This effect again could be attributed to the change in microstructure, but additionally it was discussed that the presence of the ether groups prevents the formation of hydrogen bonds thereby favouring the transport of CO_2 over hydrogen.

Different Polyactive types were characterized in order to identify the most suitable composition of blocks in the polymer. It was found that for constant content of PEO-blocks the CO_2 permeability strongly depends on the molecular weight of the PEO-unit [17]. The highest CO_2 permeabilities were found for the multi-block copolymers with a molecular weight of the PEO-units between 2000 to 2500 g/mol.

The addition of PEG terminated with different ethers again resulted in an increase in CO₂ permeability [18]. With

the addition of 40 wt% PEG terminated with dibutylether an increase of CO_2 permeability from 150 Barrer for the pristine Polyactive to 750 Barrer for the blend could be achieved. This increase in permeability was mainly attributed to the ethylene oxide and total free volume increase in the polymer matrix.

All membranes were manufactured on technical casting and coating machines in the m^2 size. Microporous polyacrylonitrile membranes developed at GKSS were used as supports. The membranes were characterized by single and mixed gas measurements. CO_2/H_2 mixtures of 50/50 vol/vol and 25/75 vol/vol, respectively. With Pebax/PEG membranes mixed CO_2/H_2 -selectivities around 9 and were obtained, for CO_2/N_2 the mixed gas selectivity dropped from 75 to around 60, when the pressure increased from 3 to 20 bar [15].

The optimization of the coating technology allowed the production of membranes composite membranes with Pebax/PEG-dimethyl ether layers showing high CO_2 fluxes of >1 m³/m² h bar [16]. For membranes with separation layers of Polyactive blended with 50wt% PEG high CO_2 fluxes of >2 m³/m²h bar could be achieved [14]. Further optimization of the composite membranes is required in order to provide membranes with sufficient long term stability. This work will be supported by tests under real conditions in strong collaboration with the researchers in Research Topic 3.

19 20

1

2

3

4

5 6

7

8

9

10

11

21 3.3. Research Topic 3: Process engineering and system integration

22

23 *3.3.1. Reference power plants*

As a conventional combustion plant the reference power plant NRW (RKW-NRW) has been chosen. A process model is set up in AspenPlus (Aspen Technology Inc.) and Pro/II (Simulation Science Inc.). The models include the flue gas side with combustion chamber, boiler and flue gas cleaning, and the water steam cycle with boiler, turbines and preheating section. The thermal power input is defined as 1210 MW and cases with hard coal (HC) and dried lignite (LC) are simulated. The simulated net efficiencies of 45.9 % (HC) and 44.5% (LC) provide a good match to the values given in the literature [19].

The integrated gasification combined cycle power plant in Puertollano has been chosen as a conventional gasification plant. The objective of integrated gasification combined cycle (IGCC) processes is to exploit the high efficiencies of natural-gas-fired combined cycle power plants with coal or other carbon-rich solid fuels like biomass or waste. The net efficiency of the simulation $\eta_{LHV,MEM-BRAIN} = 50.31$ % is comparable to the results of [20] $\eta_{LHV,Kloster} = 50.5$ %. (excluding the auxiliary power consumption of the Air Separation Unit).

36

37 3.3.2. Post-combustion capture

38 The state-of-the-art capture scenarios indicate that post-combustion using chemical absorption plays a dominant role 39 in current R&D activities with CCS. However, the inherent weaknesses: a) degradation of the solvent, leading to 40 high material costs and high disposal costs, b) additional environmental pollution caused by the used solvents and c) 41 high energy consumption for the solvent regeneration process, make it not a clear winner for the future application. 42 Gas separation membrane capture used for post-combustion, as a competing technology, possesses the advantages of 43 end-of-pipe application, and of less environmental impact than chemical absorption method [21], [22]. The compact 44 and modular structure makes it flexible in use and could be a promising option as retrofit. Gas separation 45 membranes used for post-combustion capture have been investigated by several groups independently [23-29]. 46

- 47
- 48
- 49

On the basis of the results of the single-stage membrane [29], a cascade concept: using vacuum pump on the permeate side of the 1st membrane, compressor on the feed side of the 2nd membrane, simultaneously, recycling the retentate of the 2nd membrane to the flue gas feed side, shown in **Figure 7**, was developed and applied for 600 MW North Rhein-Westphalia reference power plant (RKW-NRW) [19] including CO₂ compression process (110 bar, 30°C). Using the update Polyactive® membrane developed by GKSS with CO_2/N_2 selectivity of 50 and CO_2 permeance of 3 Nm³m⁻²h⁻¹bar⁻¹ [30], the efficiency loss of the system is 6.5%-pts. under the separation target: 95 mol% CO₂ purity and 70% degree of CO₂ separation. This result was compared with a chemical absorption - MEA (monoethanolamine) absorption capture [31], [32], see **Table 1**, and shows a quite promising retrofit option for existing power plants.

Fig. 7: A cascade concept, recycling the retentate of the 2nd membrane to the feed of the 1st membrane

Table 1: Comparison between a cascade membrane concept with MEA absorption applied for 600 MW RKW-NRW, separated CO₂ compressed to 110 bar, 30°C [31], [32]. The feed flue gas is composed of 14 mol% CO₂ and 86 mol% N₂; the vacuum pressure of the 1st membrane is 100 mbar, the pressure level of the 2nd membrane is 4 bar; it is assumed that the efficiency of all compression machines is 85%.

12 13 3.3.3. Pre-combustion capture

The main competing technologies for carbon capture and storage by means of IGCC power plants are physical absorption processes like RECTISOL and SELEXOL. The literature shows that there is a huge data spread. Typically the calculated efficiency losses are around 9 to 11%-points, but there are also some studies showing losses like 5% [33-35].

18

5

11

¹⁹ IGCC power plants offer certain advantages for the operation of membranes for CCS. There is a large driving force ²⁰ across the membrane because of the high absolute pressure of the syngas as well as the high partial pressure of the ²¹ permeating species. This leads to low membrane areas and a compact equipment. Membranes operated in a 4-end ²² module can significantly reduce the energy penalty caused by the compression unit of the CO₂.

23

In order to incorporate membrane simulations into the simulation software AspenPlus a FORTRAN code was 24 developed. This code is able to simulate the mass transfer along the membrane as well as the heat transfer and the 25 26 pressure losses for different forms of flow. Permeation simulations were performed with this code for polymeric 27 membranes. The main polymeric membrane which was investigated was a Pebax®/PG50 described in the results of 28 RT2. This membrane has a selectivity towards CO_2/H_2 of about 15. The membrane has to be operated as a 3-end 29 module because a sweep gas would diminish the purity of the separated CO_2 . Single membrane module concepts as 30 well as cascade concepts have been examined. The results for CO₂ selective membranes show that with state of the 31 art membranes (CO_2/H_2 selectivity 15.5) the current requirements concerning CO_2 purity and CO_2 separation degree 32 can not be fulfilled. A CO_2/H_2 selectivity of 150 for a single CO_2 selective membrane would be needed to obtain 33 power plant efficiency losses below 10% points with separation degrees above 85% (Figure 8). For a cascade 34 concept the CO_2/H_2 selectivity needed would be in the order of 60 to achieve the same values. 35

36 37

Fig. 8: Results of single membrane concept simulations for the integration of polymeric membranes $\frac{1}{38}$

As ceramic membranes described in the results of RT1 show better separation characteristics even higher separation degrees can be expected with comparable efficiency losses.

3.3.4. Oxyfuel combustion

The reference power plant (RKW-NRW) was modified to an oxyfuel process. Two different membrane integration
 concepts can be applied.

47

42

- 48
- 49

- 1. Four-end membrane module situated within the recirculation.
- 2. Three-end membrane module situated outside the recirculation as stand alone.

The main focus in the work at hand will be on the second concept since today available membranes have no chemical stability against CO_2 and SO_x [35], [36].

- 9 -

When applying the 3-end concept, the membrane is a stand alone unit. The membrane is fed by preheated air and on the permeate side vacuum is applied. The influence of the separation ratio and the vacuum and air pressure on the power plant efficiency will be shown.

1

Influence of the separation ratio and air- and vacuum-pressures

By modifying the oxygen separation ratio the applicable vacuum pressure can be elevated. The permeate pressure is 5 limited by the oxygen partial pressure in the retentate: p_{02} , retentate always has to be greater than p_{02} , permeate to 6 guarantee a driving force over the membrane. By lowering the separation ratio the oxygen partial pressure in the 7 retentate rises resulting in higher feasible vacuum pressures (cf. Figure 9). Permeate pressures up to atmospheric 8 conditions can be applied. The optimum power plant efficiency can be reached at separation ratios between 60 and 9 70 %. For lower permeate pressures the main efficiency influencing parameter is the energy demand of the vacuum 10 pump. The energy demand for vacuum above 500 mbar is almost constant. For higher permeate pressures and lower 11 separation ratios (< 60%; cf. Fig. 3: separation ratio 50%) the dominating efficiency influencing parameter changes. 12 With a lower separation ratio the amount of waste heat rises and interferes the positive effect of the lower energy 13 demand of the vacuum pump. A similar characteristic can be identified for feed pressures of 15 and 20 bar (cf. 14 Figure 10). For higher feed pressures this effect occurs at higher separation ratios since the influence of the vacuum 15 pump on the overall efficiency is lower. For a medium heat integration level minimal efficiency drops of 6.2 %-16 points can be reached. 17

- Compared to the efficiency drop of Oxyfuel-Processes with integrated cryogenic air separation ($\Delta \eta = 8 11 \%$ -19 points) [38], [39] the membrane based oxyfuel process has the potential to decrease the efficiency drop by 2 - 5 20 percent
- **Fig. 9**: Influence of the separation ratio and the permeate pressure on the efficiency of an oxyfuel power plant (1210 MWth) at 10 bar feed pressure.
- 24 25

21

26 Fig. 10: Efficiency drop of an 3-end oxyfuel power plant at different feed pressures and separation ratios.

27 28

20 29

30 *3.4. Research Topic 4: Energy systems analysis* 31

32 3.4.1. Characterization of specific technical and economic aspects concerning CO₂ transport and storage

33 34

The most important parameter for the subsequent processes compression, transport and storage are the impurities of 35 the CO₂ stream. Technical, chemical or physical effects of various impurities for compression, transport, storage and 36 health security are investigated. The multi-component contaminations have a major impact on the compression 37 energy being more negatively affected by contaminants with a low molar mass than with a high one. In a detailed 38 assessment of compression processes for typical Oxyfuel and IGCC flue gases different compression and 39 40 purification systems (distillation column versus flash drum) are compared. The results show the relation between 41 increasing energy requirement to reach a higher CO_2 purity and higher storage capacity depending on the impurities 42 of the flue gas. Exemplarily, Figure 11 shows the compression work and storage capacity for an IGCC-off gas. An optimization between compression work demand and purity is necessary. 43

- 44
- 45

46 Fig. 11: Compression work and storage capacity for an IGCC-off gas [40]

47 48

Contaminations might also lead to an unwanted phase change depending on temperature and pressure. With respect to transport, this phase change can yield in an increasing volume and therefore leads to higher energy demand for pumping. Other impurities are restricted due to their high corrosion potential, toxicity or hydrate formation potential. Various restrictions to impurities are defined by CO₂-pipeline operators in the US [41 -43].

Impurities can also decrease the level of utilization of the storage capacity and might change the storage geology. In December 2008 an EU directive for "Geological storage of carbon dioxide" [44] was launched. However, the definition of the CO_2 stream quality is still unspecific. It states that a CO_2 stream shall consist "overwhelmingly" of carbon dioxide. Additionally, purity requirements have to be set up in further national agreements. No general or principal restrictions can be given as every storage site has its specific environment [3].

1 2 3

4

3.4.2. Screening LCA for membranes and power plants and resource balances

5 For a comprehensive evaluation of environmental impacts a solely consideration of CO₂ emissions is not enough. Additional up and downstream processes, such as coal extraction and supply or waste treatment, must be integrated. б 7 Furthermore, other emissions and associated environmental impacts arise also from the application of CCS 8 technology. One methodology to cover these aspects is the Life Cycle Assessment (LCA), where the technology 9 with all up and down streams is evaluated [45]. Membrane technology competes with other capture technologies. 10 One advantage of membranes is assumed to be the environmental performance. To show whether this is true 11 considering all environmental aspects, the developed membrane systems (RT 1-3) have to be compared with other 12 CCS technologies. For each process route the currently most promising membrane technology and a competing 13 technology is selected (Figure 12).

- 14
- 15
- 16 17

18 Fig. 12: Comparison of different CCS technologies

The results obtained in the process simulation (RT 3) are transformed into life cycle data and integrated into an environmental calculation software. The process data are combined and completed by data considering upstream and downstream processes, such as coal supply or waste treatment, taken mostly from the ecoinvent 2.01 database [46]. For each process the important input and outputs are determined and the potential impacts connected with the production of 1 kWh_e are assessed. Typical impact categories beside global warming potential are acidification, eutrophication, human toxicity but also resource use. **Figure 13** shows an exemplary preliminary result of the impact assessment for the Oxyfuel process route.

- 26
- 27
- 28
- 29

Fig. 13: Life Cycle Impact Assessment for four different power plant concepts: Reference power plant NRW, ultra supercritical power plant, cryogenic air separation and the three-end membrane system

³²₃₃ Compared are four systems with and without CO_2 capture. As a reference system the reference power plant NRW is chosen (see 3.3.1). The development of power plant technology without CCS is accounted for in the simulation of an ultra-supercritical power plant concept (USC, 700°C, 350 bar) [47]. CCS technology concepts considered are the cryogenic air separation and the three-end membrane system described above.

As expected, the Global Warming Potential GWP decreases due to efficiency increase for power plants without CCS. With capture technology the decrease is even more considerable, although it is smaller than the estimated capture rate. This is due to the additional demand of coal supply, which is connected with higher methane emissions during mining. For the other impact categories the differences are mainly related to the efficiency of the plants.

42 Other CCS technologies, especially those using solvents, show a stronger increase in other impact categories [48-43 51]. For all three CCS routes the results for the competing technologies have to confirmed and compared to those for 44 the selected membranes systems. Thus development targets can be defined and weak point analysis will contribute 45 to further developments.

- 46
- 47
- 48
- 49

A major research task will be the analysis of the construction of the membrane system. Investigation about the construction and dismantling of a MEA plant show negligible impacts (< 0.5%) compared to the operation phase [52]. It has to be analysed whether this is also true for membrane systems.

3.4.3. Energy systems model analysis

CCS represents one measure amongst many other mitigation options. Therefore, the application of membranes for capture competes not only against other capture technologies but CCS itself competes against other measures. One possibility of determining optimum-cost mitigation strategies is the application of bottom-up energy system models. By means of the IKARUS optimization model [53], scenarios are generated that permit CCS to be classified within the framework of a national mitigation strategy for Germany until 2050.

Fig. 14: German power plant capacity meeting a 69 % CO2 reduction target until 2050

Figure 14 shows the development of German power plant capacity assuming a CO_2 reduction target of 69%. To meet this target the installed capacity increases by 50 %. The results show that CCS is an interesting option in Germany, especially for lignite-based power production. About 27 GW lignite fired power plants have to be installed (including 7 GW retrofitted power plants) in the year 2050. The capacity of hard coal fuelled plants with CCS is 7 GW (all retrofitted). The calculated capacity building rates for CCS are high and imply additional lignite supply infrastructure. Assuming an average membrane capacity of 1 m²/kW the calculated built up of capacity requires an annual membrane production of up to 2 Million m².

To achieve the same 69% reduction target without CCS technology other, more expensive measures (in other sectors) are necessary, which increase the total CO₂-reduction costs for the total German energy system by about 27 Billion ϵ/a in 2050. These results are strongly dependent on cost assumptions (investment costs, energy prices). However, sensitivity analysis has proven a robustness of the findings.

4. Acknowledgements

Financial support from the Helmholtz Association of German Research Centres (Initiative and Networking Fund) through the MEM-BRAIN Helmholtz Alliance is gratefully acknowledged.

5. References

- [1] OECD/IEA, 2009. World Energy Outlook 2009, Paris, www.energyoutlook.org.
- ⁰ [2] IEA, 2008 Energy Technology Perspectives Scenarios & Strategies to 2050. Paris
- IPCC (Intergovernmental Panel on Climate Change) 2005, 'IPCC special report on carbon dioxide capture and storage', prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B.,
 O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 442.
- A. Brunetti, F. Scura, G. Barbieri, E. Drioli, Membrane technologies for CO₂ separation, J. Membr. Sci. (2009), doi:10.1016/j.memsci.2009.11.040
- R. Bredesen, K. Jordal, O. Bolland, High-temperature membranes in power generation with CO2 capture,
 Chem. Eng. Process. 43 (2004) 1129–1158
- [6] S. Švarcová, K. Wiik, J. Tolchard, H. J.M. Bouwmeester and T. Grande, Structural instability of cubic perovskite $Ba_xSr_{1-x}Co_{1-y}Fe_yO_{3-\delta}$, Solid State Ionics, 178, 35-36 (2008) 1787-1791.
- J.H. Tong, W.S. Yang, R. Cai, B.C. Zhu, L.W. Lin, Novel and ideal zirconium-based dense membrane reactors for partial oxidation of methane to syngas, Catal. Lett. 78(1-4) (2002) 129-137.

- [8] T. Shimura, S. Fujimoto, H. Iwahara, Protonic conduction in lanthanum strontium aluminate and lanthanum niobate-based oxides at elevated temperatures, Solid State Ionics 143 (1) (2001), 117-123
- [9] R. Haugsrud, Defects and transport properties in Ln_6WO_{12} (Ln = La, Nd, Gd, Er), Solid State Ionics 178, 7-10, (2007) 555-560
- [10] S. Escolástico, V.B. Vert, J.M. Serra, Preparation and Characterization of Nanocrystalline Mixed Proton–Electronic Conducting Materials Based on the System Ln6WO12, Chem. Mat. 21 (2009) 3079–3089
- [11] H. Lin, E. Wagner, B.D. Freeman, L.G. Toy, R.P. Gupta, Plasticization-enhanced hydrogen purification using polymeric membranes, Science 311 (2006) 639-642.
- [12] S. Krishnamoorthy, C. Hinderling, H. Heinzelmann, Nanoscale patterning with block copolymers, Mater. Today 9 (9) (2006) 40-47
- [13] A. Car, C. Stropnik, W. Yave, K.-V. Peinemann, PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation, J. Membr. Sci. 307 (2008) 88-95.
- [14] W. Yave, A. Car, K.-V. Peinemann, M.Q. Shaikh, K. Rätzke, F. Faupel, Gas permeability and free volume in poly(amid-b-ethylene oxide)/polyethylene glycol blend membranes, J. Membr. Sci. 339 (2009) 177-183.
- [15] A. Car, C. Stropnik, W. Yave, K.-V. Peinemann, Pebax®/polyethylene glycol blend thin film composite
 membranes for CO2 separation: Performance with mixed gases, Sep. Purif. Technol. 62 (2008) 110-117.
- [16] W. Yave, A. Car, K.-V. Peinemann, Nanostructured membrane material designed for carbon dioxide
 separation, J. Membr. Sci. accepted for publication
- [17] A. Car, C. Stropnik, W. Yave, K.-V. Peinemann, Tailor-made polymeric membranes based on segmented block copolymers for CO2 separation, Adv. Funct. Mater. 18 (2008) 2815-2823
- [18] W. Yave, A. Car, S.S. Funari, S.P. Nunes, K.-V. Peinemann, CO2-philic polymer membrane with extremely
 high separation performance, Macromolecules 43 (2010) 326-333.
- [19] Konzeptstudie: Referenzkraftwerk Nordrhein-Westfalen (RKW NRW), VGB Power Tech e.V., Essen, Germany, February 2004.
- [20] R. Kloster, Thermodynamische Analyse und Optimierung von Gas-/Dampfturbinen-Kombi-Kraftwerken mit
 integrierter Kohlevergasung, VDI Verlag, Düsseldorf, 1999.
- [21] Massachusetts Institute of Technology, The Future of Coal. Options for a Carbon-Constrained World, Cambridge, 2007. Available at: http://web.mit.edu/coal/The_Future_of_Coal.pdf.
- [22] CO2 capture ready plants, Technical Study for Executive Committee of the IEA GHG Programme, Report Number 2007/4, May 2007.
- R. Bounaceur, N. Lape, R. Denis, C. Vallieres, E. Favre, Membrane processes of post-combustion carbon dioxide capture: A parametric study, Energy, 31 (2006) 2220-2234.
- [24] E. Favre, Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption? J. Membr. Sci., 294 (2007) 50-59.
- [25] C. Hendriks, Carbon dioxide removal from coal-fired power plants, Kluwer Academic Publishers,
 Dordrecht/Boston/London, 1994.
- A. Hussain, M.-B. Hägg, A feasibility study of CO2 capture from flue gas by a facilitated transport membrane, J. Membr. Sci., doi:10.1016/j.memsci.2009.11.035 (2009).
- [27] T.C. Merkel, H. Lin, X. Wei, R. Baker, Power plant post-combustion carbon dioxide capture: An opportunity
 for membranes, J. Membr. Sci., doi:10.1016/j.memsci.2009.10.041 (2009).
- P.H. Raats, J.J. deWolff, A.F. Stam, P.M. Follmann, NanoGLOWA: nano-structured membranes against global warming, 12th Aachener Membran Kolloqium, Aachen, Germany, 29th-30th October 2008, pp. 361-367.
- 47

3

4 5

6

7

8

- 48
- 49

- [29] L. Zhao, E. Riensche, R. Menzer, L. Blum, D. Stolten, A parametric study of CO2/N2 gas separation membrane processes for post-combustion capture, J. Membr. Sci., 325 (2008) 284-294.
- [30] MEM-BRAIN Alliance (Gas separation membranes for zero-emission fossil power plants), 18 research institutions and 5 industrial partners Coordinator: IEF-1, FZJ, Oct. 2007 Jun. 2011.
- [31] P. Galindo-Cifre, K. Brechtel, S. Hoch, H. García, N. Asprion, H. Hasse, G. Scheffknecht, Integration of a chemical process model in a power plant modelling tool for the simulation of an amine based CO2 scrubber, Fuel (2009, doi:10.1016/j.fuel.2009.01.031).
- [32] W. Arlt, Thermodynamical optimization of solvents for CO2 absorption, Workshop CO2-Capture, -Utilization and –Sequestration, Status and Perspectives, PROCESSNET, DECHEMA-Haus, Frankfurt am Main, Germany, January 21st-22nd, 2008.
- [33] S. Rezvani, Y. Huang, D. McIlveen-Wright., N. Hewitt., J. Mondol, Comparative assessment of coal fired IGCC systems with CO2 capture using physical absorption, membrane reactors and chemical looping, Fuel 88 (2009) 2463-2472,
- 8 [34] W. Renzenbrink, K-J. Wolf, F. Hannemann, G. Zimmermann, E. Wolf, Development of pre-combustion decarbonization technologies for zero-CO2 power generation, 8th Int. Conference on greenhouse gas
 technologies, Trondheim (2006)
- [35] P. Chiesa, S. Consonni, Shift Reactors and Physical Absorption for Low-C0₂ Emission IGCCs, J. Eng. Gas
 Turbines Power 121 (1999) 295-305
- $\begin{array}{ccc} 14 \\ 15 \\ 16 \end{array} \begin{array}{c} \text{[36]} & \text{M. Arnold, H. Wang, A. Feldhoff, Influence of CO_2 on the oxygen permeation performance and the} \\ \text{microstructure of perovskite-type Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.8}\text{Fe}_{0.2}\text{O}_{3\cdot\delta} \text{ membranes, J. Membr. Sci. 293 (2007) 44-52} \\ \end{array}$
- [37] S. Engels, M. Modigell, Chemical Stability of Mixed Ion Electron Conducting (MIEC) Membranes for highly
 efficient Air Separation in Oxyfuel Power Plant Processes . In: International Conferences on Inorganic
 Membranes, Tokyo, Japan, 18-22.08.2008
- [38] A. Seltzer, Z. Fan, H. Hack, Oxyfuel Coal Combustion Power Plaint System Optimization, 7th Annual
 COAL-GEN Conference Milwaukee, WI, August 1 3, 2007, Foster Wheeler North American Corp., 2007
- [39] J. Davison, Performance and Costs of Power Plants with Capture and Storage of CO2, Energy 32, 7 (2007)
 1163–1176.
- [40] R. Castillo, Technical evaluation of CO2 compression and purification in CCS power plants. Fourth International Conference on Clean Coal Technologies CCT2009, Dresden, Germany (2009)
- 28 [41] VISSER, E., et al., DYNAMIS CO2 Quality Recommendations. www.dynamishypogen.com. (2007)
- ²⁹
 ³⁰ [42] McKinsey Carbon Capture and Storage: Assessing the Economics. www.mckinsey.com (2008)
- [43] CO₂ supply report, Kinder Morgan (2003)
 32
- [44] EU (2008): COM(2008) 18 final. Proposal for a Directive of the European Parliament and of the Council on
 the geological storage of carbon dioxide and amending Council Directives 85/337/EEC, 96/61/EC, Directives
 2000/60/EC, 2001/80/EC, 2004/35/EC, 2006/12/EC and Regulation (EC) No 1013/2006 (2008)
- ISO 14040/14044 Environmental management Life cycle assessment Principles and framework, Requirements and guidelines. Deutsches Institut für Normung e. V (2006)
- 39 [46] www.ecoinvent.ch
- 40 [47] Lighthouse concept The path to fossil-fired power plants for the future. Research Report No. 566. Federal Ministry of Economics and Technology (BMWi), Berlin.
- [48] C. Bauer, T. Heck, R. Dones, O. Mayer-Spohn, M. Blesl, NEEDS (New Energy Externalities Developments
 for Sustainability) Final report on technical data, costs, and life cycle inventories of advanced fossil power
 generation systems. Paul Scherrer Institut (PSI) und Institut für Energiewirtschaft und Rationelle
 Energieanwendung, Univ. Stuttgart (IER) (2009).
- 47 48

3

4

5

6

7

- [49] J. Koornneef, T. van Keulen, A. Faaij, W. Turkenburg, Life cycle assessment of a pulverized coal power plant with post-combustion capture, transport and storage of CO₂. International Journal of Greenhouse Gas Control, 2 (2008) 448-467.
- [50] N.A. Odeh, T.T. Cockerill, Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage. Energy Policy, 36, 1, (2008) 367-380.
- [51] A. Schreiber, P. Zapp, W. Kuckshinrichs, Environmental assessment of German electricity generation from coal-fired power plants with amine-based carbon capture, Int. J LCA 14 (2009) 547-559.
- [52] S. Weber, H. J. Wagner, CO2-Abscheidung mittels Aminwäsche, Baulicher Aufwand einer Aminwäscheanlage und seine ökologische Bedeutung, BWK, 61, 5 (2009) 10 14
- [53] D. Martinsen, J. Linssen, P. Markewitz, S. Vögele, CCS: A Future CO2 Mitigation Option for Germany ? A Bottom Up Approach. Energy policy, 35, 4 (2007) 2110-2120

9 10 **6. Figures**

1

2

3

4

Power Plant Concepts for CO_2 -separation in fossil power plants

Fig. 2: Microporous ZrO₂ membrane on top layer of a high quality mesoporous ZrO₂ layer

Fig. 3: SOD membrane layer on top of an α -Al₂O₃ support disc

Fig. 4: HTEM of perovskite

- 17 -

3 **Fig. 7**: A cascade concept, recycling the retentate of the 2nd membrane to the feed of the 1st membrane

Fig. 8: Results of single membrane concept simulations for the integration of polymeric membranes

- 18 -

- 19 -

Fig. 10: Efficiency drop of an 3-end oxyfuel power plant at different feed pressures and separation ratios.

Fig. 12: Comparison of different CCS technologies

Fig. 13: Life Cycle Impact Assessment for an Oxyfuel process using membrane technology

Fig. 14: German power plant capacity meeting a 69 % CO_2 reduction target until 2050

7. Tables

Table 1: Comparison between a cascade membrane concept with MEA absorption applied for 600 MW NRW-RKW, separated CO₂ compressed to 110 bar, 30°C [29], [30]. The feed flue gas is composed of 14 mol% CO₂ and 86 mol% N₂; the vacuum pressure of the 1st membrane is 100 mbar, the pressure level of the 2nd membrane is 4 bar; it is assumed that the efficiency of all compression machines is 85%.

25						
2.6	Capture method	Separation	CO ₂ purity	Specific energy	Specific energy	Efficiency
27		degree	[mol%]	for capture	for	loss
2.8		[%]		[kWh/t _{separated CO2}]	compression	[%-pts.]
29				•	[kWh/t _{CO2}]	
30	MEA absorption	70	99	220	100	8.2
31	Cascade membrane	70	95	151	105	6.4
32					•	
33						
34						
35						
36						
37						
38						
39						
40						
41						
42						
43						
44						
45						
46						
47						
48						
49						

6. Figures

Power Plant Concepts for CO₂-separation in fossil power plants

Fig. 1: The three CO₂ capture concepts

Fig. 2: Microporous ZrO₂ membrane on top layer of a high quality mesoporous ZrO₂ layer

Fig. 3: SOD membrane layer on top of an α -Al₂O₃ support disc

Fig. 4: HTEM of perovskite

Fig. 5: Scheme of the permeation process in a mixed protonic-electronic conducting membrane made of La_6WO_{12}

Polyactive ®

Fig. 6: Structural formulaes of Pebax[®] and Polyactive[®]

Fig. 7: A cascade concept, recycling the retentate of the 2nd membrane to the feed of the 1st membrane

Fig. 8: Results of single membrane concept simulations for the integration of polymeric membranes

Fig. 9: Influence of the separation ratio and the permeate pressure on the efficiency of an oxyfuel power plant (1210 MWth) at 10 bar feed pressure.

Fig. 10: Efficiency drop of an 3-end oxyfuel power plant at different feed pressures and separation ratios.

Fig. 11: Compression work and storage capacity for an IGCC-off gas [Castillo 2009]

Fig. 12: Comparison of different CCS technologies

Fig. 13: Life Cycle Impact Assessment for an Oxyfuel process using membrane technology

Fig. 14: German power plant capacity meeting a 69 % CO₂ reduction target until 2050

Gas separation membranes for zero-emission fossil power plants: MEM-BRAIN

M. Czyperek^a*, P. Zapp^a, H. J. M. Bouwmeester^b, M. Modigell^c, K. Ebert^d, I. Voigt^e, W. A. Meulenberg^a, L. Singheiser^a, D. Stöver^a

^aForschungszentrum Jülich GmbH, Institute of Energy Research, Leo-Brandt-Str. 1, D-52425 Jülich, Germany
 ^bUniversity of Twente, Department of. Science and Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands
 ^cRWTH Aachen University, Department of Chemical Engineering, Turmstr. 46, D-52056 Aachen, Germany
 ^dGKSS-Forschungszentrum Geesthacht GmbH, Institute of Materials Research, Max-Planck-Str. 1, D-21502 Geesthacht, Germany
 ^eHermsdorfer Institut für Technische Keramik e.V., Michael-Faraday-Str. 1, D-07629 Hermsdorf/Thuringia, Germany

7. Tables

Table 1: Comparison between a cascade membrane concept with MEA absorption applied for 600 MW NRW-RKW, separated CO₂ compressed to 110 bar, 30°C [29], [30]. The feed flue gas is composed of 14 mol% CO₂ and 86 mol% N₂; the vacuum pressure of the 1st membrane is 100 mbar, the pressure level of the 2nd membrane is 4 bar; it is assumed that the efficiency of all compression machines is 85%.

Capture method	Separation	CO ₂ purity	Specific energy	Specific energy	Efficiency
	degree	[mol%]	for capture	for	loss
	[%]		[kWh/t _{separated CO2}]	compression	[%-pts.]
			-	[kWh/t _{CO2}]	
MEA absorption	70	99	220	100	8.2
Cascade membrane	70	95	151	105	6.4

^{*} M. Czyperek. Tel.: +49-2461-61-5450; fax: +49-2461-61-2455.

E-mail address: m.czyperek@fz-juelich.de