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Abstract

Rate-sensitive and triaxiality-dependent cohesive elements are used to simulate crack growth
under quasi-static and dynamic loading conditions. The simulations are performed for a
middle-cracked tension M(T) specimen made of an aluminum alloy (6XXX-series). To
consider the effect of stress triaxiality and strain rate on the cohesive properties, a single
plane strain element obeying the constitutive equations of a rate-dependent Gurson type
model has been used. The single element is loaded under various stress biaxiality ratios
and strain rates and the obtained stress-displacement curves are considered as traction sep-
aration law for the cohesive elements. These curves are used for analyzing the aluminum
M(T) specimen. The qualitative effects of constraint, strain rate, inertia and stress waves
on the energy absorption of the specimen and crack growth are discussed.

Keywords: Cohesive zone modeling, Dynamic loading, Rate dependency, Stress triaxiality,
Rate-dependent Gurson type model

1 Introduction

When a structure is subject to dynamic loading, some additional phenomena compared
to quasi-static cases have to be considered. The high speed of deformation introduces
stress waves into the structure. Inertia effects become significant and can affect the energy
absorption of the structure. Strain rate increases the flow stress and influences the strain
hardening of metals. And last, but not least, high local temperature increase due to
adiabatic heating reduces the flow strength and counteracts the strain rate hardening.
Whether it is a stationary crack subject to impact loading, called ”"impact fracture”, or it
is a fast motion of the crack tip, named "fast fracture” [1], the mentioned phenomena can
affect the fracture toughness significantly and it is important to have an efficient analysis
tool for simulating damage and crack growth including these influences.

Analytical and macroscopic approaches used in fracture mechanics have some limita-
tions with respect to the amount of plasticity allowed at the crack tip, constraint and
geometry dependency. As Siegmund and Brocks [2] point out, to the present, "local ap-
proaches” are the only really successful methods for prediction of crack growth resistance.



In a local approach, in principle, the parameters of the respective model depend only on
the material, and not on the geometry. In this kind of approach, one can simulate duc-
tile fracture either by employing a micromechanical model of damage, which represents
the micromechanism of void initiation, growth and coalescence, or by using a phenom-
enological model for material separation and coupling it to the surrounding undamaged
elastic-plastic material. In the former approach, a representative volume element (RVE)
or "unit cell” is considered to study the respective mechanism. The most widely known
model of this kind for ductile damage calculation is the Gurson-Tvergaard-Needleman or
GTN model [3]. Zhang et al. [4] proposed a model called ”complete Gurson model” as a
combination of GTN and Thomason’s coalescence criteria [5]. This model has been used
for unit cell calculations in the present article.

A phenomenological local approach used for the numerical simulation of crack propa-
gation is known as the cohesive zone model. The idea is based on the pioneering work by
Dugdale [6] and Barenblatt [7] who introduced the strip-yield model. Both authors divided
the crack into two parts: One corresponds to the physical length of the crack, which is
stress free, and the other one is the fracture process zone, where yielding and degradation
of the material occur and which is loaded by a finite stress named cohesive stress. Later
developments of cohesive models, particularly in combination with finite element method
(e.g. [8-11]), considered the cohesive stress as a function of material separation and not
depending on the distance from the crack-tip as Barenblatt did. In a finite element repre-
sentation of cohesive zone models, cohesive elements are introduced as interface between
continuum elements and damage occurs only in the interface elements which obey a consti-
tutive equation named traction separation law (TSL) (Fig. 1). Separation in these elements
is calculated from the difference of the displacements of the continuum elements adjacent
to them. The maximum opening at which the cohesive element completely fails is called
critical separation, dy, and is one of the fracture parameters. The other fracture parameter
is the maximum traction or cohesive strength, S. The area under the TSL is the energy
absorbed by the cohesive element and is known as the cohesive energy, I':

Ty = /060 T(6)ds (1)

If the shape of a TSL is known or presumed, having two of the aforementioned parameters
is enough to define the cohesive law.

By using cohesive zone modeling in a finite element analysis, it is possible to split
the total dissipated energy into energy dissipated by plastic deformation in the process
zone and the energy of separation. In this way, it is possible to evaluate the damage
and deformation processes separately, but coupled. Besides, by entrusting the nucleation,
propagation, branching and other aspects of the fracture behavior of materials to a master
cohesive law, the amount of phenomenology is considerably reduced compared to theories
of distributed damage. Since a characteristic length is included in the TSL (cohesive energy
is the work of separation per unit area), the models with cohesive elements are not mesh
dependent, which is always an issue for the GTN models [12].



Cohesive elements used in simulating ductile fracture are supposed to represent the
mechanism of nucleation, growth and coalescence of microscopic voids that initiate at
the inclusions and second phase particles. The idea of the present contribution is to
obtain the cohesive properties by studying the mechanical response of a single element
obeying a rate-dependent Gurson type constitutive equation. This sort of mechanism-based
cohesive model has also been proposed by other authors, e.g. [12-16]. It is well known that
the cohesive strength increases with strain rate ( [17-19]) and this implies an increase in
stress triaxiality [20,21]. Using a Gurson type model provides a mean for exploring the
effect of stress triaxiality on TSL parameters [12]. Rate sensitivity of the cohesive zone
is determined by applying different values of loading speed on the rate-sensitive single
element and calculating the cohesive parameters from the mechanical response. A similar
procedure is performed by applying different stress ratios on the single element to study
the effect of stress trixiality on the TSL parameters. The shape of the TSL, cohesive
strength and critical displacement are fitted to meet the results of the single element
calculations for various strain rates and triaxialities. The parameters are then used for
crack growth simulations of an aluminum middle-cracked tension M(T). In the model, the
cohesive elements are both triaxiality- and rate-dependent. Triaxiality-dependent cohesive
elements have already been introduced to cohesive elements by Siegmund and Brocks [2],
whereas the effect of dynamics on cohesive parameters is usually written by a separation
rate dependency, see e.g. [18]. Even though the implementation of a strain rate effect is a
bit more complicated than a separation rate, it has the advantages that are described in
section 2.3.

Since the measures of strain rate and stress triaxiality are not available in the cohesive
elements, they are calculated and transferred from the solid elements adjacent to them,
which is performed in a similar way as proposed in [2] for only stress triaxiality values.
The technique has also been used for strain-dependent cohesive elements by Tvergaard
and Hutchinson [22]. The analyses are performed in quasi-static and dynamic cases. The
effects of rate dependency, inertia, constraints and waves on mechanical response of the
structure are shown by the load-displacement diagrams and the results are discussed. The
influence of the pointed out phenomena on plastic energy dissipation and crack growth are
illustrated, too. The influence of adiabatic heating has not been considered in the analyses.

The static and transient dynamic analyses are performed in ABAQUS/Standard non-
linear finite element code [23]. The rate-dependent complete Gurson model developed and
implemented into ABAQUS as a user defined material (UMAT) subroutine [24] is used
for the single element calculations. The cohesive element calculations are performed by a
user defined element (UEL) subroutine developed by Scheider [25] and expanded by the
present authors for rate and triaxiality-dependent cohesive elements to be used in transient
dynamic analysis.



2 Calculations

2.1 Material

Smooth round bars made of aluminum alloy 6XXX series were tested by split-Hopkinson
tension bar in SIMLab of NTNU [26]. The experimental stress-strain curves at different
strain rates are approximated by the following equation [27] as shown in Fig. 2:

(1) ()

where 7, €, ¢ and ¢, stand for true stress, true plastic strain, yield stress, and a reference
strain respectively. € and ¢, are the strain rate and a reference strain rate, respectively. N
is known as strain hardening and m as strain rate hardening exponent. In this formulation,
the strength of the material increases with the increase of strain rate. The constitutive
bahavior is based on von Mises plasticity with pure isotropic hardening. Viscous, i.e. time
dependent effects are not considered. The values considered for the material tested are:
oo = 217 MPa, ¢y = 0.002, ¢, = 150 1/s, N=0.0526, m=0.05. Mass density of aluminum,
p=2700 Kg/m? has been considered in all of the dynamic calculations.

2.2 Single element calculations

For ductile metals, the effective behavior of a unit cell containing a void can be captured by
using the Gurson model [28] developed by Tvergaard [29] and Tvergaard and Needleman
[3]. The latter, known as GTN uses a fixed critical void volume fraction, i.e. the point
where coalescence starts, as a material parameter. Koplik and Needleman [30] showed that
this assumption works well only for low stress triaxiality cases, and slightly worse for high
stress triaxiality cases, which is the case in front of a crack tip. Zhang et al. [4] introduced
the Thomason’s coalescence criteria [5] into the Gurson model so that it can predict void
coalescence. In their approach which they called ”"complete Gurson model”, they also
proposed final void volume fraction to be a function of initial void volume fraction. In the
strain-rate sensitive version of the model, the flow stress is a function of local strain rate
with the same strain rate hardening exponent as that of the bulk material. Details on the
rate-dependent Gurson model is found elsewhere (e.g. [31,32]).

The question that arises is which of the phenomena influencing ductility because of
dynamic loading conditions is more important to be considered in modeling a single Gurson
type element. Curran et al. [33] considered rate-sensitive material for a hollow sphere of
internal radius, a, subjected to internal constant pressure, Fy. The material was considered
to be rigid, perfectly plastic with a viscosity coefficient. Their numerical investigation for
aluminum showed that the inertia effect becomes important for quite large voids (larger
than 10 pm) and for a wide range of radii a, the maximum rate is governed by the viscous
regime only. In other words, as far as void size is smaller than a certain value, inertia can
be ignored in modeling void growth under dynamic loading. Considering the work done by
Johnson [34], it is concluded that the inertia effect is important in void growth only if the
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speed of crack growth is higher than 44/0¢/p where oy and p are the flow stress and the
density of the material, respectively. This value is around 1100 m/s for a typical aluminum
alloy. Liu [35] also showed that increasing strain rate will increase the inertia effect, but
this effect is significant only when the strain rate is over 10000 1/s.

Based on these discussions, only rate sensitivity of the material has been considered.
The effect of the adiabatic heating is ignored in all of the calculations.

In the present study, a single four node plane strain element with rate-dependent com-
plete Gurson model as constitutive equation is used. The initial void volume fraction of
fo = 0.002 is considered in the calculations as suggested in [36], since no experimental
data on micromechanical information is available for this parameter. The analyses are per-
formed for an element with the initial size of hxh, h=1 mm, for different stress biaxialities

0, as shown in Fig. 3:
on

p=20 3
p (3)
If the material is incompressible, the stress triaxiality which is the ratio between mean

normal stress and von-Mises equivalent stress is given by [12]:

1+
Hry ————
V3(1-5)

The constant stress ratios in static loadings were obtained using modified Riks method
implemented in ABAQUS. The reason for using Riks method is the instability in load
controlled calculations due to softening. Figure 3 shows the normalized traction separation
obtained for different values of triaxiality. Figure 4 shows the variation of normalized
strength and energy obtained from Fig. 3 versus triaxiality. The curves are fitted to the
calculated values.

In order to investigate the effect of strain rate on the stress-elongation behavior, quasi-
static analyses were performed with a rate-dependent model and high speed loading. Since
strain rate was considered, Riks method was not applicable any more. Thus, two linear
springs were added to the model and the multi-point constraint (MPC) subroutine in
ABAQUS was used to obtain constant stress ratios. For low speed of applied loads, the
responses were the same as the Riks method. Figure 5 shows the normalized traction-
separation behavior for different triaxialities for a loading rate of 500 mm/s or, in other
words, an initial strain rate of 500 1/s for an element of initial length h=1 mm. The figure
shows that the effect of triaxiality is similar to the case with rate-independent material
behavior, but the values of cohesive strength and consequently cohesive energy are different.
To check this, various loading speeds were applied for the same triaxiality of 1.5 (§=0.44).
Figure 6 shows that the curves are parallel and only the value of strength changes for the
same maximum displacement. Figure 7 shows the curves fitted to the calculated values of
strength and energy for the rate-dependent case at constant loading rate (V=500 mm/s)
and different triaxiality values. Comparing this figure with Fig. 4, it is observed that the
fitted curves are very similar to the rate insensitive case.

Figure 8 shows how the values of cohesive strength and cohesive energy change with
loading rate for a constant triaxiality of 1.5. As it is shown, the value of the maximum trac-
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tion changes as a function of the rate independent case for the same triaxiality multiplied
by the relative strain rate to the power of m (strain rate hardening exponent).

2.3 Traction separation law

Since the cohesive model is a phenomenological model, authors use various formulations
for defining the shape of TSL and the cohesive values (e.g. [8,10,13,37-39]). Among these
definitions, the one introduced by Scheider and Brocks [39] has been used to reproduce the
calculated damage and failure of the unit cell by a cohesive element. This TSL has two
shape parameters, ¢; and s, in addition to the cohesive parameters already introduced
and consists of three parts: (a) increasing traction or cohesion, (b) constant traction and
(c) decreasing traction or decohesion (see Figure 9). The traction as a function of the

separation in this model is:
2
2(%)—(%) 0< <y
T=S5 1 ,51<6<52 (5)
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By changing 0; and d9, one can have a variety of TSL shapes. In this formulation, the
maximum separation is: or .

0

6

S1-2n.o (6)
Although it has been claimed that the shape of the TSL hardly influences the crack growth
behavior [13,37,40,41], there are a few investigations that show higher effects of the shape
[19,42,43]. For example, Scheider and Brocks [42] showed numerically that not only the
shape of the TSL can affect the load-displacement behavior, but also the TSL shapes that
make the same results in a fracture specimen, might make different results in another
specimen. Falk et al. [43] showed that if the TSL is initially rigid, the model can not
capture crack branching by using a regular finite element mesh and it is possible when the
TSL has initial elasticity.

Regarding uncertainties like these, rate-dependent Gurson type model has been used
as the basis for obtaining the TSL.

It is possible to obtain the following expressions for the cohesive strength and energy
using the mathematical approximations shown in Figs. 4, 7 and 8 as:

50:

o s (€N
7~ LABH - (7)
S~ (11In(H) +2.1) 00 (i) (8)
€o

The variable h is the characteristic length scale of the Gurson model, which is usually
based on the micromechanical structure of the material. A value of h=0.1 mm is chosen



in accordance to [44] who also investigated an aluminum alloy of 6XXX series. H is the
stress triaxiality. The expression in Eq. (8) is similar to the results obtained analytically
by Zhang et al. [19] which show that the curves of normalized traction along the cohesive
zone are parallel at various crack speeds and the cohesive strength increases with crack
growth rates. It has also been pointed out by Freund [45] that as the crack moves more
rapidly, the material is deformed more rapidly and a larger cohesive stress is required in
order to achieve the requisite crack tip opening displacement.

Considering e.g. Fig. 5, it is recognizable that the piecewise TSL defined by Eq. (5) and
shown in Fig. 5 fits properly to the curves if the shape parameters d; and dy are adjusted
accordingly. Combining Eqgs. (6), (7) and (8), the critical separation reads:

8o 2.8 136 1

h T Llin(H)+211-20 42

(9)

The comparison between the stress elongation behavior obtained from rate-dependent Gur-
son model calculations and the TSL approximation of Eq. (5) with the cohesive parameters
from Egs. (8) and (9) and %:0.07 and %:0.35 are shown in Fig. 10 for two different tri-
axiality values. Since the curves obtained from the single element calculations and those
based on Eq. (9) are not exactly the same, the critical displacements are a slightly different
for the same cohesive strength and energy, but the differences are reasonable.

It is worth noting that the initial stiffness of the cohesive elements is relatively high.
Therefore, the separations are very small in the beginning until the cohesive strength is
reached. This is an important indication for the use of a strain rate instead of a separation
rate dependent cohesive model. The cohesive strength is strongly influenced by the rate,
and in the beginning most of the deformation takes place in the adjacent continuum ele-
ments whereas the cohesive elements are still closed. On the other hand, the effect of the
rate on the softening branch of the traction separation law is of minor importance since
the characteristic of the damage behavior is then more affected by the cohesive energy
parameter which is not much dependent on strain rate, see Figs. 6 and 8.

3 Crack growth simulations and results

An M(T) specimen of unit thickness and dimensions of 100x100 mm? has been modeled
using four node plane strain elements. The ratio of the initial crack length to the specimen’s
width is a/W = 0.5. One row of cohesive elements with initial zero height has been used
at the ligament. Because of symmetry, one fourth of the specimen has been modeled.
Figure 11 shows the specimen and the detailed mesh at the crack tip and a part of the
ligament. The smallest continuum element size belongs to the elements adjacent to the
ligament and it is 0.1x0.1 mm?.

The surrounding continuum elements behave according to Eq. (2) and the cohesive
elements based on Eqgs. (5), (7), (8) and (9). Each cohesive element possesses four nodes
and two integration points. Because of the symmetry, only the two upper nodes of cohesive

elements are shared with the adjacent continuum element and the other two obey the
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displacement conditions of symmetry. For each cohesive element, the actual values of
nodal displacement, triaxiality and strain rate are used to compute the current value of
traction and element stiffness. The values of triaxiality and strain rate are calculated in
the continuum elements along the ligament at all of the integration points using UVARM
subroutine in ABAQUS. The averages of these values are then calculated after the load
increment and provided to the respective adjacent cohesive elements in the next increment
as shown in Fig. 12. The error of this kind of explicit scheme is accepted since the time
increments are always chosen to be small enough.

Material separation process involving void growth and plastic deformation at microlevel
are irreversible by nature. This property has been implemented in the cohesive element
formulation in a sense that a separation already happened to an element remains after
local unloading and relaxing the stress [25]. Local unloading can happen because of global
unloading, stress waves or crack branching.

The simulations performed are described in Table 1. The aim of the analyses is to
check the influence of constraint, rate sensitivity, inertia and elastic waves on the energy
absorption of a typical M(T) specimen. In the static simulations, the effect of triaxiality on
the energy absorption is studied. In the dynamic analyses, denoted by DYN-xxx, the effects
of inertia and elastic waves are investigated as well as the influence of stress triaxiality and
rate sensitivity.

Figure 4 shows that the change of cohesive energy (critical displacement) is very high
for triaxiality values of H <1.5. The reason is that for small values of triaxiality, the
initial void grows very little and therefore the energy absorbed is mostly related to the
plastic deformation and not damage in the cell model. For more detailed discussions
on the limitations of the application of cell model and the competition between cohesive
process zone and plastic flow, see [20]. It is also known that the M(T) specimen is a low
constraint fracture specimen. The analyses show that the stress triaxiality at the crack tip
increases while the crack is growing. Regarding these discussions, H = 1.2 was considered
as an initial stress triaxiality value used in the simulations. Below this value, the cohesive
parameters were considered to be constant, i.e.:

T, 237.6 (—) JH <12
o ‘o (10)
Eq.7 L H>12

474 (-)m H <12
5 = ‘0 (11)
Eq.8 L H>12

The cohesive parameters for H = 1.2 were also used for the triaxiality independent analyses.
The load was applied as a prescribed displacement at the upper edge of the specimen.
In dynamic cases, the speed of the load was 3.3 m/s. The load and displacements presented
in the following diagrams are the values calculated on the boundary of the model.
Figure 13 shows load-displacement curves for quasi-static solutions. The figure shows
that ignoring triaxiality dependency of interface elements can lead a static crack growth
analysis to be highly conservative, because the prediction of the energy absorption is much



lower than the constraint (stress triaxiality) dependent case. This shows that the values
of triaxiality increase to more than the initial value considered in the analyses.

Figure 14 shows the load-displacement curves obtained from dynamic analyses. Since
transient dynamic solution has been employed, inertia and elastic waves are inherent in the
analyses. The existence of oscillations in the curves is inevitable because of the existence
of elastic waves. The time that elastic waves travel the length of the specimen is around
20 ps; that is much shorter than the total time of fracture (the shortest time of fracture
is 131.8 ps, which is for the case of rate dependent bulk material). The elastic waves can
have two sources, one is the dynamically applied load and the other is the wave induced by
broken cohesive elements or, in other words, the waves induced because of the relatively
high speed of the crack growth. Because of the implicit integration used in the dynamic
analyses, there is no severe limitation on the time increment chosen. Repeating one of the
simulations with very short maximum allowable time increments (0.02 us instead of 24 ps)
showed that the averaged results are similar, but the rate of convergence is very low and
the simulation is extremely time consuming.

Dynamic simulation considering the rate dependency only for bulk material leads to
the most conservative assumption. Ignoring the effect of strain rate and triaxiality on the
behavior of interface elements makes the results unrealistic. Using rate- and triaxiality-
dependent cohesive elements results in more energy absorption, although it is less than the
simulation which ignores all of these influences.

Figure 15 shows the crack growth vs. time for dynamic simulations. In all of the cases,
the crack speed is low in the beginning and then it increases to a somewhat steady state
speed. The case with no rate dependency is an exception in it seems that the crack speed
is changing during the growth. The figure shows clearly that the steady state speed of the
crack growth is highest, about 1430 m/s, for the case in which only bulk material is rate
dependent. If an average speed is defined for the case with no rate dependency, the lowest
crack growth speed of around 290 m/s is obtained for this case. It should be noted that for
the case where both bulk material and cohesive zone are rate dependent, the crack growth
initiation happens almost at the same time as for the case with no rate dependency. This
is in contrast to the investigations of Basu [46] who numerically showed that strain rate
sensitivity plays a beneficial role on dynamic ductile fracture initiation. This contradiction
is related to ignoring triaxiality change even at the first stages of deformation. It is observed
in Fig. 15 that when triaxiality dependency is considered, crack growth initiation happens
at 69 pus which is higher than the rate-insensitive case. To check if this effect is due
to the rate sensitivity of the material, a dynamic case was simulated with triaxiality-
dependent cohesive elements while no rate sensitivity was considered. The analysis showed
that the crack growth initiation happened at 61.8 us. This proves that rate sensitivity
has postponed crack growth initiation, although after a short time, crack growth speed is
higher than the rate-insensitive case. It should also be noted that in the case where stress
triaxiality change has been ignored, the crack growth velocity becomes so high that the
assumption of ductile mechanism of crack growth might be inaccurate. It is worth noting
that for the case in which only rate dependency of bulk material has been considered,
the crack speed is around 1400 m/s. In this case, the inertia effect on fracture energy is
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important, but it has been ignored in the calculation. Regarding these discussions and
back to Fig. 14, it is well understood why the load in the triaxiality and rate dependent
case is higher in the beginning and drops very fast after some time. This is qualitatively
compatible with Freund’s finding [45]. He used a rate sensitive cohesive zone and showed
analytically, with some assumptions on the amount of plasticity and material behavior, that
for high speed of crack growth (more than about 20% of shear wave propagation velocity),
”as the crack tip speed increases for some fixed level of viscosity (rate sensitivity), the local
stress is elevated and a smaller applied stress intensity factor is required for crack growth”.
He also showed that for lower crack speeds or smaller viscosities, however, the criteria is
reversed.

The reason why crack speed is much higher in the case of rate-dependent plasticity is
that the material hardens due to high loading rate and opens the crack (cohesive elements)
more easily. Figure 16 shows the ratio of dissipated plastic energy to the external work vs.
crack growth. This figure shows that for the rate sensitive material, the percentage of the
energy absorbed by the plastic deformation is less compared to the rate insensitive case
and the difference increases with crack growth. When the cohesive zone is rate dependent,
the cohesive strength is increased at high loading rates and this causes more energy dis-
sipated by plasticity in the surrounding material. Although the stresses needed for crack
propagation are higher compared to the case with rate independent cohesive parameters,
the cohesive strength, .S, is not high enough to decrease the crack growth rate as much as
for the rate insensitive case. The reason is that with increasing plasticity, the crack opening
speed decreases, so the local strain rate and consequently the cohesive strength decrease
again. Besides, stress triaxiality increases initially, but because of inertia it decreases while
the crack is growing [47]. This means that the decrease of the cohesive strength is related
to the inertia. Figure 17 shows the change of triaxiality value during crack growth for
the case in which rate dependency and triaxiality have been considered for the cohesive
elements.

Figure 18 shows how the phenomena mentioned in the introduction part affect the
mechanical response of the structure and makes it clear that the effect of the combination
of them is not easily predicted. It demonstrates that although rate dependency and inertia
can increase the maximum load in a displacement-controlled loading, rate dependency
decreases the total energy absorption of the specimen. This is in contrast to an uncracked
specimen in which rate dependent plasticity and inertia increase the energy absorption
under dynamic loading.

It was already mentioned that models with cohesive elements are mesh independent,
but since an average of field variables is calculated in the adjacent continuum element, this
average may depend on the element size. To check the influence of rate-sensitive cohesive
elements on the mesh dependency of the model, the specimen was also modeled by element
size of 0.05x0.05 mm? for the continuum elements adjacent to the ligament. Figure 19(a)
shows the load-displacement curves for the two models. It is observed that the effect is
insignificant and only exists in the last part of the deformation. Figure 19(b) shows that the
crack growth rates are similar up to some time and then the crack growth speed is slightly
higher in the model with finer mesh. With the element sizes considered in the present
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models, mesh density is not very important, especially for the global energy absorption
predicted. It should be noted that although cohesive zone models are theoretically mesh
independent, the mesh must not be so coarse that the calculation of local plastic strain
field is imprecise or mesh dependent [48].

4 Conclusion

The effect of triaxiality and strain rate on cohesive properties has been considered simulta-
neously in a finite element dynamic crack growth simulation. Cohesive strength increases
with strain rate and this implies an increase in stress triaxiality. Taking into account the
interaction between these influences to solve dynamic crack growth problems in a closed
form is not an easy task to do. The change of cohesive properties with these variables
has been obtained through calculations on a cell model obeying rate-dependent Gurson
constitutive equation. The results of the calculations have been used in crack growth sim-
ulations of a center-cracked specimen under static and dynamic loading. The procedure
has the ability to take into account the effect of stress triaxiality, strain rate and inertia in
a proper and relatively simple way. The general results are:

(1) In a quasi-static loading, triaxiality increases with crack growth, but in dynamic
cases it increases initially whereas inertia leads to its decrease during crack growth.

(2) Although strain rate sensitivity makes a ductile crack initiation to be postponed,
it leads to a faster crack growth due to a decrease in the amount of plasticity at the crack
tip area. In other words, although the energy absorption increases initially, it drops very
fast after a short crack growth. This is in contrast with a dynamically loaded uncracked
specimen, where positive strain rate sensitivity always makes the specimen absorb more
energy.

(3) In the dynamic analyses performed, the presumption of ductile fracture will be
inaccurate if the change of triaxiality is ignored.

(4) Considering strain rate in the dynamic simulations while ignoring the stress triaxi-
ality leads to a high underestimation of the toughness.

(5) The global energy absorption of the specimen with rate sensitive cohesive elements
is not highly mesh dependent. This is valid as long as the mesh is fine enough to calculate
plastic stress distribution correctly.

These results are compatible with other studies in this field which have used different
approaches.
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Figure 1: Cohesive zone obeying a TSL and the surrounding undamaged elastic-plastic
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Figure 2: The experimental stress strain curves for different strain rates approximated by
Eq. (6)
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Figure 3: The effect of triaxiality on the traction separation behavior of a single element
obeying complete Gurson model
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Figure 4: Variation of normalized cohesive strength and cohesive energy versus applied
triaxiality for rate insensitive material

17



w

[5;]

:

1 |**
y 2! |
IIIIITIT
o0
PRNwAO

Figure 5: Normalized traction separation behavior in different triaxialities for a load speed
of 500 mm/s (initial strain rate of 500 1/s)

18



T
== V=1500 mm/s
-~ \/=1000
-~ =1 V=500
SR V=200
25+ ¥ ”””” A = = V=100 T
- B = Rate independent

15

o, 2/00

05F

u2/h

Figure 6: Normalized traction separation behavior at different load speeds (initial strain
rate) and constant triaxiality (H=1.5)

Table 1: Various simulations of M(T) specimen

Case Analysis Plasticity Cohesive Zone
QS Quasi-static Rate independent Constant
QS —-CTD Quasi-static Rate independent Triaxiality dependent
DYN Transient dynamic Rate independent Constant
DYN — MRD Transient dynamic  Rate dependent Constant
DYN — MCRD Transient dynamic  Rate dependent Rate dependent

DYN — MCRD — CTD Transient dynamic  Rate dependent  Rate AND triaxiality dependent
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Figure 9: TSL shape proposed by Scheider and Brocks (2003).
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Figure 10: A comparison between traction separation behavior obtained from Gurson
type model and the TSL proposed in Eq. (5)

21



Figure 11: The M(T) specimen and a detailed finite element model of the crack tip
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Figure 12: The triaxiality and strain rate values are transferred to cohesive elements from
the adjacent continuum elements
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Figure 15: The effect of strain rate and constraint on crack growth rate (dynamic loading)
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Figure 16: The effect of strain rate sensitivity on percentage of energy dissipated by
plastic deformation during crack growth
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Figure 17: The change of stress triaxiality during crack growth under dynamic loading
conditions
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Figure 18: A general comparison between quasi static and dynamic cases
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Figure 19: The effect of element size on (a) load-displacement curve, (b) crack growth
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