

Final Draft of the original manuscript:

Lim, H.-J.; Park, J.-H.; Lee, S.; Choi, H.-E.; Lee, K.-S.; Park, H.-Y.: **PPAR Delta ligand L-165041 ameliorates Western diet-induced hepatic lipid accumulation and inflammation in LDLR**–/– mice In: European Journal of Pharmacology (2009) Elsevier

DOI: 10.1016/j.ejphar.2009.09.002

1 PPARδ ligand L-165041 ameliorates Western diet-induced hepatic

2 lipid accumulation and inflammation in LDLR^{-/-} mice

3	
4	
5	Hyun-Joung Lim ^a , Jin-Hee Park ^a , Seahyoung Lee ^b , Hye-Eun Choi ^a , Kuy-Sook Lee ^a ,
6	Hyun-Young Park ^{a,*}
7	
8	^a Division of Cardiovascular and Rare Diseases, Center for Biomedical Sciences, NIH, Republic
9	of Korea
10	
11	^b Institute of polymer Research, GKSS Research Center Geesthacht, Teltow, Germany
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	To whom correspondence should be addressed:
22	Hyun-Young Park, M.D., Ph.D.
23	Division of Cardiovascular and Rare Diseases
24	Center for Biomedical Sciences
25	National Institute of Health, Korea
26	Tel: 822-380-1534
27	Fax: 822-388-0924
28	E-mail: hypark65@nih.go.kr
29	

30 ABSTRACT

31

32	Although peroxisome proliferator-activated receptor delta (PPAR δ) has been implicated
33	in energy metabolism and the lipid oxidation process, detailed roles of PPAR δ in lipid
34	homeostasis under pathologic conditions still remain controversial. Thus, we
35	investigated the effect of PPAR δ ligand L-165041 on Western diet-induced fatty liver
36	using low-density lipoprotein receptor-deficient (LDLR ^{-/-}) mice. $LDLR^{-/-}$ mice
37	received either L-165041 (5 mg/kg/day) or vehicle (0.1 N NaOH) with Western diet for
38	16 weeks. According to our data, L-165041 drastically reduced lipid accumulation in
39	the liver, decreasing total hepatic cholesterol and triglyceride content compared to the
40	vehicle group. Gene expression analysis demonstrated that L-165041 lowered hepatic
41	expression of PPAR γ , apolipoprotein B, interleukin 1 beta (IL-1 β), and interleukin-6. In
42	contrast, L-165041 increased hepatic expressions of PPAR6, lipoprotein lipase (LPL),
43	and ATP-binding cassette transporter G1 (ABCG1). Our data suggest that L-165041
44	might be effective in preventing Western diet-induced hepatic steatosis by regulating
45	genes involved in lipid metabolism and the inflammatory response.
46	

47 *Keywords*:

48 Peroxisome proliferator-activated receptor delta

49 LDLR^{-/-} mice

- 50 Steatosis
- 51 Inflammation

53 1. Introduction

Peroxisome proliferator-activated receptors (PPARs) belong to the superfamily of 54 nuclear receptors that regulate various metabolic processes by acting as transcription 55 56 factors. The peroxisome proliferator-activated receptors family consists of three structurally similar isoforms, α , δ , and γ (Takano et al., 2004). Among these different 57 isoforms, the least studied PPAR δ is known to be widely expressed in many different 58 types of tissue (Ahmed et al., 2007). Although synthetic PPARδ ligands have not been 59 fully approved for clinical applications, studies to elucidate their pharmacological 60 61 effects have been ongoing since they were first synthesized and results are now 62 accumulating.

PPARS has been reported to be involved in developmental regulation (Braissant and 63 Wahli, 1998), energy homeostasis (Berger et al., 2005), and lipid metabolism 64 (Leibowitz et al., 2000). In the hepatic system, a synthetic PPAR δ ligand has been 65 reported to induce hepatic lineage cell proliferation (Hellemans et al., 2003; 66 Glinghammar et al., 2003). In addition, some beneficial effects of PPARS on hepatic 67 lipid metabolism, including an attenuation of hepatic fat accumulation in leptin-68 69 deficient (ob/ob) mice (Wang et al., 2003) and an improvement in hepatic inflammation and subsequent steatohepatitis (Nagasawa et al., 2006), have been reported. 70

71 Nevertheless, a more defined role of PPARδ in hepatic lipid metabolism under
72 pathologic conditions such as hepatic steatosis remains to be determined.

A high-fat diet can lead to the hepatic accumulation of dietary fat and cause 73 inflammation (Lavoie and Gauthier, 2006). Moreover, a significant accumulation of fat 74 in the liver is considered to be one of the common features of metabolic syndromes such 75 as obesity, diabetes, and hyperlipidemia (Abdeen et al., 2006). In general, hepatic lipid 76 accumulation can compromise hepatic function, and further develop into cirrhosis or 77 hepatocellular carcinoma. Therefore, a need exists to clarify its regulatory mechanisms 78 79 and develop a pharmaceutical agent to control its development and subsequent hepatic 80 steatosis (Nagasawa et al., 2006).

In the present study, we evaluated the effect of a synthetic PPAR δ ligand, L-165041 81 ([4-3-(4-Acetyl-3-dydroxyl-2-propylphenoxy propoxy) phenoxy] acetic acid), on the 82 accumulation of hepatic lipids induced by a Western diet in low-density lipoprotein 83 receptor-deficient (LDLR^{-/-}) mice. According to our data, L-165041 treatment 84 significantly inhibited hepatic lipid accumulation, reducing the amount of total 85 cholesterol and hepatic triglycerides. In addition, L-165041 diminished the gene 86 87 expressions of PPARy, apoB, and inflammatory cytokines induced by a Western diet. Our data suggest that L-165041 might be an effective agent for preventing hepatic lipid 88

89 accumulation by modulating lipid metabolism and inflammation processes.

91 **2.** Materials and methods

92

93 2.1. Animals and diet.

94

The animals used for this study were 7-9-week-old female B6;129S-Ldlr^{tm1Her} 95 mice (Orient Charles River Technology, Seoul, Korea) fed a Western diet (21% milk fat, 96 0.15% cholesterol, 19.5% casein, 0.3% DL-methionine, 15% cornstarch, 34.146% 97 sucrose, 5% cellulose, 3.5% salt mix, 1% vitamin mix, 0.4% calcium carbonate, 98 0.0004 % ethoxyquin). A synthetic PPARS ligand, L-165041, was purchased from 99 Tocris (Ellisville, MO). LDLR^{-/-} mice were divided into vehicle (0.1 N NaOH) and L-100 165041 (5 mg/kg/day) group (9 animals in each group). LDLR^{-/-} mice received either 101 NaOH or L-165041 via daily intraperitoneal injection (i.p) for 16 weeks with the 102 Western diet. Body weight was measured once a week and the blood samples for a 103 serum parameter analysis were collected using an eye-bleeding method every 4 weeks. 104 At the end of the experiment, LDLR^{-/-} mice were fasted for 24 hrs before sacrificed and 105 the liver samples were either fixed in formalin or frozen at -70 °C for further analysis. 106 107 All animal housed in polycarbonate cages in a room with a 12-h light/12-h dark cycle, and maintained at a constant temperature of 22°C. All experiments were performed in 108

accordance with the Guidelines for the Care and Use of Laboratory Animals set forth bythe Korea National Institute of Health (NIH-08-26).

111

112 2.2. Serum and liver lipid profile analysis.

113

The analysis of total serum cholesterol and triglycerides levels was performed by 114 the Korean Research Institute of Biosciences and Biotechnology (KRIBB, Daejeon, 115 Korea). Blood samples were collected and centrifuged at 3,000 rpm, room temperature, 116 117 for 15 min to get serum samples. Unused serum samples were immediately frozen at -70 °C for later measurements. Serum samples were analyzed by a clinical chemistry 118 119 analyzer (Hitachi 7020, Hitachi, Japan). Hepatic lipids were extracted using a previously described protocol (Folch et al., 1957). For the hepatic lipid extraction, the 120 liver samples were homogenized with 1 ml distilled water for 5min. The homogenates 121 122 were freshly added 2.5ml solvent mixture containing chloroform and methanol (2:1) and centrifuged at 3,000 rpm for 10min to separate phases. The lower phase was 123 carefully removed and transferred to a new tube. Additional 1ml of solvent was added to 124 125 the upper phase and the pellet, vortexed, then centrifuged at 3,000 rpm for 10min. The lower phase was repeatedly collected. Collected lower phase was combined with 1.5ml 126

128	vortexing and centrifugation, the lower phase containing lipids were evaporated under a
129	nitrogen stream. Dried pellet was resuspended in 0.5ml ethanol and analyzed using total
130	cholesterol and triglycerides kits (Bioclinical Systems Corp., Seoul, Korea).
131	
132	2.3. Histological examination.
133	
134	Liver samples fixed in 10% formalin were embedded in paraffin and sectioned at a
135	thickness of 7 μ m before they were stained with hematoxylin and eosin (H&E). For the
136	Oil-Red O analysis, the liver samples frozen in embedding media were sectioned at a
137	thickness of 7 μ m at –20 °C using a CM3050 cryostat (Leica, Wetzlar, Germany). The
138	slides were fixed and stained with Oil-Red O dye. After staining, slides were washed
139	three times with 85% 1,2-propranediol and then with deionized water. For the
140	macrophage staining, slides were incubated with blocking buffer containing 10 %
141	normal goat serum (NGS) in 0.3% triton X-100 for 60 min after permeabilized and
142	washed. Sections were then incubated with MOMA-2 primary antibody (Santa Cruz,
143	Santa Cruz, CA) diluted 1:200 in 5 % NGS for overnight at 4°C. Sections were washed
144	three times in PBS for 5min each and incubated with the secondary antibody (HRP

of washing buffer containing chloroform, methanol, and 0.05 % CaCl₂ (3:48:47). After

145	conjugated) for 60min at room temperature. Sections were washed three times for 5min
146	in PBS and then stained by 3-3' diaminobenzidine tetrahydrochloride (DAB) with metal
147	enhancer (Sigma Chemical Co., St. Louis, MO) and mounted. For microscopic
148	examinations, an upright light microscope (E600; Nikon, Melville, NY) was used, and
149	the images were taken using a Nikon Coolpix 4300 digital camera.
150	
151	2.4. Quantitative real-time polymerase chain reaction (qRT-PCR).
152	
153	Total RNAs from the liver tissue were isolated using an RNeasy lipid kit (Qiagen,
154	Valencia, CA) according to the manufacturer's recommendations. For qRT-PCR, high-
155	capacity cDNA reverse transcription kits and one-step SYBR PCR kits (Applied
156	Biosystems, Foster city, CA) were used. qRT-PCR analysis was performed using an
157	ABI prism 7900 (Applied Biosystems); the primers used are listed in Table 1.
158	Individual gene expressions were normalized with glyceraldehyde 3-phosphate
159	dehydrogenase (GAPDH) expression.
160	
161	2.5. Statistical analysis.

162 The values are means \pm S.E.M. The significance of differences was determined

using Student's *t*-test. A level of P value <0.05 was considered to be significant.

165	3. Results
166	
167	3.1. Effects of L-165041 on the serum lipid profile of $LDLR^{-/-}$ mice fed a Western diet
168	
169	After 16 weeks on the Western diet, the serum levels of total cholesterol,
170	triglycerides, and low-density lipoproteins were significantly elevated in both the
171	vehicle and L-165041 group compared to baseline. However, no significant difference
172	was observed between the vehicle and L-165041 groups in terms of serum lipid
173	parameters. In addition, no differences in the liver weight were detected (Table 2).
174	
475	
175	3.2. Effect of L-165014 on hepatic lipid accumulation
175	3.2. Effect of L-165014 on hepatic lipid accumulation
	3.2. Effect of L-165014 on hepatic lipid accumulation To examine the effect of general morphology, we performed histological analysis
176	
176 177	To examine the effect of general morphology, we performed histological analysis
176 177 178	To examine the effect of general morphology, we performed histological analysis after hematoxylin and eosin staining. Animals developed a pronounced lipid
176 177 178 179	To examine the effect of general morphology, we performed histological analysis after hematoxylin and eosin staining. Animals developed a pronounced lipid accumulation after 16 weeks of Western diet and the lipid droplets were mainly
176 177 178 179 180	To examine the effect of general morphology, we performed histological analysis after hematoxylin and eosin staining. Animals developed a pronounced lipid accumulation after 16 weeks of Western diet and the lipid droplets were mainly distributed around the central vein of the liver (Fig. 1A). These lipid droplets were

droplets was significantly lower. This difference in hepatic lipid accumulation wasmore obvious with the Oil Red O staining (Fig. 1B).

185

186 *3.3 Effects of L-165014 on the hepatic cholesterol and triglyceride levels*

187

As shown in Fig. 2, L-165041 treatment significantly reduced the level of both the hepatic cholesterol and triglycerides. The results of the hepatic cholesterol and triglyceride levels correspond with the histological examination.

191

192 *3.4. Expression of hepatic mRNA*

193

Since L-165041 treatment inhibited hepatic lipid accumulation, we next examined the expression of the genes involved in hepatic lipid metabolism. mRNA expression of PPAR α in L-165041-treated mice was not different from that of the vehicle group (Fig. 3A). Conversely, administration of L-165041 increased mRNA expression levels of PPAR δ compared to the vehicle group (Fig. 3B), while administration of L-16541 significantly reduced mRNA expression levels of PPAR γ (Fig. 3C). Lipoprotein lipase (LPL) expression in L-165041-treated mice was significantly higher than that in the

201	vehicle group (Fig. 4A). Apolipoprotein B (apoB) expression in L-165041-treated mice
202	was significantly lower than that in vehicle mice (Fig. 4B). In addition, the expression
203	of ABCG1, which is known to be involved in cholesterol efflux, increased dramatically
204	with statistical significance (Fig. 4C). An inflammatory response in the liver due to a
205	high-fat diet is one of the features of steatosis. Here, we investigated the expression of
206	genes associated with inflammation in the liver. Treatment with L-165041 markedly
207	reduced the expression of interleukin-1 β (IL-1 β) and IL-6 in comparison with the
208	vehicle group (Fig. 5A and 5B). In contrast, the difference of tumor necrosis factor-
209	alpha (TNF- α) expression in the both groups was not statistically significant, although a
210	slight decreasing tendency was observed (Fig. 5C). To examine whether
211	proinflammatory gene up regulation resulted in hepatic macrophage infiltration, we
212	performed immunostaining using MOMA-2 antibody, a monocyte/macrophage marker.
213	According to our data, macrophages were observed in the liver of vehicle group but this
214	was reduced by treatment of L-165041 (Fig. 5D). These results suggest that L-165041
215	treatment may influence expression of inflammatory genes and subsequent macrophage
216	recruitment in the liver.

219 4. **Discussion**

221	Ubiquitously expressed, PPAR δ has been implicated in lipid metabolism and energy
222	homeostasis of various tissue types including the liver. In lipid metabolism, PPAR δ
223	agonist has been reported to increase high-density lipoproteins in animal models
224	(Graham et al., 2005) and regulate fatty acid oxidation in cardiomyocytes and skeletal
225	muscles (Planavila et al., 2005). Although these previous studies demonstrated some
226	beneficial effects of PPAR δ on the lipid profile, much of the underlying mechanism of
227	PPAR δ in hepatic steatosis remains elusive. To address this issue, we examined the
228	effect of a synthetic PPAR δ ligand, L-165041, on Western diet-induced hepatic steatosis
229	in LDLR ^{-/-} mice. According to our data, lipid accumulation was significantly reduced
230	by treatment with L-165041 compared to the vehicle group. These data suggest the
231	potential of PPAR δ as a therapeutic target for high-fat-induced hepatic steatosis.
232	In the present study, both the vehicle and L-165041 treatment failed to inhibit the
233	Western diet-induced increase in total plasma cholesterol, triglycerides, and low-density
234	lipoproteins cholesterol. Although the synthetic PPAR δ ligand GW501516 has been
235	previously reported to improve the lipid profile and was particularly potent in raising
236	high-density lipoproteins cholesterol in monkeys (Wallace et al., 2005), another

237 synthetic PPAR δ ligand, GW0742X, had no significant effect on cholesterol, high-238 density lipoproteins cholesterol, and low-density lipoproteins cholesterol (Graham et al., 239 2005). Therefore, the debate on the lipid lowering effect of PPAR δ is still open and 240 further studies are required to clarify this point.

Nevertheless, administration of L-165041 inhibited the hepatic lipid accumulation in 241 the Western-diet induced $LDLR^{-/-}$ mice and the hepatic cholesterol and triglyceride 242 243 levels were also significantly lowered with L-165041 treatment. Since recent studies 244 have suggested that peroxisome proliferator-activated receptors modulate the genes involved in fatty acid oxidation in the liver (Furnsinn et al., 2007) and that PPARy and 245 PPARa play important roles in lipogenesis and act as key modulators of high-fat diet-246 induced liver steatosis (Inoue et al., 2005; Stienstra et al., 2007), we examined 247 peroxisome proliferator-activated receptors expression in the liver (Fig. 3). While 248 mRNA expression of PPARa in L-165041-treated mice was not different from that of 249 250 the vehicle group, administration of L-165041 increased mRNA expression levels of PPARδ compared to the vehicle group. Expression of PPARγ was significantly reduced 251 by L-165041 treatment. These results indicate that downregulation of PPARy 252 253 expression might be one of the mechanisms by which L-165041 attenuates lipid accumulation in livers affected by Western diets. 254

255	In general, the mechanisms responsible for hepatic lipid accumulation could be an
256	increase in lipid uptake and/or <i>de novo</i> synthesis of lipids or a reduction in fatty acid
257	oxidation and lipoprotein secretion, or possibly both (Bradbury, 2006). Although hepatic
258	low-density lipoproteins receptors are known to be responsible for the uptake of serum
259	lipids into the liver, in our study, a high-fat diet induced significant hepatic lipid
260	accumulation even without low-density lipoproteins receptors, suggesting that other
261	lipid uptake systems might be activated. In fact, the deprivation of functional low-
262	density lipoproteins receptors has been reported to induce other lipid uptake mediators
263	such as SR-B1, VLDLR, FAT/CD36, and LPL to compensate for the impaired hepatic
264	lipid uptake (Degrace et al., 2006). We examined the genes involved in the hepatic fatty
265	acid uptake. According to our data, mRNA levels of VLDLR and CD36, which are
266	known to be poorly expressed in a normal liver, were expressed in $LDLR^{-/-}$ mice
267	regardless of L-165041 treatment. For VLDLR, no significant difference was observed
268	between groups. In addition, L-165041 treatment had a tendency to further increase
269	fatty acid translocase (CD36/FAT) expression but it was not statistically significant
270	(data not shown). LPL mRNA expression was significantly increased and hepatic
271	triglyceride levels were decreased by L-165041 treatment, suggesting that the increase
272	in hepatic LPL expression by L-165041 might have contributed to the reduced lipid

accumulation in the liver.

LPL is known to catalyze the hydrolysis of triglyceride-rich lipoproteins and to 274 modulate the binding between triglyceride -rich lipoproteins and very low-density 275 lipoproteins receptors (Niemeier et al., 1996). Previous studies have demonstrated that 276 a LPL activator, NO-1886, attenuated diet-induced steatohepatitis via anti-inflammation 277 effects and induction of fatty acid oxidation (Yu et al., 2007) and suppressed 278 279 hyperlipidemia by increasing LPL activity (Niho et al., 2005). However, we cannot definitively conclude whether the L-165041-induced increase in hepatic LPL mRNA is 280 281 directly related to hepatic lipid metabolism because we have no relevant data pertaining to, for example, LPL activity, at this moment. This is one of the limitations of the 282 283 present study and examining such a possibility would serve as an interesting subject for future studies. 284

Next, for the assembly of triglycerides into VLDL, apoB is required, which is an
important regulatory protein in VLDL assembly and subsequent secretion (Lavoie and
Gauthier, 2006). In the present study, L-165041 treatment decreased apoB expression
and we speculate that this result is the outcome of decreased hepatic lipid accumulation
or possibly coming from PPARδ-mediated non-genomic effect.

290 In addition, we observed that ABCG1 expression was significantly increased by L-

291	165041 treatment. Hepatic ABCA1 is involved in HDL production, whereas
292	ABCG5/G8 and ABCG1 were proposed mediators of biliary efflux of cholesterol from
293	the liver (Hoekstra et al., 2003). However, the role and mechanisms of ABCG1 and
294	ABCG5/G8 by activation of PPAR δ in the liver remain unknown. GW501516 has been
295	shown to induce ABCA1 expression in HSKM cells (Sprecher, 2007). In contrast,
296	another study reported that ABCA1 and ABCG1 expression levels in macrophages were
297	unaffected by GW501516 and GW0742X treatment (Lee et al., 2003; Takata, Liu et al.,
298	2008). Whether these contradicting results are due to species differences or other
299	regulators is unclear. Our results suggest that inhibition of hepatic lipid accumulation by
300	L-165041 might be affected by cholesterol efflux. This, however, is a topic for future
301	study.

Another possible mechanism by which L-165041 may decrease hepatic lipid accumulation is through modulation of the inflammatory process. Excessive hepatic lipid accumulation has been known to trigger local inflammatory reactions (Otogawa et al., 2007) and the inflammatory processes mostly coincide with increased local fat accumulation as observed in nonalcoholic steatohepatitis (Stienstra et al., 2007). Another PPARδ agonist, GW501516, has been reported to improve hepatic steatosis via direct prevention of inflammation, and it also suppressed IL-6-mediated acute phase

309	reaction of hepatocytes (Kino et al., 2007). In our study, although L-165041 failed to
310	inhibit TNF- α and MCP-1 expression (data not shown), L-165041 treatment
311	significantly inhibited IL-1 β and IL-6 expression compared to the vehicle group. These
312	observations indicate that activation of PPAR6 might prevent hepatic lipid accumulation
313	by suppressing inflammation in the liver elicited by chronic consumption of western
314	style diets.

Although we are not able to provide direct evidence in the present study, we 315 believe both a direct effect of L-165041 and an indirect (secondary) effect work together 316 317 to attenuate lipid accumulation in the present study. Lipoprotein lipase (LPL) has been known to have a PPRE in their promoter (Smith, 2002). Other recent study reported that 318 activated signaling of inflammation was shown to induce synthesis of hepatic apoB 319 which involved in lipid secretion from liver (Tsai et al., 2009). In addition, PPARS 320 ligand suppressed transcriptional activity of STAT3 and NF-kB and subsequent 321 inhibition of the proinflammatory cytokines expression. Furthermore, IL-1B, IL-6, TNF-322 α , and LPS inhibit lipid efflux by decreasing the expression of ABCA1 (Min et al., 323 2007). All these studies suggest the existence of a highly complicated cross talk 324 325 between inflammatory signaling and lipid metabolism.

326 Due to the complexity of the mechanisms that cause hepatic lipid accumulation, we

327	were unable to identify a single major factor or mechanism responsible for the observed
328	inhibitory effect of L-165041 on hepatic lipid accumulation in our experimental setting.
329	In other words, there are many possible mechanisms that might explain the observe
330	effect of L-165041 in the present study and such mechanisms include food intake,
331	energy expenditure, or fat accumulation and expression of fatty acid oxidation enzymes
332	in other tissues. Unfortunately we could not test all the hypothesis and that would be the
333	major limitation of the present study. However, our findings suggest that the $\ensuremath{\text{PPAR}\delta}$
334	ligand, L-165041, can be a potent agent in preventing the initiation and/or progression
335	of pathologic hepatic conditions, including hepatic lipid accumulation. Further studies
336	are thus warranted to clarify the role of PPAR δ in hepatic lipid accumulation.
337	
338	Acknowledgments

This work was supported by a Korea National Institute of Health intramural researchgrant (4800-4845-300-210, 2008-N00406-00).

References

346	steatohepatitis and the cardiometabolic syndrome. J.Cardiometab.Syndr. 1, 36-40.
347	Ahmed, W., Ziouzenkova, O., Brown, J., Devchand, P., Francis, S., Kadakia, M., Kanda, T.,
348	Orasanu, G., Sharlach, M., Zandbergen, F., Plutzky, J., 2007. PPARs and their metabolic
349	modulation: new mechanisms for transcriptional regulation? J.Intern.Med. 262, 184-
350	198.
351	Berger, J.P., Akiyama, T.E., Meinke, P.T., 2005. PPARs: therapeutic targets for metabolic
352	disease. Trends Pharmacol.Sci. 26, 244-251.
353	Bradbury, M.W., 2006. Lipid metabolism and liver inflammation. I. Hepatic fatty acid
354	uptake: possible role in steatosis. Am.J.Physiol Gastrointest.Liver Physiol 290,
355	G194-G198.
356	Braissant,O., Wahli,W., 1998. Differential expression of peroxisome proliferator-
357	activated receptor-alpha, -beta, and -gamma during rat embryonic development.
358	Endocrinology 139, 2748-2754.

Abdeen, M.B., Chowdhury, N.A., Hayden, M.R., Ibdah, J.A., 2006. Nonalcoholic

359 Chen, M., Li, W., Wang, N., Zhu, Y., Wang, X., 2007. ROS and NF-κB but not LXR

- mediated IL-1β signaling for the downregulation of ATP-binding cassette transporter
 A1. Am. J.Physiolo.Cell Physiol 292, C1493-C1501.
- 362 Degrace, P., Moindrot, B., Mohamed, I., Gresti, J., Du, Z.Y., Chardigny, J.M., Sebedio, J.L.,
- 363 Clouet, P., 2006. Upregulation of liver VLDL receptor and FAT/CD36 expression in
- LDLR-/- apoB100/100 mice fed trans-10,cis-12 conjugated linoleic acid. J.Lipid Res.
- **365 47**, 2647-2655.
- 366 Folch, J., Lee.S, M., Stanley, S., 1957. A simple method for the isolation and purification

of total lipides from animal tissues. J.Biol.Chem. 226, 497-509.

- 368 Furnsinn, C., Willson, T.M., Brunmair, B., 2007. Peroxisome proliferator-activated
- 369 receptor-delta, a regulator of oxidative capacity, fuel switching and cholesterol
- transport. Diabetologia 50, 8-17.
- 371 Glinghammar, B., Skogsberg, J., Hamsten, A., Ehrenborg, E., 2003. PPARdelta activation
- induces COX-2 gene expression and cell proliferation in human hepatocellular
- 373 carcinoma cells. Biochem.Biophys.Res.Commun. 308, 361-368.
- Graham, T.L., Mookherjee, C., Suckling, K.E., Palmer, C.N., Patel, L., 2005. The
 PPARdelta agonist GW0742X reduces atherosclerosis in LDLR(-/-) mice.

376 Atherosclerosis 181, 29-37.

377	Hellemans, K., Michalik, L., Dittie, A., Knorr, A., Rombouts, K., De Jong, J., Heirman, C.,
378	Quartier, E., Schuit, F., Wahli, W., Geerts, A., 2003. Peroxisome proliferator-activated
379	receptor-beta signaling contributes to enhanced proliferation of hepatic stellate cells.
380	Gastroenterology 124, 184-201.
381	Hoekstra, M., Kruijt, J.K., Van Eck, M., Van Berkel, T.J., 2003. Specific gene expression
382	of ATP-binding cassette transporters and nuclear hormone receptors in rat liver
383	parenchymal, endothelial, and Kupffer cells. J.Biol.Chem. 278, 25448-25453.
384	Inoue, M., Ohtake, T., Motomura, W., Takahashi, N., Hosoki, Y., Miyoshi, S., Suzuki, Y.,
385	Saito,H., Kohgo,Y., Okumura,T., 2005. Increased expression of PPARgamma in high
386	fat diet-induced liver steatosis in mice. Biochem.Biophys.Res.Commun. 336, 215-
387	222.
388	Kino, T., Rice, K.C., Chrousos, G.P., 2007. The PPARdelta agonist GW501516 suppresses

- interleukin-6-mediated hepatocyte acute phase reaction via STAT3 inhibition.
 Eur.J.Clin.Invest 37, 425-433.
- 391 Lavoie, J.M., Gauthier, M.S., 2006. Regulation of fat metabolism in the liver: link to non-

- alcoholic hepatic steatosis and impact of physical exercise. Cell Mol.Life Sci. 63,1393-1409.
- Lee, C.H., Chawla, A., Urbiztondo, N., Liao, D., Boisvert, W.A., Evans, R.M., Curtiss, L.K.,
- 2003. Transcriptional repression of atherogenic inflammation: modulation by
 PPARdelta. Science 302, 453-457.
- 397 Leibowitz, M.D., Fievet, C., Hennuyer, N., Peinado-Onsurbe, J., Duez, H., Bergera, J.,
- 398 Cullinan, C.A., Sparrow, C.P., Baffic, J., Berger, G.D., Santini, C., Marquis, R.W.,
- 399 Tolman, R.L., Smith, R.G., Moller, D.E., Auwerx, J., 2000. Activation of PPAR delta
- 400 alters lipid metabolism in db/db mice. FEBS Lett. 473, 333-336.
- 401 Nagasawa, T., Inada, Y., Nakano, S., Tamura, T., Takahashi, T., Maruyama, K., Yamazaki, Y.,
- 402 Kuroda, J., Shibata, N., 2006. Effects of bezafibrate, PPAR pan-agonist, and
- 403 GW501516, PPARdelta agonist, on development of steatohepatitis in mice fed a
- 404 methionine- and choline-deficient diet. Eur.J.Pharmacol. 536, 182-191.
- 405 Niemeier, A., Gafvels, M., Heeren, J., Meyer, N., Angelin, B., Beisiegel, U., 1996. VLDL
- 406 receptor mediates the uptake of human chylomicron remnants in vitro. J.Lipid Res.
- 407 37, 1733-1742.

408	Niho, N., Mutoh, M., Takahashi, M., Tsutsumi, K., Sugimura, T., Wakabayashi, K., 2005.
409	Concurrent suppression of hyperlipidemia and intestinal polyp formation by NO-
410	1886, increasing lipoprotein lipase activity in Min mice. Proc.Natl.Acad.Sci.U.S.A
411	102, 2970-2974.
412	Otogawa,K., Kinoshita,K., Fujii,H., Sakabe,M., Shiga,R., Nakatani,K., Ikeda,K.,
413	Nakajima,Y., Ikura,Y., Ueda,M., Arakawa,T., Hato,F., Kawada,N., 2007.
414	Erythrophagocytosis by liver macrophages (Kupffer cells) promotes oxidative stress,
415	inflammation, and fibrosis in a rabbit model of steatohepatitis: implications for the
416	pathogenesis of human nonalcoholic steatohepatitis. Am.J.Pathol. 170, 967-980.
417	Planavila, A., Laguna, J.C., Vazquez-Carrera, M., 2005. Nuclear factor-kappaB activation
418	leads to down-regulation of fatty acid oxidation during cardiac hypertrophy.
419	J.Biol.Chem. 280, 17464-17471.
420	Smith, S,A., 2002. Peroxisome proliferator-activated receptors and the regulation of
421	mammalian lipid metabolism. Biochemical Society Transactions.30, 1086-1090.
422	Sprecher, D.L., 2007. Lipids, lipoproteins, and peroxisome proliferator activated
423	receptor-delta. Am.J.Cardiol. 100, n20-n24.

424	Stienstra, R., Mandard, S., Patsouris, D., Maass, C., Kersten, S., Muller, M., 2007a.
425	Peroxisome proliferator-activated receptor alpha protects against obesity-induced
426	hepatic inflammation. Endocrinology 148, 2753-2763.
427	Takano,H., Hasegawa,H., Zou,Y., Komuro,I., 2004. Pleiotropic actions of PPAR gamma
428	activators thiazolidinediones in cardiovascular diseases. Curr.Pharm.Des 10, 2779-
429	2786.

430 Takata, Y., Liu, J., Yin, F., Collins, A.R., Lyon, C.J., Lee, C.H., Atkins, A.R., Downes, M.,

Barish,G.D., Evans,R.M., Hsueh,W.A., Tangirala,R.K., 2008. PPARdelta-mediated
antiinflammatory mechanisms inhibit angiotensin II-accelerated atherosclerosis.
Proc.Natl.Acad.Sci.U.S.A 105, 4277-4282.

- Tsai,J., Zhang,R., Qiu,W., Su,Q., Naples,M., Adeli,K., 2009. Inflammatory NF-κB
 activation promotes hepatic apolipoprotein B100 secretion: evidence for a link
 between hepatic inflammation and lipoprotein production. Am.J.Physiol
 Gastrointest.Liver Physiol 296, G1287-G1298.
- 438 Wallace, J.M., Schwarz, M., Coward, P., Houze, J., Sawyer, J.K., Kelley, K.L., Chai, A.,
- 439 Rudel,L.L., 2005. Effects of peroxisome proliferator-activated receptor alpha/delta
- agonists on HDL-cholesterol in vervet monkeys. J.Lipid Res. 46, 1009-1016.

441	Wang,Y.X., Lee,C.H., Tiep,S., Yu,R.T., Ham,J., Kang,H., Evans,R.M., 2003.
442	Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent
443	obesity. Cell 113, 159-170.
444	Yu,J., Chu,E.S., Hui,A.Y., Cheung,K.F., Chan,H.L., Leung,W.K., Farrell,G.C., Sung,J.J.,
445	2007. Lipoprotein lipase activator ameliorates the severity of dietary steatohepatitis.
446	Biochem.Biophys.Res.Commun. 356, 53-59.
447 448 449 450	Figure Legends
451	Fig. 1. Effect of L-165041 on the accumulation of lipid droplets in the liver.
451 452	Fig. 1. Effect of L-165041 on the accumulation of lipid droplets in the liver. Hematoxylin and eosin (H&E) staining of livers from control and L-165041- (5
452	Hematoxylin and eosin (H&E) staining of livers from control and L-165041- (5
452 453	Hematoxylin and eosin (H&E) staining of livers from control and L-165041- (5 mg/kg/day) treated mice. Numerous fatty droplets within hepatocytes were observed in
452 453 454	Hematoxylin and eosin (H&E) staining of livers from control and L-165041- (5 mg/kg/day) treated mice. Numerous fatty droplets within hepatocytes were observed in
452 453 454 455	Hematoxylin and eosin (H&E) staining of livers from control and L-165041- (5 mg/kg/day) treated mice. Numerous fatty droplets within hepatocytes were observed in the livers of vehicle mice using H&E (A) and Oil-Red O stains (B).
452 453 454 455 456	 Hematoxylin and eosin (H&E) staining of livers from control and L-165041- (5 mg/kg/day) treated mice. Numerous fatty droplets within hepatocytes were observed in the livers of vehicle mice using H&E (A) and Oil-Red O stains (B). Fig. 2. Effect of L-165041 on the hepatic lipid profile in mice fed a Western diet. (A)

461 Fig. 3. Effect of L-165041 on PPAR expression in the liver. (A) PPARα mRNA level
462 was analyzed by real-time PCR. (B) PPARδ mRNA level. (C) PPARγ mRNA level.
463 Results were quantified and normalized with respect to GAPDH. * Statistically
464 significant compared to vehicle (P < 0.05, n = 5 in each group).
465
466 Fig. 4. Hepatic gene expression in the mice administrated vehicle and L-165041.

Fig. 4. Hepatic gene expression in the mice administrated vehicle and L-165041. Hepatocytes were lysed and lipid metabolism-related gene mRNA levels were analyzed by real-time PCR analysis. (A) LPL, (B) apoB, (C) ABCG1. Results were quantified and normalized with respect to GAPDH. * Statistically significant compared to vehicle (P < 0.05, n = 5 in each group). LPL:lipoprotein lipase; apoB:apolipoprotein B; ABCG1:ATP-binding cassette transporter G1.

473 Fig. 5. Effect of L-165041 on expression of inflammatory genes. mRNA expression 474 involved in liver inflammation using quantitative real time PCR analysis. (A) 475 Interleukin-1 β ; (B) Interleukine-6; (C) Tumor necrosis factor-alpha. Data are expressed 476 as relative to vehicle mice (n=5 mice per treated group). Results were quantified and 477 normalized with respect to GAPDH. *Statistically significant compared to vehicle (P <

- 478 0.05, n=5). (D), Photomicrographs of MOMA-2 immunohistochemical staining after 16
- 479 weeks in the liver of vehicle and L-165041 treated mice.

1 **Table 1**

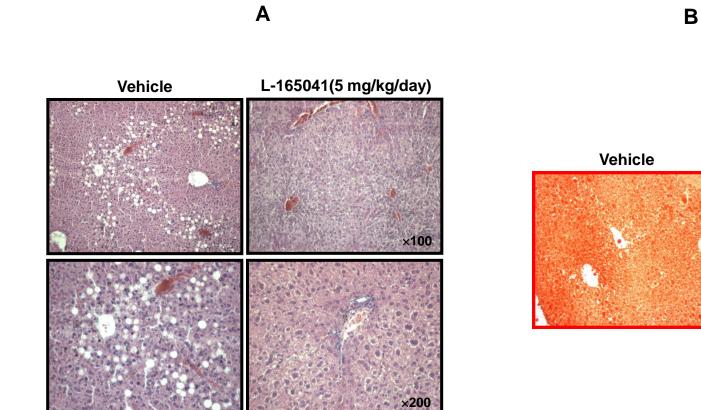
2 Primers used for quantitative real-time PCR analysis of hepatic gene expression

Name		Sequence	Accession No.
PPARα	Sense	acgatgctgtcctccttgatg	NM013196
	Antisense	gtgtgataaagccattgccgt	
ΡΡΑRδ	Sense	agatggtggcagagctatgacc	NM011145
	Antisense	tctcctcctgtggctgttcc	
PPARγ	Sense	ctgacccaatggttgctgattac	NM011146
	Antisense	tggagatgcaggttctactttga	
LPL	Sense	tggagaagccatccgtgtg	NM008509
	Antisense	tcatgcgagcacttcaccag	
apoB	Sense	tcaccatttgccctcaacctaa	NM009693
	Antisense	gaaggetetttggaagtgtaaac	
ABCG1	Sense	caagaccettttgaaagggatete	NM009593
	Antisense	gccagaatattcatgagtgtggac	
IL-1β	Sense	caaccaacaagtgatattctccatg	NM008361
	Antisense	gatccacactctccagctgca	
IL-6	Sense	ctgcaagagacttccatccagtt	NM031168
	Antisense	gaagtagggaaggccgtgg	
TNF-α	Sense	ccagtgtgggaagctgtctt	NM013693
	Antisense	aagcaaaagaggaggcaaca	
GAPDH	Sense	tggcaaagtggagattgttgcc	NM008084
	Antisense	aagatggtgatgggcttcccg	

3 PPAR, peroxisome proliferator-activated receptor; LPL, lipoprotein lipase; apoB,
4 apoprotein B; ABCG1, ATP-binding cassette transporters G1; IL-1β, interleukin-1 beta;
5 IL-6, interleukin-6; TNF-α, tumor necrosis factor-alpha; GAPDH, glyceraldehyde 36 phosphate dehydrogenase.
7
8
9
10

Table 2

aseline 8.6 ± 46.8 4.7 ± 21.6	16 weeks 845.2±77 261.0±36.0	5 284.0±3	30.5 75	16 weeks 50.0±44 31.0±36.2
4.7±21.6	261.0±36.0	_		50.0 ± 44 31.0 ± 36.2
_	_	0 47.3 \pm 1	14.6 23	1.0 ± 36.2
0 7 . 7 1				
2.7 ± 7.1	76.2 ± 3.3	59.4 ± 5	5.8 6	59.1 ± 3.7
8.5 ± 16.0	328.6±39.	6 97.3 \pm 1	15.1 26	57.5 ± 20.3
9.3 ± 0.25	21.31 ± 0.12	5 19.3±0	0.23 21	$.29 \pm 0.13$
	3.60 ± 0.12	5	3	8.92 ± 0.13
	7.14 + 0.9	6	6	5.88 ± 0.99
	9.3±0.25	3.60±0.1	9.3 \pm 0.25 21.31 \pm 0.15 19.3 \pm 0 3.60 \pm 0.15 7.14 \pm 0.96	3.60 ± 0.15 3


13 Effect of L-165041 on serum lipid profiles and tissue weight of $LDLR^{-/-}$ mice

14 Female LDLR^{-/-} mice were treated with 5 mg/kg per day PPAR δ ligand L-165041 or

15 vehicle during 16 weeks. Results are expressed as means \pm S.E.M. HDL, high-density

16 lipoprotein; LDL, low-density lipoprotein.

Figure 1.

В

•

L-165041(5 mg/kg/day)

×100

Figure 2.

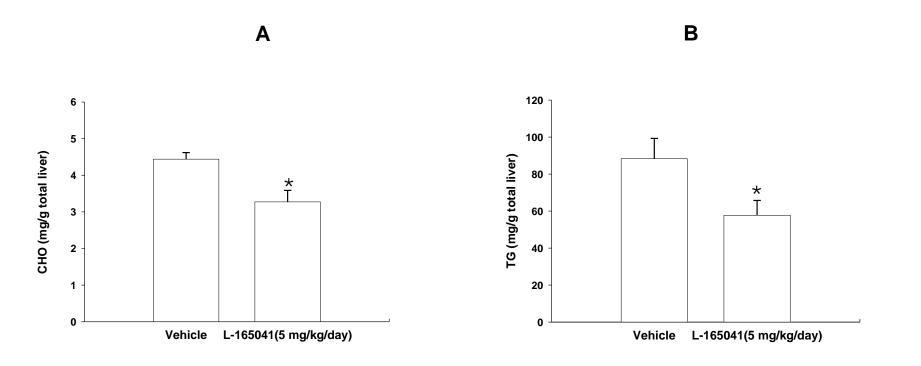
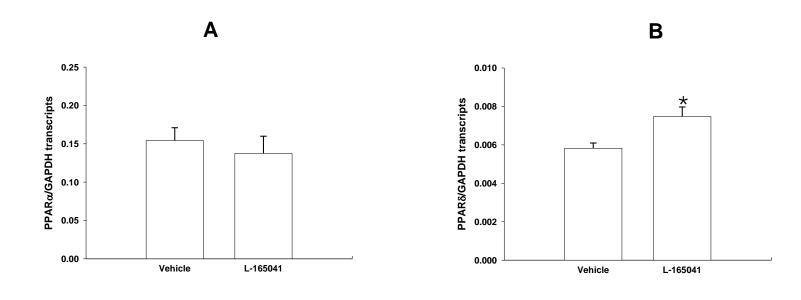
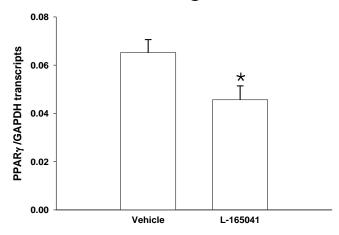
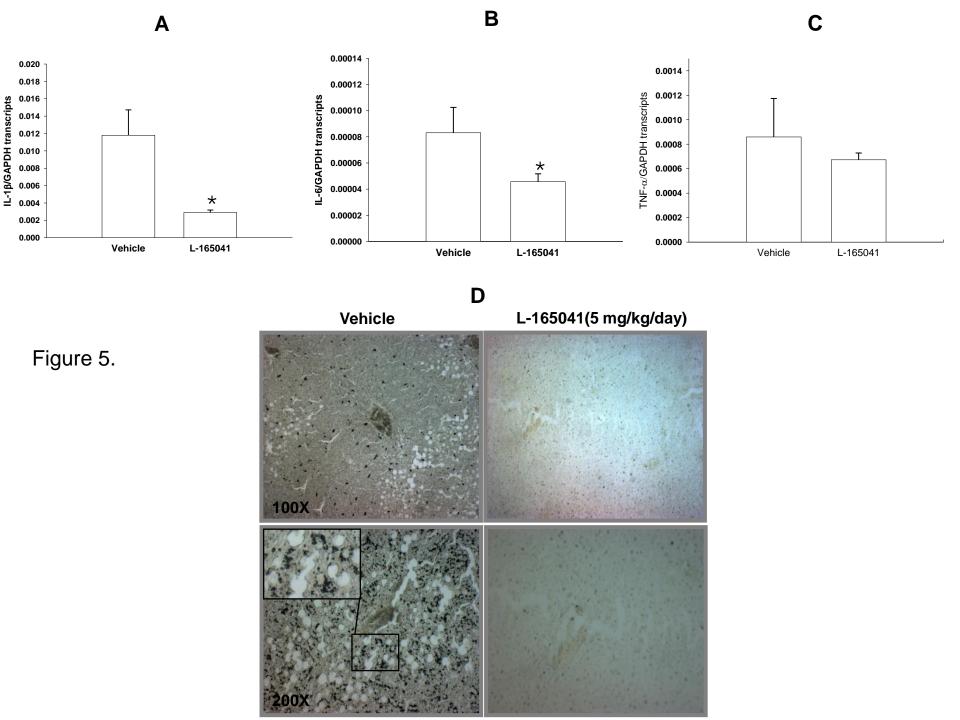




Figure 3.



С

Figure 4.

